
KoreLogic DFRWS-2006 Project

Digital Forensics File Carving
Advances

Team:
Jay Smith KoreLogic
Klayton Monroe KoreLogic
Andy Bair MITRE

Version 1.1 (October 2006)

Agenda

• Introduction to Digital File Carving
• 2006 File Carving Challenge
• Methodology
• Conclusion

• What Can Effective Forensics Accomplish?
– Produce corroborating evidence that puts a person at the

keyboard at a specific time
– Recover deleted data (e.g., files, images, email, etc.)
– Discovery of when files were modified, created, deleted, etc.
– What applications were installed, even if they were then

uninstalled
– Web sites a user visited…

• What Forensics Cannot Do…
– Data recovery is impossible if the media is physically

destroyed.
– If the media is securely overwritten, recovery is, at best, very

complicated, and often impossible

Computer Forensics
Overview

File Carving
Fundamentals

• Definition – Identifying and recovering files based on
analysis of file formats

• File carving is a powerful technique because it can
– Identify and recover files of interest from raw, deleted, or

damaged file system, memory, or swap space data
– Assist in recovering files and data that may not be accounted for

by the operating system and file system
– Assist in simple data recovery

File Carving Details

• Many file types have well-known values or
magic(5) numbers in the first bytes of the file
header

• Most file carvers
– Identify specific types of file headers and/or footers
– Carve out blocks between these two boundaries
– Stop carving after a user-specified or set limit has

been reached
• Unfortunately, not all file types have a standard

footer signature, so determining the end can be
difficult -- thus the need for limits

File Carving
Example

• JPEG files start with 0xffd8 and end with 0xffd9
• To recover a JPEG file:

– Find the locations of its header and footer
– And carve everything between those two endpoints

(inclusive)

ff d8 ff e0 00 10 4a 46 49 46 00 01 01 01 00 50 |......JFIF.....P|
... Data ...
28 a2 80 3f ff d9 |(..?..|

Hexdump of sample.jpg

Computer Forensics
Challenges

• In general, many more forensic cases today
• Investigations can be lengthy

– Machines tied up for days during investigations
– Forensic targets with GB or TB of storage.
– Still need rapid turnaround, especially in time-sensitive cases

involving potential loss of life or property -- think terrorists
• File Carving Challenges

– One problem faced by forensic practitioners is that existing file
carving tools typically produce many false positives and can miss
key evidence.

– Need file carving algorithms that identify more files and reduce
the number of false positives

Agenda

• Introduction to Digital File Carving
• 2006 File Carving Challenge
• Methodology
• Conclusion

DFRWS

• Digital Forensic Research Workshop
– http://www.dfrws.org

• Initiated in 2001
• Objectives (paraphrased)

– Identify & create processes for applying scientific method in
forensics

– Develop research focused on practitioner
– Presentation of evidence that meets heightened scrutiny of the

courts

• Workshop held annually in various US cities
• Issue forensic challenges leading up to workshop

File Carving Challenge
Data

• 50 MB raw file
• No file system
• JPEG, ZIP, HTML, Text, & MS Office files & fragments

dfrws-2006-challenge.zip (ZIP of raw file, 41 MB)
dfrws-2006-challenge.raw.gz (gzip of raw file, 41 MB)
MD5 of raw file: bd09d612fc8b3f92662b98f9456f2ada

• Extract as many full files as possible
• Develop tools to solve challenge

• All source code must be released

Team Goals

• Design and develop file carving algorithms to
• Identify more files
• Reduce number of false positives

• Discover more about the current state of file carving
• Contribute lessons learned to workshop & opensource
• Use existing tools from The FTimes Project as our base

• Extend as needed
• Determine effectiveness of FTimes in dig mode to

• Identify and enumerate well-known SOFs & EOFs
• Identify & enumerate file structures or landmarks

Team Environment

• Developed tools and techniques on:
• FreeBSD 6.[01]
• Slackware Linux 10.2.0

• Final results produced on FreeBSD 6.0
• Note: Should be able to reproduce results on

any other UNIX system but technical
difficulties may arise

Analysis Tools

• Primary OS-native tools:
– bc (calculations, hex/decimal conversions)
– dd (data carving and general manipulation)
– file (data typing)
– hexdump (data viewing)
– perl (scripting)
– sh (scripting)

– Secondary OS-Native tools:
– gcc (C programming)
– md5 (or md5sum)

Analysis Tools (Cont.)

• Primary add-on tools, libraries, and modules:
– FTimes-3.7.0 (mapping, digging, XMagic, and carving)
– bvi-1.3.1 (data viewing and occasionally editing)
– foremost-1.1 (benchmark and 2nd opinion)
– ole-dump (OLE verifier)
– scalpel-1.54 (benchmark and 2nd opinion)
– tidy (HTML verifier)
– unzip552 (ZIP verifier and general extraction tool)
– xv-3.10a (image viewer)
– Microsoft Office (document viewer)

• Secondary add-on tools, libraries, and modules:
– Digest-1.10 (MD5)
– Digest-SHA1-2.10 (SHA1)
– Image-TestJPG-0.9 (JPEG verifier)
– gnuplot-4.0.0 (plotting entropy and averages)
– mysql-5.0.9-beta (analysis queries based on ftimes output)
– libOle (contains source for ole-dump)
– pcre-6.6 (regular expression engine for ftimes)
– stegdetect-0.5 (potential image verifier)
– OpenOffice-2.0.3 (document viewer)
– gqview-2.0.1 (image viewer)
– WinZip (ZIP verifier and general extraction tool)

Terminology (1)

• SOF - start of file
• EOF - end of file
• FAT - file allocation table
• OLE - object linking and embedding, Microsoft's

framework for compound documents
• XMagic - Extended Magic; This is a line of Magic that

was inspired by the original file(1) Magic. XMagic is part
of FTimes.

Terminology (2)

• Entropy
• Measure of randomness
• Range = 0-8; 8 = most random; 0 = least random
• Dramatic entropy changes can indicate file boundary

• Sliding Entropy:
• Calculating entropy for each sequential file data block

• Sliding Average:
• Calculating average for each sequential file data block

• Sliding Hash (MD5 and SHA1)
• Calc message digests for each sequential file data blk
• Bashed against 1+ subject images
• Can use to locate duplicate blocks

Team Methodology

Hypotheses Used to
Create Methodology

• Application-specific parsers better than custom
• Use existing tools and libraries as validators

• Legitimate files will start on sector boundary
• Non-sector aligned files likely to be embedded

• Blocks of one file encompassed by another file
• Slack space, entropy tests, and byte distribution
may help reveal edges

• Carve most well-defined file types first
• Use boundary info as SOF/EOF edges for other
file types

Agenda

• Introduction to Digital File Carving
• 2006 File Carving Challenge
• Methodology
• Conclusion

Methodology

FTimes Overview

http://ftimes.sourceforge.net/FTimes/index.shtml

• System baselining and evidence collection tool
• Gather/develop topographical information & attributes

about directories and files in a manner conducive to
intrusion and forensic analysis

• Lightweight: small footprint, command line interface
• Used dig (“search”) mode in conjunction with XMagic to

develop topography

FTimes Dig Mode

• Search through directories and files looking
for user-specified regular expressions or
sequence(s) of bytes

• 3 tiers of searching
– Basic – DigStringNormal, DigStringNoCase
– Advanced – DigStringRegExp
– Expert – DigStringXMagic

Methodology

FTimes – Identify File
Heads and Tails

DigStringRegExp=(?s)(\xff\xd8....JFIF) sof.jpeg
DigStringNormal=%ff%d9 eof.jpeg

"challenge.raw"|regexp|sof.jpeg|1980416|%ff%d8%ff%e0%00%10JFIF
"challenge.raw"|regexp|sof.jpeg|1980748|%ff%d8%ff%e0%00%10JFIF
"challenge.raw"|normal|eof.jpeg|1986297|%ff%d9
"challenge.raw"|regexp|sof.jpeg|1995443|%ff%d8%ff%e0%00%10JFIF
"challenge.raw"|normal|eof.jpeg|2000992|%ff%d9
"challenge.raw"|normal|eof.jpeg|2267600|%ff%d9

combined.cfg

combined.dig

ftimes –diglean combined.cfg challenge.raw

JPEG with 2 thumbnails:

Methodology

FTimes
XMagic Introduction

http://ftimes.sourceforge.net/FTimes/XMagic.shtml

• Used XMagic to develop statistics (entropy, averages, %-ctypes, ...)
• To understand XMagic, requires knowledge of the file(1) command

and magic(5)
• Magic number – special constant (traditionally) used to identify a

particular type of file (e.g., tcpdump magic is 0xa1b2c3d4)
• file(1) command – determines file types using magic numbers
• Typical file(1) command usage:

$ file ftimes.zip

ftimes.zip: Zip archive data, at least v2.0 to extract

File and magic example

XMagic vs. Magic (1)

• Split operator/value pair into separate fields
• Supports

– Regular expression Magic via Perl Compatible Regular
Expressions (PCRE)

– Block-based entropy calculations
– Block-based average calculations
– Block-based percent calculations for ctype(3) character classes
– Block-based hash calculations (MD5 and SHA1)
– Several different test operators for all of its block-based tests

XMagic vs. Magic (2)

• Test operator/value (if test operator absent in Magic, implied operator is '=‘)
Magic: 0 string \037\235 compress'd data

XMagic: 0 string = \037\235 compress'd data

• Place holder when the test value is to be ignored:
Magic: >6 byte x type %c

XMagic: >6 byte x - type %c

• Convert a series of string/[Bbc] tests to the equivalent regexp test:
Magic: 0 string/B = \=pod\n Perl POD document

Magic: 0 string/B = \n\=pod\n Perl POD document

Magic: 0 string/B = \=head1\ Perl POD document

Magic: 0 string/B = \n\=head1\ Perl POD document

Magic: 0 string/B = \=head2\ Perl POD document

Magic: 0 string/B = \n\=head2\ Perl POD document

XMagic:0 regexp =~ ^\n?=(?:pod\n|head[12]) Perl POD document

XMagic vs. Magic (3)

• Convert a search/<number> test to an equivalent regexp:<number>
test
Magic: 0 search/20 = foo The venerable %s document

XMagic: 0 regexp:20 =~ foo The venerable %s document

• Block-based test types to harvest various topographical information:
XMagic: 0 byte x - 512

XMagic: >&0 row_entropy_1:512 x - \b|%f

XMagic: >&0 row_average_1:512 x - \b|%f

XMagic: >&0 percent_ctype_alnum:512 x - \b|%f

XMagic: >&0 sha1:512 x - \b|%s

XMagic and Challenge
entropy, %-ctype, ...

Basename=-
DigStringXMagic=stats-512.cfg.xmagic stats-512
...

stats-512.cfg

ftimes –diglean stats-512.cfg challenge.raw

XMagic
0 byte x - 512
>&0 row_entropy_1:512 x - \b|%f
>&0 row_entropy_2:512 x - \b|%f
...

stats-512.cfg.xmagic

name|type|tag|offset|string
"challenge.raw"|xmagic|stats-512|0|512|4.656387|7.282739|...
"challenge.raw"|xmagic|stats-512|512|512|4.667385|7.244524|...
...

Compute and Plot Sliding
Entropy/Average Statistics

• Sliding entropy & average good for detecting data stream edges
• Typically occurs on block boundary

• Sliding entropy can be used to classify different data types:
• Entropy 4-6: TEXT- and HTML-based blocks
• Entropy 7-8: ZIP- and JPEG-based

• Used FTimes + XMagic to collect stats and topographical info:
• Compute sliding entropy & average values over subject image
• Plot entropy and average values

Using Entropy and
do_itrim

Example of Extracting a JPEG Image

Stage 1 Carve

We used sliding entropy graphs to see if we could determine the portion to
trim out using do_itrim. Notice the portion on the right that seems out of
place.

Bogus Data

Using Entropy and do_itrim
(Cont.)

This sliding entropy graph shows the start of the JEPG image at block 11619. The
graph also reveals a drop in entropy at block 11820.

Using Entropy and do_itrim
(Cont.)

• do_itrim command used to extract the bogus data from the stage 1 carve file
• lower bound = 103936 which is close to block containing extra data
• validator script returns 1 if image is valid
• block size = 512 bytes conform to the raw data file block size
• trim size = 13312 is the amount of extra data from entropy graphs

File extension Lower bound

Trim size
Validator program

Block size

Validator Arguments

Validator
return code

do_itrim -e jpeg -l 103936 -r 1 -s 512 -f first-cut.jpeg -t 13312
-- tools/test_jpeg.pl -f %subject

Using Entropy and do_itrim
(Cont.)

We used do_itrim to carve out the section where the entropy dropped. The result is
a verified and complete image (as shown below).

Methodology

XMagic:
OLE Documents

XMagic0
regexp:512 =~ ... edited ...
>&64 regexp:512 =~ (?s)(.{12})
>>&12 lelong != 0xffffffff \b
>>>&0 lelong x - \b%X
>>>>&4 lelong != 0xffffffff \b,%X
...

xmagic.ole.enumerate-header-fat

xmagic.ole.enumerate-fat-blocks
XMagic0
...

XMagic: enumerate
file struct

DigStringXMagic=xmagic.ole.enumerate-header-fat sof.ole
DigStringXMagic=xmagic.ole.enumerate-fat-blocks fat.ole
...

combined.cfg

ftimes –diglean combined.cfg challenge.raw

"challenge.raw"|xmagic|sof.ole|1050112|689,68A,...
"challenge.raw"|xmagic|fat.ole|1917952|00000001:aaa...
"challenge.raw"|xmagic|fat.ole|1918464|00000081:aaa...

carve.log
1050112, blk 2051 -- header FAT block pointers: 689,68A,...
1907200, blk 3725 -- missing FAT block, +10752 byts, +21 blks
1917952, blk 3746 -- valid FAT block #1, 0x689
1918464, blk 3747 -- valid FAT block #2, 0x68A

ole-dig2crv

Using Entropy and do_itrim

Example of Extracting a Microsoft Document

Using Entropy and do_itrim

• This example shows us trying to validate a file carve of a Microsoft Office document.

• The validator program couldn't validate the file and crashed with a segmentation fault.

• We next looked at other data points to figure out why this file did not validate.

Using Entropy and do_itrim

Here is the first of three entropy graphs for the Microsoft document. We
knew from the stage 1 carve that our document began at block 2051.

Using Entropy and do_itrim

This entropy graph shows a continuation of the same range of entropy
which is a good indication that these blocks are part of the same file.

Using Entropy and do_itrim

In this graph you can see the fluctuation in the entropy starting at block
3051 and ending at block 3072. Our hypotheses was to carve those
blocks out to recover the full Microsoft Office document.

Using Entropy and do_itrim

By taking out the section from block 3051 to block 3072 with do_itrim,
we carved out the extra data.

Using Entropy and do_itrim

Below is a screen shot of the final extracted document.

Using Entropy and do_itrim

Example of Extracting a Zip file

Using Entropy and do_itrim

• This example shows us trying to validate a file carve of a ZIP archive file.

• The validator program found errors with the carved file and reported that there are
187904 extra bytes contained within the ZIP file.

• We then looked at other data points to see if we could locate the extra data and
carve it out of the ZIP file.

Using Entropy and do_itrim

• Here is the first of three entropy graphs for the ZIP archive.

• We knew from the stage 1 carve that our archive began at block 28729.

Using Entropy and do_itrim

The entropy values continue along within the ZIP archive.

Using Entropy and do_itrim

• This plot shows a drastic drop in entropy that starts at block 29529 and continues until block
29895 where the entropy returns to the same level as before.

• This is a good indication that this is extra data within the carved ZIP archive.

• The amount of data with the lower entropy matches what unzip reported. (29895-
29529)*512+512 = 187904. 512 is the blocksize in bytes.

Using Entropy and do_itrim

• Using do_itrim, we carved out the extra 187904 bytes.

• The lower bound, 407552 was chosen based on the results of viewing the file's
sliding entropy.

• Here, we manually tested the new ZIP archive to show the contents and validate
the archive.

• The file tests OK and we have our final carved ZIP archive.

Methodology

Sliding Statistics and MySQL

• Sliding percent ctype(3) good for identifying block contents:
• High % alpha & numeric characters indicates TEXT or HTML
• ZIP- and JPEG-based blocks contain flat distributions of alpha &

numeric characters
• FTimes and XMagic to harvest statistics and topographical info
• Loaded into MySQL so that we could run various analysis queries
• HTML Example:
mysql> select * from stats limit 1;

block: 0 cntrl: 1.367188
block_offset: 0 digit: 5.664062

offset: 0 lower: 67.773438
blocksize: 512 print: 98.632812

rent1: 4.656387 punct: 8.398438
rent2: 7.282739 space: 16.601562
rave1: 86.371094 upper: 1.5625
rave2: 22197.371094 sha1:95c44d983ef91535ee4a60d90bcb861e9f6f8e11
alnum: 75 md5:98d90194d35bae4fcabc0878419deca2
alpha: 69.335938 html_tags: yes
ascii: 100

Sliding Statistics and MySQL
(Cont.)

Here is an example query we used to find contiguous blocks of text that did not
contain HTML:

SELECT block FROM stats WHERE blocksize = 4096 AND print >=
80 AND html_tags = 'no' AND rent1 > 3 AND rent1 < 6 ORDER BY
block;

This query produced the (abbreviated) output shown below. These blocks
were then fed to ftimes-group-blocks.pl, which produced output that could be
used directly by ftimes-crv2raw.pl to carve text from the raw image.

+-------+
| block |
+-------+
| 1478 |
| 1479 |
| 1480 |
| |
| 4964 |
+-------+
382 rows in set

Agenda

• Introduction to Digital File Carving
• 2006 File Carving Challenge
• Methodology
• Conclusion

Challenge Results

3210(2)43(1)

Challenge AnswersEmbedded FilesRecovered files

(1) We extracted one additional partial file which was fragmented French
text. This file was included in the answer set because we considered it
part of the body of evidence which could be relevant to the
investigation.

(2) We carved out additional embedded files and included those in our
submission due to the fact they were complete files, and we felt that
investigators would not want to arbitrarily exclude any file regardless of
its location. This technique can be used in other scenarios such as
carving out images embedded in Microsoft documents or other types of
compound files.

Next Steps

• Inform your forensics team:
– Free forensics tools they can put to use today.

• FTimes for system baselining and evidence collection.
• Download the file carving tools and use them.

http://www.korelogic.com/Resources/Projects/dfrws_challenge_2006/

• Sliding entropy calculations:
– Can improve the accuracy of the file carving process
– Can reduce false positives
– Show promise for edge detection

• More file carving research is needed
– Forensic techniques, including file carving, must continue to

increase their “granularity” to discern smaller pieces of data.

Forensic Resources

• Books
– Farmer, D., and Venema, W. (2004). Forensic Discovery. Addison-Wesley.
– Digital Evidence and Computer Crime (E. Casey, Academic Press)
– Computer Forensics and Privacy (M. Caloyannides, Artech House)

• Websites
– http://www.dfrws.org/ - Digital Forensic Research Workshop
– http://www.ijde.org/ - International Journal of Digital Evidence
– http://vip.poly.edu/kulesh/forensics/list.htm - conferences, people, online

papers
– http://www.tucofs.com/tucofs/tucofs.asp?mode=mainmenu – “The

Ultimate Collection of Forensic Software”
– http://www.opensourceforensics.org/

• Examples of digital forensics software
– FTimes
– Foremost, Scalpel
– EnCase, FTK, ILook, Sleuthkit
– WinHex

Questions and Slides

• Questions?

• A version of this briefing is available at:

http://www.korelogic.com/Resources/Projects/dfrws_challenge_2006/

