
Copyright 2001 by Mark Watson page 1 of 1 1/20/2002 08:48:15

Practical Artificial Intelligence Programming in Java

Version 0.51, last updated January 20, 2002.

by Mark Watson. Copyright 2001-2002. All rights reserved.

This web book may be distributed freely in an unmodified form. Please report any errors to
markw@markwatson.com and look occasionally at Open Content at www.markwatson.com for
newer versions.

Request from the author: I live in a remote area, the mountains of Northern Arizona and work
remotely via the Internet. Although I really enjoy writing Open Content documents like this web
book and working other Open Source projects, I earn my living as a Java consultant. Please keep
me in mind for consulting jobs! Also, please read my resume and consulting terms at
www.markwatson.com.

Copyright 2001 by Mark Watson page 2 of 2 1/20/2002 08:48:15

Table of Contents

Practical Artificial Intelligence Programming in Java.. 1
by Mark Watson. Copyright 2001-2002. All rights reserved... 1

Preface.. 5
Acknowledgements ... 5

Introduction .. 6
Notes for users of UNIX and Linux... 7
Use of the Unified Modeling Language (UML) in this book... 8

Chapter 1. Search.. 12
1.1 Representation of State Space, Nodes in Search Trees and Search Operators................. 12
1.2 Finding paths in mazes... 14
1.3 Finding Paths in Graphs ... 24
1.4 Adding heuristics to Breadth First Search .. 33
1.5 Search and Game Playing .. 33
1.5.1 Alpha-Beta search .. 34
1.5.2 A Java Framework for Search and Game Playing .. 36
1.5.3 TicTacToe using the alpha beta search algorithm .. 42
1.5.4 Chess using the alpha beta search algorithm.. 48
Class.method name.. 58
Percent of total runtime ... 58
Percent in this method only.. 58

Chapter 2. Natural Language Processing ... 60
2.1 ATN Parsers.. 61
2.1.1 Lexicon data for defining word types .. 65
2.1.2 Design and implementation of an ATN parser in Java.. 66
2.1.3 Testing the Java ATN parser... 73
2.2 Natural Language Interfaces for Databases .. 75
2.2.2 History of the NLBean development ... 76
2.2.3 Design of the NLP Database Interface .. 77
2.2.4 Implementation of the NLP Database Interface ... 79
2.2.4.1 DBInfo class.. 79

Copyright 2001 by Mark Watson page 3 of 3 1/20/2002 08:48:15

2.2.4.2 DBInterface class... 81
2.2.4.3 Help class .. 81
2.2.4.4 MakeTestDB class... 82
2.2.4.5 NLBean class... 82
2.2.4.6 NLEngine class.. 83
2.2.4.7 NLP class .. 83
2.2.4.8 SmartDate class ... 85
2.2.5 Running the NLBean NLP System.. 85
2.3 Using Prolog for NLP.. 86
2.3.1 Prolog examples of parsing simple English sentences .. 86
2.3.2 Embedding Prolog rules in a Java application.. 90

Chapter 3. Expert Systems .. 94
3.1 A tutorial on writing expert systems with Jess.. 95
3.2 Implementing a reasoning system with Jess .. 102

Chapter 4. Genetic Algorithms .. 110
4.1 Java classes for Genetic Algorithms ... 116
4.2 Example System for solving polynomial regression problems 120

Chapter 5. Neural networks... 125
5.1 Hopfield neural networks... 126
5.2 Java classes for Hopfield neural networks .. 128
5.3 Testing the Hopfield neural network example class .. 131
5.5 Backpropagation neural networks.. 133
5.6 A Java class library and examples for using back propagation neural networks 137
5.7 Notes on using back propagation neural networks ... 147

6. Machine Learning using Weka... 149
6.1 Using machine learning to induce a set of production rules... 149
6.2 A sample learning problem... 150
6.3 Running Weka... 152

Index... 154
Bibliography.. 156

Copyright 2001 by Mark Watson page 4 of 4 1/20/2002 08:48:15

For my grand son Calvin and grand daughter Emily

Copyright 2001 by Mark Watson page 5 of 5 1/20/2002 08:48:15

Preface

This book was written for both professional programmers and home hobbyists who already know
how to program in Java and who want to learn practical AI programming techniques. I have tried
to make this a fun book to work through. In the style of a “cook book”, the chapters in this book
can be studied in any order. Each chapter follows the same pattern: a motivation for learning a
technique, some theory for the technique, and a Java example program that you can experiment
with.

Acknowledgements

I would like to thank Kevin Knight for writing a flexible framework for game search algorithms in
Common LISP (Rich, Knight 1991); the game search Java classes in Chapter 1 were loosely
patterned after this Common LISP framework and allows new games to be written by sub classing
three abstract Java classes. I would like to thank Sieuwert van Otterloo for writing the Prolog in
Java program and for giving me permission to use it in this free web book. I would like to thank
Ernest J. Friedman at Sandia National Laboratory for writing the Jess expert system toolkit. I
would like to thank my wife Carol for her support in both writing this book, and all of my other
projects. I would also like to acknowledge the use of the following fine software tools: NetBeans
Java IDE (www.netbeans.org) and the TogetherJ UML modeling tool (www.togetherj.com).

Copyright 2001 by Mark Watson page 6 of 6 1/20/2002 08:48:15

Introduction

This book provides the theory of many useful techniques for AI programming. There are relatively
few source code listings in this book, but complete example programs that are discussed in the
text should have been included in the same ZIP file that contained this web book. If someone gave
you this web book without the examples, you can download an up to date version of the book and
examples on the Open Content page of www.markwatson.com.

All the example code is covered by the Gnu Public License (GPL). If the GPL prevents you from
using any of the examples in this book, please contact me for other licensing terms.

The code examples all consist of either reusable (non GUI) libraries and throw away test
programs to solve a specific application problem; in some cases, the application specific test code
will contain a GUI written in JFC (Swing). The examples in this book should be included in the
same ZIP file that contains the PDF file for this free web book. The examples are found in the
subdirectory src that contains:

• src
• src/expertsystem – Jess rule files
• src/expertsystem/weka – Weka machine learning files
• src/ga – genetic algorithm code
• src/neural – Hopfield and Back Propagation neural network code
• src/nlp
• src/nlp/ATN – ATN parser that uses data from Wordnet
• src/nlpNLBean – my Open Source natural language database interface
• src/nlp/prolog – NLP using embedded Prolog
• src/prolog – source code for Prolog engine written by Sieuwert van Otterloo
• src/search
• src/search/game – contains alpha-beta search framework and tic-tac-toe and chess

Copyright 2001 by Mark Watson page 7 of 7 1/20/2002 08:48:15

examples
• src/search/statespace
• src/search/statespace/graphexample – graph search code
• src/search/statespace/mazeexample – maze search code

To run any example program mentioned in the text, simply change directory to the src directory
that was created from the example program ZIP file from my web site. Individual example
programs are in separate subdirectories contained in the src directory. Typing "javac *.java" will
compile the example program contained in any subdirectory, and typing "java Prog" where Prog
is the file name of the example program file with the file extension ".java" removed. None of the
example programs (except for the NLBean natural language database interface) is placed in a
separate package so compiling the examples will create compiled Java class files in the current
directory.

I have been interested in AI since reading Bertram Raphael's excellent book "Thinking Computer:
Mind Inside Matter" in the early 1980s. I have also had the good fortune to work on many
interesting AI projects including the development of commercial expert system tools for the
Xerox LISP machines and the Apple Macintosh, development of commercial neural network
tools, application of natural language and expert systems technology, application of AI
technologies to Nintendo and PC video games, and the application of AI technologies to the
financial markets. I enjoy AI programming, and hopefully this enthusiasm will also infect the
reader.

Notes for users of UNIX and Linux

I use both Linux and Windows 2000 for my Java development. To avoid wasting space in this
book, I show examples for running Java programs and sample batch files for Windows only. If I
show in the text an example of running a Java program that uses JAR files like this:

java –classpath nlbean.jar;idb.jar NLBean

Copyright 2001 by Mark Watson page 8 of 8 1/20/2002 08:48:15

the conversion to UNIX or Linux is trivial; replace “;” with “:” like this:

java –classpath nlbean.jar:idb.jar NLBean

If I show a command file like this c.bat file:

javac -classpath idb.jar;. -d . nlbean/*.java

jar cvf nlbean.jar nlbean/*.class
del nlbean*.class

Then a UNIX/Linux equivalent using bash might look like this:

#!/bin/bash

javac -classpath idb.jar:. -d . nlbean/*.java

jar cvf nlbean.jar nlbean/*.class
rm -f nlbean/*.class

Use of the Unified Modeling Language (UML) in this book

In order to discuss some of the example code in this book, I use Unified Modeling Language
(UML) class diagrams. These diagrams were created using the TogetherJ modeling tool; a free
version is available at www.togetherj.com. Figure 1 shows a simple UML class diagram that
introduces the UML elements used in other diagrams in this book. Figure 1 contains one Java
interface Iprinter and three Java classes TestClass1, TestSubClass1, and TestContainer1. The
following listing shows these classes and interface that do nothing except provide an example for
introducing UML:

Listing 1 – Iprinter.java

Copyright 2001 by Mark Watson page 9 of 9 1/20/2002 08:48:15

public interface IPrinter {
public void print();

}

Listing 2 – TestClass1.java

public class TestClass1 implements IPrinter {
protected int count;
public TestClass1(int count) { this.count = count; }
public TestClass1() { this(0); }
public void print() { System.out.println("count="+count); }

}

Listing 3 – TestSubClass1.java

public class TestSubClass1 extends TestClass1 {
public TestSubClass1(int count) { super(count); }
public TestSubClass1() { super(); }
public void zeroCount() { count = 0; }

}

Listing 4 TestContainer1.java

public class TestContainer1 {
public TestContainer1() { }
TestClass1 instance1;
TestSubClass1 [] instances;

}

Again, the code in Listings 1 through 4 is just an example to introduce UML. In Figure 1, note
that both the interface and classes are represented by a shaded box; the interface I labeled. The
shaded boxes have three sections:

Copyright 2001 by Mark Watson page 10 of 10 1/20/2002 08:48:15

1. Top section – name of the interface or class
2. Middle section – instance variables
3. Bottom section – class methods

Figure 1. Sample UML class diagram showing one Java interface and three Java
classes

In Figure 1, notice that we have three types of arrows:

Copyright 2001 by Mark Watson page 11 of 11 1/20/2002 08:48:15

1. Dotted line with a solid arrowhead – indicates that TestClass1 implements the interface
Iprinter

2. Solid line with a solid arrowhead – indicates that TestSubClass1 is derived from the base
class TestClass1

3. Solid line with lined arrowhead – used to indicate containment. The unadorned arrow
from class TestContainer1 to TestClass1 indicates that the class TestContainer1 contains
exactly one instance of the class TestClass1. The arrow from class TestContainer1 to
TestSubClass1 is adorned: the 0..* indicates that the class TestContainer1 can contain
zero or more instances of class TestSubClass1

This simple UML example should be sufficient to introduce the concepts that you will need to
understand the UML class diagrams in this book.

Copyright 2001 by Mark Watson page 12 of 12 1/20/2002 08:48:15

Chapter 1. Search

Early AI research emphasized the optimization of search algorithms. This approach made a lot of
sense because many AI tasks can be solved by effectively by defining state spaces and using
search algorithms to define and explore search trees in this state space. Search programs were
frequently made tractable by using heuristics to limit areas of search in these search trees. This use
of heuristics converts intractable problems to solvable problems by compromising the quality of
solutions; this tradeoff of less computational complexity for less than optimal solutions has
become a standard design pattern for AI programming. We will see in this chapter that we trade
off memory for faster computation time and better results; often, by storing extra data we can
make search time faster, and make future searches in the same search space even more efficient.

In this chapter, we will use three search problem domains for studying search algorithms: path
finding in a maze, path finding in a static graph, and alpha-beta search in the games: tic-tac-toe
and chess. The examples in this book should be included in the same ZIP file that contains the
PDF file for this free web book. The examples for this chapter are found in the subdirectory src
that contains:

• src
• src/search
• src/search/game – contains alpha-beta search framework and tic-tac-toe and chess

examples
• src/search/statespace
• src/search/statespace/graphexample – graph search code
• src/search/statespace/mazeexample – maze search code

1.1 Representation of State Space, Nodes in Search Trees and Search
Operators

Copyright 2001 by Mark Watson page 13 of 13 1/20/2002 08:48:15

We will use a single search tree representation in graph search and maze search examples in this
chapter. Search trees consist of nodes that define locations in state space and links to other
nodes. For some problems, the search tree can be easily specified statically; for example, when
performing search in game mazes, we can pre-compute a search tree for the state space of the
maze. For many problems, it is impossible to completely enumerate a search tree for a state space
so we must define successor node search operators that for a given node produce all nodes that
can reached from the current node in one step; for example, in the game of chess we can not
possibly enumerate the search tree for all possible games of chess, so we define a successor node
search operator that given a board position (represented by a node in the search tree) calculates all
possible moves for either the white or black pieces. The possible chess moves are calculated by a
successor node search operator and are represented by newly calculated nodes that are linked to
the previous node. Note that even when it is simple to fully enumerate a search tree, as in the
game maze example, we still might want to generate the search tree dynamically as we will do in
this chapter).

For calculating a search tree we use a graph. We will represent graphs as node with links between
some of the nodes. For solving puzzles and for game related search, we will represent positions in
the search space with Java objects called nodes. Nodes contain arrays of references to both child
and parent nodes. A search space using this node representation can be viewed as a directed
graph or a tree. The node that has no parent nodes is the root node and all nodes that have no
child nodes a called leaf nodes.

Search operators are used to move from one point in the search space to another. We deal with
quantized search spaces in this chapter, but search spaces can also be continuous in some
applications. Often search spaces are either very large or are infinite. In these cases, we implicitly
define a search space using some algorithm for extending the space from our reference position in
the space. Figure 1.1 shows representations of search space as both connected nodes in a graph
and as a two-dimensional grid with arrows indicating possible movement from a reference point
denoted by R.

Copyright 2001 by Mark Watson page 14 of 14 1/20/2002 08:48:15

Figure 1.1 a directed graph (or tree) representation is shown on the left and
a two-dimensional grid (or maze) representation is shown on the right. In both
representations, the letter R is used to represent the current position (or
reference point) and the arrowheads indicate legal moves generated by a search
operator. In the maze representation, the two grid cells are marked with an X
indicate that a search operator cannot generate this grid location.

When we specify a search space as a two-dimensional array, search operators will move the point
of reference in the search space from a specific grid location to an adjoining grid location. For
some applications, search operators are limited to moving up/down/left/right and in other
applications; operators can additionally move the reference location diagonally.

When we specify a search space using node representation, search operators can move the
reference point down to any child node or up to the parent node. For search spaces that are
represented implicitly, search operators are also responsible for determining legal child nodes, if
any, from the reference point.

Note: I use slightly different libraries for the maze and graph search examples. I plan to clean up
this code in the future and have a single abstract library to support both maze and graph search
examples.

1.2 Finding paths in mazes

The example program used in this section is MazeSearch.java in the directory src/search/maze
and I assume that the reader has downloaded the entire example ZIP file for this book and placed
the source files for the examples in a convenient place. Figure 1.2 shows the UML class diagram
for the maze search classes: depth first and breadth first search. The abstract base class

Copyright 2001 by Mark Watson page 15 of 15 1/20/2002 08:48:15

AbstractSearchEngine contains common code and data that is required by both the classes
DepthFirstSearch and BreadthFirstSearch. The class Maze is used to record the data for a
two-dimensional maze, including which grid locations contain walls or obstacles. The class Maze
defines three static short integer values used to indicate obstacles, the starting location, and the
ending location.

Copyright 2001 by Mark Watson page 16 of 16 1/20/2002 08:48:15

Figure 1.2 UML class diagram for the maze search Java classes

Copyright 2001 by Mark Watson page 17 of 17 1/20/2002 08:48:15

The Java class Maze defines the search space. This class allocates a two-dimensional array of
short integers to represent the state of any grid location in the maze. Whenever we need to store a
pair of integers, we will use an instance of the standard Java class java.awt.Dimension, which
has two integer data components: width and height. Whenever we need to store an x-y grid
location, we create a new Dimension object (if required), and store the x coordinate in
Dimension.width and the y coordinate in Dimension.height. As in the right hand side of Figure
1.1, the operator for moving through the search space from given x-y coordinates allows a
transition to any adjacent grid location that is empty. The Maze class also contains the x-y
location for the starting location (startLoc) and goal location (goalLoc). Note that for these
examples, the class Maze sets the starting location to grid coordinates 0-0 (upper left corner of
the maze in the figures to follow) and the goal node in (width – 1)-(height – 1) (lower right corner
in the following figures).

The abstract class AbstractSearchEngine is the base class for both DepthFirstSearchEngine
and BreadthFirstSearchEngine. We will start by looking at the common data and behavior
defined in AbstractSearchEngine. The class constructor has two required arguments: the width
and height of the maze, measured in grid cells. The constructor defines an instance of the Maze
class of the desired size and then calls the utility method initSearch to allocate an array
searchPath of Dimension objects, which will be used to record the path traversed through the
maze. The abstract base class also defines other utility methods:

• equals(Dimension d1, Dimension d2) – checks to see if two Dimension arguments are the
same

• getPossibleMoves(Dimension location) – returns an array of Dimension objects that can
be moved to from the specified location. This implements the movement operator.

Now, we will look at the depth first search procedure. The constructor for the derived class
DepthFirstSearchEngine calls the base class constructor and then solves the search problem by
calling the method iterateSearch. We will look at this method in some detail.

The arguments to iterate search specify the current location and the current search depth:

Copyright 2001 by Mark Watson page 18 of 18 1/20/2002 08:48:15

private void iterateSearch(Dimension loc, int depth) {

The class variable isSearching is used to halt search, avoiding more solutions, once one path to
the goal is found.

if (isSearching == false) return;

We set the maze value to the depth for display purposes only:

maze.setValue(loc.width, loc.height, (short)depth);

Here, we use the super class getPossibleMoves method to get an array of possible neighboring
squares that we could move to; we then loop over the four possible moves (a null value in the
array indicates an illegal move):

Dimension [] moves = getPossibleMoves(loc);
for (int i=0; i<4; i++) {

if (moves[i] == null) break; // out of possible moves
from this location

Record the next move in the search path array and check to see if we are done:

searchPath[depth] = moves[i];
if (equals(moves[i], goalLoc)) {

System.out.println("Found the goal at " +
moves[i].width +
", " + moves[i].height);

isSearching = false;
maxDepth = depth;
return;

} else {

If the next possible move is not the goal move, we recursively call the iterateSearch method again,

Copyright 2001 by Mark Watson page 19 of 19 1/20/2002 08:48:15

but starting from this new location and increasing the depth counter by one:

iterateSearch(moves[i], depth + 1);
if (isSearching == false) return;

}
}
return;

}

Figure 1.3 shows how poor of a path a depth first search can find between the start and goal
locations in the maze. The maze is a 10 by 10 grid. The letter S marks the starting location in the
upper left corner and the goal position is marked with a G in the lower right hand corner of the
grid. Blocked grid cells are painted light gray. The basic problem with the depth first search is that
the search engine will often start searching in a bad direction, but still find a path eventually, even
given a poor start. The advantage of a depth first search over a breadth first search is that the
depth first search requires much less memory. We will see that possible moves for depth first
search are stored on a stack (last in, last out data structure) and possible moves for a breadth first
search are stored in a queue first in, first out data structure).

Copyright 2001 by Mark Watson page 20 of 20 1/20/2002 08:48:15

Figure 1.3 Using depth first search to find a path in a maze finds a non-
optimal solution

The derived class BreadthFirstSearch is similar to the DepthFirstSearch procedure with one
major difference: from a specified search location, we calculate all possible moves, and make one
possible trial move at a time. We use a queue data structure for storing possible moves, placing
possible moves on the back of the queue as they are calculated, and pulling test moves from the
front of the queue. The effect of a breadth first search is that it “fans out” uniformly from the
starting node until the goal node is found.

The class constructor for BreadthFirstSearch calls the super class constructor to initialize the
maze, and then uses the auxiliary method doSearchOn2Dgrid for performing a breadth first
search for the goal. We will look at the method BreadthFirstSearch in some detail. The class
DimensionQueue implements a standard queue data structure that handles instances of the class
Dimension.

Copyright 2001 by Mark Watson page 21 of 21 1/20/2002 08:48:15

The method doSearchOn2Dgrid is not recursive, it uses a loop to add new search positions to
the end of an instance of class DimensionQueue and to remove and test new locations from the
front of the queue. The two-dimensional array allReadyVisited keeps us from searching the same
location twice. To calculate the shortest path after the goal is found, we use the predecessor
array:

private void doSearchOn2DGrid() {
int width = maze.getWidth();
int height = maze.getHeight();
boolean alReadyVisitedFlag[][] =

new boolean[width][height];
Dimension predecessor[][] = new Dimension[width][height];
DimensionQueue queue = new DimensionQueue();
for (int i=0; i<width; i++) {

for (int j=0; j<height; j++) {
alReadyVisitedFlag[i][j] = false;
predecessor[i][j] = null;

}
}

We start the search by setting the already visited flag for the starting location to true value and
adding the starting location to the back of the queue:

alReadyVisitedFlag[startLoc.width][startLoc.height]
= true;

queue.addToBackOfQueue(startLoc);
boolean success = false;

This outer loop runs until either the queue is empty of the goal is found:

outer:
while (queue.isEmpty() == false) {

We peek at the Dimension object at the front of the queue (but do not remove it) and get the

Copyright 2001 by Mark Watson page 22 of 22 1/20/2002 08:48:15

adjacent locations to the current position in the maze:

Dimension head = queue.peekAtFrontOfQueue();
Dimension [] connected = getPossibleMoves(head);

We loop over each possible move; if the possible move is valid (i.e., not null) and if we have not
already visited the possible move location, then we add the possible move to the back of the
queue and set the predecessor array for the new location to the last square visited (head is the
value from the front of the queue). If we find the goal, break out of the loop:

for (int i=0; i<4; i++) {
if (connected[i] == null) break;
int w = connected[i].width;
int h = connected[i].height;
if (alReadyVisitedFlag[w][h] == false) {

alReadyVisitedFlag[w][h] = true;
predecessor[w][h] = head;
queue.addToBackOfQueue(connected[i]);
if (equals(connected[i], goalLoc)) {

success = true;
break outer; // we are done

}
}

}

We have processed the location at the front of the queue (in the variable head), so remove it:

queue.removeFromFrontOfQueue();
}

Now that we are out of the main loop, we need to use the predecessor array to get the shortest
path. Note that we fill in the searchPath array in reverse order, starting with the goal location:

maxDepth = 0;

Copyright 2001 by Mark Watson page 23 of 23 1/20/2002 08:48:15

if (success) {
searchPath[maxDepth++] = goalLoc;
for (int i=0; i<100; i++) {

searchPath[maxDepth] =
predecessor[searchPath[maxDepth - 1]

.width][searchPath[maxDepth - 1].height];
maxDepth++;
if (equals(searchPath[maxDepth - 1], startLoc))

break; // back to starting node
}

}
}

Figure 1.4 shows a good path solution between starting and goal nodes. Starting from the initial
position, the breadth first search engine adds all possible moves to the back of a queue data
structure. For each possible move added to this queue in one search cycle, all possible moves are
added to the queue for each new move recorded. Visually, think of possible moves added to the
queue, as “fanning out” like a wave from the starting location. The breadth first search engine
stops when this “wave” reaches the goal location. In general, I prefer breadth first search
techniques to breadth first search techniques when memory storage for the queue used in the
search process is not an issue.

Copyright 2001 by Mark Watson page 24 of 24 1/20/2002 08:48:15

Figure 1.4 Using breadth first search in a maze to find an optimal solution

To run the two example programs from this section, change directory to src/search/maze and
type:

javac *.java
java MazeDepthFirstSearch
java MazeBreadthFirstSearch

Note that the classes MazeDepthFirstSearch and MazeBreadthFirstSearch are simple Java
JFC applications that produced Figures 1.3 and 1.4. The interested reader can read through the
source code for the GUI test programs, but we will only cover the core AI code in this book. If
you are interested in the GUI test programs and you are not familiar with the Java JFC (or Swing)
classes, there are several good tutorials on JFC programming at java.sun.com.

1.3 Finding Paths in Graphs

Copyright 2001 by Mark Watson page 25 of 25 1/20/2002 08:48:15

In the last section, we used both depth first and breadth first search techniques to find a path
between a starting location and a goal location in a maze. Another common type of search space
is represented by a graph. A graph is a set of nodes and links. We characterize nodes as
containing the following data:

• A name and/or other data
• Zero or more links to other nodes
• A position in space (this is optional, usually for display or visualization purposes)

Links between nodes are often called edges. The algorithms used for finding paths in graph are
very similar to finding paths in a two-dimensional maze. The primary difference is the operators
that allow us to move from one node to another. In the last section, we saw that in a maze, an
agent can move from one grid space to another if the target space is empty. For graph search, a
movement operator allows movement to another node if there is a link to the target node.

Figure 1.5 shows the UML class diagram for the graph search Java classes that we will use in this
section. The abstract class AbstractGraphSearch class is the base class for both DepthFirstSearch
and BreadthFirstSearch. The classes GraphDepthFirstSearch and GraphBreadthFirstSearch and
test programs that also provide a Java Foundation Class (JFC) or Swing based user interface.
These two test programs produced figures 1.6 and 1.7.

Copyright 2001 by Mark Watson page 26 of 26 1/20/2002 08:48:15

Figure 1.5 UML class diagram for the graph search classes

As seen in Figure 1.5, most of the data for the search operations (i.e., nodes, links, etc.) is defined
in the abstract class AbstractGraphSearch. This abstract class is customized through inheritance
to use a stack for storing possible moves (i.e., the array path) for depth first search and a queue
for breadth first search.

Copyright 2001 by Mark Watson page 27 of 27 1/20/2002 08:48:15

The abstract class AbstractGraphSearch allocates data required by both derived classes:

final public static int MAX = 50;
protected int [] path = new int[AbstractGraphSearch.MAX];
protected int num_path = 0;
// for nodes:
protected String [] nodeNames = new String[MAX];
protected int [] node_x = new int[MAX];
protected int [] node_y = new int[MAX];
// for links between nodes:
protected int [] link_1 = new int[MAX];
protected int [] link_2 = new int[MAX];
protected int [] lengths = new int[MAX];
protected int numNodes = 0;
protected int numLinks = 0;
protected int goalNodeIndex = -1, startNodeIndex = -1;

The abstract base class also provides several common utility methods:

• addNode(String name, int x, int y) – adds a new node
• addLink(int n1, int n2) – adds a bidirectional link between nodes indexed by n1 and n2.

Node indexes start at zero and are in the order of calling addNode.
• addLink(String n1, String n2) - adds a bidirectional link between nodes specified by their

names
• getNumNodes() – returns the number of nodes
• getNumLinks() – returns the number of links
• getNodeName(int index) – returns a node’s name
• getNodeX(), getNodeY() – return the coordinates of a node
• getNodeIndex(String name) – gets the index of a node, given its name

The abstract base class defines an abstract method that must be overridden:

Copyright 2001 by Mark Watson page 28 of 28 1/20/2002 08:48:15

public int [] findPath(int start_node, int goal_node)

We will start with the derived class DepthFirstSearch, looking at its implementation of
findPath:

The findPath method returns an array of node indices indicating the calculated path:

public int [] findPath(int start_node, int goal_node) {

The class variable path is an array that is used for temporary storage; we set the first element to
the starting node index, and call the utility method findPathHelper:

path[0] = start_node; // the starting node
return findPathHelper(path, 1, goal_node);

}

The method findPathHelper is the interesting method in this class that actually performs the
depth first search; we will look at it in some detail:

The path array is used as a stack to keep track of which nodes are being visited during the search.
The argument num_path is the number of locations in the path, which is also the search depth:

public int [] findPathHelper(int [] path, int num_path,
int goal_node) {

First, re check to see if we have reached the goal node; if we have, make a new array of the
current size and copy the path into it. This new array is returned as the value of the method:

if (goal_node == path[num_path - 1]) {
int [] ret = new int[num_path];
for (int i=0; i<num_path; i++) ret[i] = path[i];
return ret; // we are done!

}

Copyright 2001 by Mark Watson page 29 of 29 1/20/2002 08:48:15

We have not found the goal node, so call the method connected_nodes to find all nodes
connected to the current node that are not already on the search path (see the source code for the
implementation of connected_nodes):

int [] new_nodes = connected_nodes(path, num_path);

If there are still connected nodes to search, add the next possible node to visit to the top of the
stack (variable path) and recursively call findPathHelper again:

if (new_nodes != null) {
for (int j=0; j<new_nodes.length; j++) {

path[num_path] = new_nodes[j];
int [] test = findPathHelper(new_path,

num_path + 1,
goal_node);

if (test != null) {
if (test[test.length - 1] == goal_node) {

return test;
}

}
}

}

If we have not found the goal node, return null, instead of an array of node indices:

return null;
}

The derived class BreadthFirstSearch also must define the abstract method findPath. This
method is very similar to the breadth first search method used for finding a path in a maze: a
queue is used to store possible moves. For a maze, we used a queue class that stored instances of
the class Dimension; so for this problem, the queue only needs to store integer node indices. The

Copyright 2001 by Mark Watson page 30 of 30 1/20/2002 08:48:15

return value of findPath is an array of node indices that make up the path from the starting node
to the goal.

public int [] findPath(int start_node, int goal_node) {

We start by setting up a flag array alreadyVisited to prevent visiting the same node twice, and
allocating a predecessors array that we will use to find the shortest path once the goal is reached:

// data structures for depth first search:
boolean [] alreadyVisitedFlag = new boolean[numNodes];
int [] predecessor = new int[numNodes];

The class IntQueue is a private class defined in the file BreadthFirstSearch.java; it implements a
standard queue:

IntQueue queue = new IntQueue(numNodes + 2);

Before the main loop, we need to initialize the already visited and predecessor arrays, set the
visited flag for the starting node to true, and add the starting node index to the back of the queue:

for (int i=0; i<numNodes; i++) {
alreadyVisitedFlag[i] = false;
predecessor[i] = -1;

}
alreadyVisitedFlag[start_node] = true;
queue.addToBackOfQueue(start_node);

The main loop runs until either we find the goal node or the search queue is empty:

outer: while (queue.isEmpty() == false) {

We will read (without removing) the node index at the front of the queue and calculate the nodes
that are connected to the current node (but not already on the visited list) using the

Copyright 2001 by Mark Watson page 31 of 31 1/20/2002 08:48:15

connected_nodes method (the interested reader can see the implementation in the source code for
this class):

int head = queue.peekAtFrontOfQueue();
int [] connected = connected_nodes(head);
if (connected != null) {

For each node connected by a link to the current node, if it has not already been visited set the
predecessor array and add the new node index to the back of the search queue; we stop if the goal
is found:

for (int i=0; i<connected.length; i++) {
if (alreadyVisitedFlag[connected[i]] == false) {
predecessor[connected[i]] = head;
queue.addToBackOfQueue(connected[i]);
if (connected[i] == goal_node) break outer;

}
}
alreadyVisitedFlag[head] = true;
queue.removeFromQueue(); // ignore return value

}
}

Now that the goal node has been found, we can build a new array of returned node indices for the
calculated path using the predecessor array:

int [] ret = new int[numNodes + 1];
int count = 0;
ret[count++] = goal_node;
for (int i=0; i<numNodes; i++) {

ret[count] = predecessor[ret[count - 1]];
count++;
if (ret[count - 1] == start_node) break;

}

Copyright 2001 by Mark Watson page 32 of 32 1/20/2002 08:48:15

int [] ret2 = new int[count];
for (int i=0; i<count; i++) {

ret2[i] = ret[count - 1 - i];
}
return ret2;
}

In order to run both the depth first and breadth first graph search examples, change directory to
JavaAI2/src/search/graph and type the following commands:

javac *.java
java GraphDepthFirstSearch
java GraphBeadthFirstSearch

Figure 1.6 shows the results of finding a route from node 1 to node 9 in the small test graph. Like
the depth first results seen in the maze search, this path is not optimal.

Figure 1.6 Using depth first search in a sample graph

Figure 1.7 shows an optimal path found using a breadth first search. As we saw in the maze
search example, we find optimal solutions using breadth first search at the cost of extra memory
required for the breadth first search.

Copyright 2001 by Mark Watson page 33 of 33 1/20/2002 08:48:15

Figure 1.7 Using breadth first search in a sample graph

1.4 Adding heuristics to Breadth First Search

We can usually make breadth first search more efficient by ordering the search order for all
branches from a given position in the search space. For example, when adding new nodes, from a
specified reference point in the search space, we might want to add nodes to the search queue first
that are “in the direction” of the goal location: in a two-dimensional search like our maze search,
we might want to search connected grid cells first that were closest to the goal grid space. In this
case, pre-sorting nodes (in order of closest distance to the goal) added to the breadth first search
queue could have a dramatic effect on search efficiency. In the next chapter, we will build a simple
real-time planning system around our breadth first maze search program; this new program will
use heuristics. The alpha beta additions to breadth first search are seen in Section 1.5.

1.5 Search and Game Playing

Now that a computer program has won a match against the human world champion, perhaps
people’s expectations of AI systems will be prematurely optimistic. Game search techniques are
not real AI, but rather, standard programming techniques. A better platform for doing AI research
is the game of Go. There are so many possible moves in the game of Go, that brute force look
ahead (as is used in Chess playing programs) simply does not work.

Copyright 2001 by Mark Watson page 34 of 34 1/20/2002 08:48:15

That said, min-max type search algorithms with alpha-beta cutoff optimizations are an important
programming technique and will be covered in some detail in the remainder of this chapter. We
will design an abstract Java class library for implementing alpha-beta enhanced min-max search,
and then use this framework to write programs to play tic-tac-toe and chess.

1.5.1 Alpha-Beta search

The first game that we will implement will be tic-tac-toe, so we will use this simple game to
explain how the min-max search (with alpha-beta cutoffs) works.

Figure 1.8 shows the possible moves generated from a tic-tac-toe position where X has made
three moves and O has made 2 moves; it is O’s turn to move. This is “level 0” in Figure 1.8. At
level 0, O has four possible moves. How do we assign a fitness values to each of O’s possible
moves at level 0? The basic min-max search algorithm provides a simple solution to this problem:
for each possible move by O in level 1, make the move and store the resulting 4 board positions.
Now, at level 1, it is X’s turn to move. How do we assign values to each of X’s possible three
moves in Figure 1.8? Simple, we continue to search by making each of X’s possible moves and
storing each possible board position for level 2. We keep recursively applying this algorithm until
we either reach a maximum search depth, or there is a win, loss, or draw detected in a generated
move. We assume that there is a fitness function available that rates a given board position
relative to either side. Note that the value of any board position for X if the negative of the value
for O.

Copyright 2001 by Mark Watson page 35 of 35 1/20/2002 08:48:15

Figure 1.8 Alpha-beta algorithm applied to part of a game of tic-tac-toe.

To make the search more efficient, we maintain values for alpha and beta for each search level.
Alpha and beta determine the best possible/worst possible move available at a given level. If we
reach a situation, like the second position in level 2, where X has won, then we can immediately
determine that O’s last move in level 1 that produced this position (of allowing X an instant win)
is a low valued move for O (but a high valued move for X). This allows us to immediately
“prune” the search tree by ignoring all other possible positions arising from the first O move in
level 1. This alpha-beta cutoff (or tree pruning) procedure can save a large percentage of search
time, especially if we can set the search order at each level with “probably best” moves considered
first.

While tree diagrams as seen in Figure 1.8 quickly get complicated, it is easy for a computer
program to generate possible moves, calculate new possible board positions and temporarily store
them, and recursively apply the same procedure to the next search level (but switching min-max
“sides” in the board evaluation). We will see in the next section that it only requires about 100

Copyright 2001 by Mark Watson page 36 of 36 1/20/2002 08:48:15

lines of Java code to implement an abstract class framework for handling the details of performing
an alpha-beta enhanced search. The additional game specific classes for tic-tac-toe require about
an additional 150 lines of code to implement; chess requires an additional 450 lines of code.

1.5.2 A Java Framework for Search and Game Playing

The general interface for the Java classes that we will develop in this section was inspired by the
Common LISP game-playing framework written by Kevin Knight and described in (Rich, Knight
1991). The abstract class GameSearch contains the code for running a two-player game and
performing an alpha-beta search. This class needs to be sub classed to provide the eight methods:

public abstract boolean drawnPosition(Position p)
public abstract boolean wonPosition(Position p,

boolean player)
public abstract float positionEvaluation(Position p,

boolean player)
public abstract void printPosition(Position p)
public abstract Position [] possibleMoves(Position p,

boolean player)
public abstract Position makeMove(Position p, boolean player,

Move move)
public abstract boolean reachedMaxDepth(Position p,

int depth)
public abstract Move getMove()

The method drawnPosition should return a Boolean true value if the given position evaluates to
a draw situation. The method wonPosition should return a true value if the input position is won
for the indicated player. By convention, I use a Boolean true value to represent the computer and
a Boolean false value to represent the human opponent. The method positionEvaluation returns
a position evaluation for a specified board position and player. Note that if we call
positionEvaluation switching the player for the same board position, then the value returned is
the negative of the value calculated for the opposing player. The method possibleMoves returns

Copyright 2001 by Mark Watson page 37 of 37 1/20/2002 08:48:15

an array of objects belonging to the class Position. In an actual game, like chess, the position
objects will actually belong to a chess-specific refinement of the Position class (e.g., for the chess
program developed later in this chapter, the method possibleMoves will return an array of
ChessPosition objects). The method makeMove will return a new position object for a specified
board position, side to move, and move. The method reachedMaxDepth returns a Boolean true
value if the search process has reached a satisfactory depth. For the tic-tac-toe program, the
method reachedMaxDepth does not return true unless either side has won the game or the board
is full; for the chess program, the method reachedMaxDepth returns true is the search has
reached a depth of 4 have moves deep (this is not the best strategy, but it has the advantage of
making the example program short and easy to understand). The method getMove returns an
object of a class derived from the class Move (e.g., TicTacToeMove or ChessMove).

The GameSearch class implements the following methods to perform game search:

protected Vector alphaBeta(int depth, Position p, boolean player)
protected Vector alphaBetaHelper(int depth, Position p,

boolean player,
float alpha, float beta)

public void playGame(Position startingPosition,
boolean humanPlayFirst)

The method alphaBeta is simple; it calls the helper method alphaBetaHelper with initial search
conditions; the method alphaBetaHelper then calls itself recursively. The code for alphaBeta is:

protected Vector alphaBeta(int depth, Position p,
boolean player)

{
Vector v = alphaBetaHelper(depth, p, player,

1000000.0f, -1000000.0f);
return v;
}

It is important to understand what is in the vector returned by the methods alphaBeta and

Copyright 2001 by Mark Watson page 38 of 38 1/20/2002 08:48:15

alphaBetaHelper. The first element is a floating point position evaluation for the point of view of
the player whose turn it is to move; the remaining values are the “best move” for each side to the
last search depth. As an example, if I let the tic-tac-toe program play first, it placed a marker at
square index 0, then I placed my marker in the center of the board an index 4. At this point, to
calculate the next computer move, alphaBeta is called and returns the following elements in a
vector:

next element: 0.0
next element: [-1,0,0,0,1,0,0,0,0,]
next element: [-1,1,0,0,1,0,0,0,0,]
next element: [-1,1,0,0,1,0,0,-1,0,]
next element: [-1,1,0,1,1,0,0,-1,0,]
next element: [-1,1,0,1,1,-1,0,-1,0,]
next element: [-1,1,1,1,1,-1,0,-1,0,]
next element: [-1,1,1,1,1,-1,-1,-1,0,]
next element: [-1,1,1,1,1,-1,-1,-1,1,]

Here, the alpha-beta enhanced min-max search looked all the way to the end of the game and
these board positions represent what the search procedure calculated as the best moves for each
side. Note that the class TicTacToePosition (derived from the abstract class Position) has a
toString method to print the board values to a string.

The same printout of the returned vector from alphaBeta for the chess program is:

next element: 5.4
next element:
[4,2,3,5,9,3,2,4,7,7,1,1,1,0,1,1,1,1,7,7,0,0,0,0,0,0,0,0,7,7,0,0,
0,1,0,0,0,0,7,7,0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,0,0,0,7,7,-1,-1,-
1,-1,0,-1,-1,-1,7,7,-4,-2,-3,-5,-9,-3,-2,-4,]
next element:
[4,2,3,0,9,3,2,4,7,7,1,1,1,5,1,1,1,1,7,7,0,0,0,0,0,0,0,0,7,7,0,0,
0,1,0,0,0,0,7,7,0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,0,0,0,7,7,-1,-1,-
1,-1,0,-1,-1,-1,7,7,-4,-2,-3,-5,-9,-3,-2,-4,]
next element:

Copyright 2001 by Mark Watson page 39 of 39 1/20/2002 08:48:15

[4,2,3,0,9,3,2,4,7,7,1,1,1,5,1,1,1,1,7,7,0,0,0,0,0,0,0,0,7,7,0,0,
0,1,0,0,0,0,7,7,0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,-5,0,0,7,7,-1,-1,-
1,-1,0,-1,-1,-1,7,7,-4,-2,-3,0,-9,-3,-2,-4,]
next element:
[4,2,3,0,9,3,0,4,7,7,1,1,1,5,1,1,1,1,7,7,0,0,0,0,0,2,0,0,7,7,0,0,
0,1,0,0,0,0,7,7,0,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,-5,0,0,7,7,-1,-1,-
1,-1,0,-1,-1,-1,7,7,-4,-2,-3,0,-9,-3,-2,-4,]
next element:
[4,2,3,0,9,3,0,4,7,7,1,1,1,5,1,1,1,1,7,7,0,0,0,0,0,2,0,0,7,7,0,0,
0,1,0,0,0,0,7,7,-1,0,0,0,0,0,0,0,7,7,0,0,0,0,-1,-5,0,0,7,7,0,-1,-
1,-1,0,-1,-1,-1,7,7,-4,-2,-3,0,-9,-3,-2,-4,]

Here, the search procedure assigned the side to move (the computer) a position evaluation score
of 5.4; this is an artifact of searching to a fixed depth. Notice that the board representation is
different for chess, but because the GameSearch class manipulates objects derived from the
classes Position and Move, the GameSearch class does not need to have any knowledge of the
rules for a specific game. We will discuss the format of the chess position class ChessPosition in
more detail when we develop the chess program.

The classes Move and Position contain no data and methods at all. The classes Move and
Position are used as placeholders for derived classes for specific games. The search methods in
the abstract GameSearch class manipulate objects derived from the classes Move and Position.

Now that we understand the contents of the vector returned from the methods alphaBeta and
alphaBetaHelper, it will be easier to understand how the method alphaBetaHelper works. The
following text shows code fragments from the alphaBetaHelper method interspersed with book
text:

protected Vector alphaBetaHelper(int depth, Position p,
boolean player,

float alpha, float beta) {

Here, we notice that the method signature is the same as for alphaBeta, except that we pass

Copyright 2001 by Mark Watson page 40 of 40 1/20/2002 08:48:15

floating point alpha and beta values. The important point in understanding min-max search is that
most of the evaluation work is done while “backing up” the search tree; that is, the search
proceeds to a leaf node (a node is a leaf if the method reachedMaxDepth return a Boolean true
value), an then a return vector for the leaf node is created by making a new vector and setting its
first element to the position evaluation of the position at the leaf node and setting the second
element of the return vector to the board position at the leaf node:

if (reachedMaxDepth(p, depth)) {
Vector v = new Vector(2);
float value = positionEvaluation(p, player);
v.addElement(new Float(value));
v.addElement(p);
return v;

}

If we have not reached the maximum search depth (i.e., we are not yet at a leaf node in the search
tree), then we enumerate all possible moves from the current position using the method
possibleMoves and recursively call alphaBetaHelper for each new generated board position. In
terms of Figure 1.8, at this point we are moving down to another search level (e.g., from level 1
to level 2; the level in Figure 1.8 corresponds to depth argument in alphaBetaHelper):

Vector best = new Vector();
Position [] moves = possibleMoves(p, player);
for (int i=0; i<moves.length; i++) {

Vector v2 = alphaBetaHelper(depth + 1, moves[i], !player,
-beta, -alpha);

float value = -((Float)v2.elementAt(0)).floatValue();
if (value > beta) {

if(GameSearch.DEBUG)
System.out.println(" ! ! ! value="+value+

",beta="+beta);
beta = value;
best = new Vector();
best.addElement(moves[i]);

Copyright 2001 by Mark Watson page 41 of 41 1/20/2002 08:48:15

Enumeration enum = v2.elements();
enum.nextElement(); // skip previous value
while (enum.hasMoreElements()) {

Object o = enum.nextElement();
if (o != null) best.addElement(o);

}
}
/**
* Use the alpha-beta cutoff test to abort search if we
* found a move that proves that the previous move in the
* move chain was dubious
*/
if (beta >= alpha) {

break;
}

}

Notice that when we recursively call alphaBetaHelper, that we are “flipping” the player
argument to the opposite Boolean value. After calculating the best move at this depth (or level),
we add it to the end of the return vector:

Vector v3 = new Vector();
v3.addElement(new Float(beta));
Enumeration enum = best.elements();
while (enum.hasMoreElements()) {

v3.addElement(enum.nextElement());
}
return v3;

When the recursive calls back up and the first call to alphaBetaHelper returns a vector to the
method alphaBeta, all of the “best” moves for each side are stored in the return vector, along
with the evaluation of the board position for the side to move.

The GameSearch method playGame is fairly simple; the following code fragment is a partial

Copyright 2001 by Mark Watson page 42 of 42 1/20/2002 08:48:15

listing of playGame showing how to call alphaBeta, getMove, and makeMove:

public void playGame(Position startingPosition,
boolean humanPlayFirst) {

System.out.println("Your move:");
Move move = getMove();
startingPosition = makeMove(startingPosition,

HUMAN, move);
printPosition(startingPosition);
Vector v = alphaBeta(0, startingPosition, PROGRAM);
startingPosition = (Position)v.elementAt(1);

}
}

The debug printout of the vector returned from the method alphaBeta seen earlier in this section
was printed using the following code immediately after the call to the method alphaBeta:

Enumeration enum = v.elements();
while (enum.hasMoreElements()) {

System.out.println(" next element: " +
enum.nextElement());

}

In the next few sections, we will implement a tic-tac-toe program and a chess-playing program
using this Java class framework.

1.5.3 TicTacToe using the alpha beta search algorithm

Using the Java class framework of GameSearch, Position, and Move, it is simple to write a
simple tic-tac-toe program by writing three new derived classes (see Figure 1.9) TicTacToe
(derived from GameSearch), TicTacToeMove (derived from Move), and TicTacToePosition
(derived from Position).

Copyright 2001 by Mark Watson page 43 of 43 1/20/2002 08:48:15

Figure 1.9 UML class diagrams for game search engine and tic-tac-toe

I assume that the reader has the code from my web site installed and available for viewing. In this

Copyright 2001 by Mark Watson page 44 of 44 1/20/2002 08:48:15

section, I will only discuss the most interesting details of the tic-tac-toe class refinements; I
assume that the reader can look at the source code. We will start by looking at the refinements for
the position and move classes. The TicTacToeMove class is trivial, adding a single integer value
to record the square index for the new move:

public class TicTacToeMove extends Move {
public int moveIndex;

}

The board position indices are in the range of [0..8] and can be considered to be in the following
order:

0 1 2
3 4 5
6 7 8

The class TicTacToePosition is also simple:

public class TicTacToePosition extends Position {
final static public int BLANK = 0;
final static public int HUMAN = 1;
final static public int PROGRAM = -1;
int [] board = new int[9];
public String toString() {

StringBuffer sb = new StringBuffer("[");
for (int i=0; i<9; i++) sb.append(""+board[i]+",");
sb.append("]");
return sb.toString();

}
}

This class allocates an array of nine integers to represent the board, defines constant values for
blank, human, and computer squares, and defines a toString method to print out the board

Copyright 2001 by Mark Watson page 45 of 45 1/20/2002 08:48:15

representation to a string.

The TicTacToe class must define the following abstract methods from the base class
GameSearch:

public abstract boolean drawnPosition(Position p)
public abstract boolean wonPosition(Position p, boolean player)
public abstract float positionEvaluation(Position p,

boolean player)
public abstract void printPosition(Position p)
public abstract Position [] possibleMoves(Position p,

boolean player)
public abstract Position makeMove(Position p, boolean player,

Move move)
public abstract boolean reachedMaxDepth(Position p, int depth)
public abstract Move getMove()

The implementation of these methods uses the refined classes TcTacToeMove and
TicTacToePosition. For example, consider the class drawnPosition that is responsible for
selecting a drawn (or tied) position:

public boolean drawnPosition(Position p) {
boolean ret = true;
TicTacToePosition pos = (TicTacToePosition)p;
for (int i=0; i<9; i++) {

if (pos.board[i] == TicTacToePosition.BLANK){
ret = false;
break;

}
}
return ret;

}

The methods that are overridden from the GameSearch base class must always cast arguments of

Copyright 2001 by Mark Watson page 46 of 46 1/20/2002 08:48:15

type Position and Move to TicTacToePosition and TicTacToeMove. Note that in the method
drawnPosition, the argument of class Position is cast to the class TicTacToePosition. A
position is considered to be a draw if all of the squares are full. We will see that checks for a won
position are always made before checks for a drawn position, to that the method drawnPosition
does not need to make a redundant check for a won position. The method wonPosition is also
simple; it uses a private helper method winCheck to test for all possible winning patterns in tic-
tac-toe. The method positionEvaluation uses the following board features to assign a fitness
value from the point of view of either player:

• The number of blank squares on the board
• If the position is won by either side
• If the center square is taken

The method positionEvaluation is simple, and is a good place for the interested reader to start
modifying both the tic-tac-toe and chess programs:

public float positionEvaluation(Position p, boolean player) {
int count = 0;
TicTacToePosition pos = (TicTacToePosition)p;
for (int i=0; i<9; i++) {

if (pos.board[i] == 0) count++;
}
count = 10 - count;
// prefer the center square:
float base = 1.0f;
if (pos.board[4] == TicTacToePosition.HUMAN &&

player) {
base += 0.4f;

}
if (pos.board[4] == TicTacToePosition.PROGRAM &&

!player) {
base -= 0.4f;

}

Copyright 2001 by Mark Watson page 47 of 47 1/20/2002 08:48:15

float ret = (base - 1.0f);
if (wonPosition(p, player)) {

return base + (1.0f / count);
}
if (wonPosition(p, !player)) {

return -(base + (1.0f / count));
}
return ret;

}

The only other method that we will look at here is possibleMoves; the interested reader can look
at the implementation of the other (very simple) methods in the source code. The method
possibleMoves is called with a current position, and the side to move (i.e., program or human):

public Position [] possibleMoves(Position p, boolean player)
{

TicTacToePosition pos = (TicTacToePosition)p;
int count = 0;
for (int i=0; i<9; i++) if (pos.board[i] == 0) count++;
if (count == 0) return null;
Position [] ret = new Position[count];
count = 0;
for (int i=0; i<9; i++) {

if (pos.board[i] == 0) {
TicTacToePosition pos2 =

new TicTacToePosition();
for (int j=0; j<9; j++)

pos2.board[j] = pos.board[j];
if (player) pos2.board[i] = 1;
else pos2.board[i] = -1;
ret[count++] = pos2;

}
}
return ret;

}

Copyright 2001 by Mark Watson page 48 of 48 1/20/2002 08:48:15

It is very simple to generate possible moves: every blank square is a legal move. (This method will
not be as simple in the example chess program!)

It is simple to compile and run the example tic-tac-toe program: change directory to
src/search/game and type:

javac *.java
java TicTacToe

When asked to enter moves, enter an integer between 0 and 8 for a square that is currently blank
(i.e., has a zero value). The following shows this labeling of squares on the tic-tac-toe board:

0 1 2
3 4 5
6 7 8

1.5.4 Chess using the alpha beta search algorithm

Using the Java class framework of GameSearch, Position, and Move, it is reasonably simple to
write a simple chess program by writing three new derived classes (see Figure 1.10) Chess
(derived from GameSearch), ChessMove (derived from Move), and ChessPosition (derived
from Position). The chess program developed in this section is intended to be an easy to
understand example of using alpha-beta min-max search; as such, it ignores several details that a
fully implemented chess program would implement:

• Allow the computer to play either side (computer always plays black in this example)
• Allow en-passant pawn captures.
• Allow the player to take back a move after making a mistake

The reader is assumed to have read the last section on implementing the tic-tac-toe game; details
of refining the GameSearch, Move, and Position classes are not repeated in this section.

Copyright 2001 by Mark Watson page 49 of 49 1/20/2002 08:48:15

Figure 1.10 shows the UML class diagram for both the general purpose GameSearch framework
and the classes derived to implement chess specific data and behavior.

Copyright 2001 by Mark Watson page 50 of 50 1/20/2002 08:48:15

Copyright 2001 by Mark Watson page 51 of 51 1/20/2002 08:48:15

Figure 1.10 UML class diagrams for game search engine and chess

The class ChessMove contains data for recording from and to square indices:

public class ChessMove extends Move {
public int from;
public int to;

}

The board is represented as an integer array with 120 elements. A chessboard only has 64 squares;
the remaining board values are set to a special value of 7, which indicates an “off board” square.
The initial board setup is defined statically in the Chess class:

private static int [] initialBoard = {
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
4, 2, 3, 5, 9, 3, 2, 4, 7, 7, // white pieces
1, 1, 1, 1, 1, 1, 1, 1, 7, 7, // white pawns
0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares, 2 off board
0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares, 2 off board
0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares, 2 off board
0, 0, 0, 0, 0, 0, 0, 0, 7, 7, // 8 blank squares, 2 off board
-1,-1,-1,-1,-1,-1,-1,-1, 7, 7, // black pawns
-4,-2,-3,-5,-9,-3,-2,-4, 7, 7, // black pieces
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7

};

The class ChessPosition contains data for this representation and defines constant values for
playing sides and piece types:

public class ChessPosition extends Position {
final static public int BLANK = 0;
final static public int HUMAN = 1;

Copyright 2001 by Mark Watson page 52 of 52 1/20/2002 08:48:15

final static public int PROGRAM = -1;
final static public int PAWN = 1;
final static public int KNIGHT = 2;
final static public int BISHOP = 3;
final static public int ROOK = 4;
final static public int QUEEN = 5;
final static public int KING = 6;
int [] board = new int[120];
public String toString() {

StringBuffer sb = new StringBuffer("[");
for (int i=22; i<100; i++) {

sb.append(""+board[i]+",");
}
sb.append("]");
return sb.toString();

}
}

The class Chess also defines other static data. The following array is used to encode the values
assigned to each piece type (e.g., pawns are worth one point, knights and bishops are worth 3
points, etc.):

private static int [] value = {
0, 1, 3, 3, 5, 9, 0, 0, 0, 12

};

The following array is used to codify the possible incremental moves for pieces:

private static int [] pieceMovementTable = {
0, -1, 1, 10, -10, 0, -1, 1, 10, -10, -9, -11, 9,
11, 0, 8, -8, 12, -12, 19, -19, 21, -21, 0, 10, 20,
0, 0, 0, 0, 0, 0, 0, 0

};

Copyright 2001 by Mark Watson page 53 of 53 1/20/2002 08:48:15

The starting index into the pieceMovementTable array is calculated by indexing the following
array with the piece type index (e.g., pawns are piece type 1, knights are piece type 2, bishops are
piece type 3, rooks are piece type 4, etc.:

private static int [] index = {
0, 12, 15, 10, 1, 6, 0, 0, 0, 6

};

When we implement the method possibleMoves for the class Chess, we will see that, except for
pawn moves, that all other possible piece type moves are very simple to calculate using this static
data. The method possibleMoves is simple because it uses a private helper method
calcPieceMoves to do the real work. The method possibleMoves calculates all possible moves
for a given board position and side to move by calling calcPieceMove for each square index that
references a piece for the side to move.

We need to perform similar actions for calculating possible moves and squares that are controlled
by each side. In the first version of the class Chess that I wrote, I used a single method for
calculating both possible move squares and controlled squares. However, the code was difficult to
read, so I split this initial move generating method out into three methods:

• possibleMoves – required because this was an abstract method in GameSearch. This
method calls calcPieceMoves for all squares containing pieces for the side to move, and
collects all possible moves.

• calcPieceMoves – responsible to calculating pawn moves and other piece type moves for
a specified square index.

• setControlData – sets the global array computerControl and humanControl. This
method is similar to a combination of possibleMoves and calcPieceMoves, but takes into
effect “moves” onto squares that belong to the same side for calculating the effect of one
piece guarding another. This control data is used in the board position evaluation method
positionEvaluation.

We will discuss calcPieceMoves here, and leave it as an exercise to carefully read the similar

Copyright 2001 by Mark Watson page 54 of 54 1/20/2002 08:48:15

method setControlData in the source code. This method places the calculated piece movement
data in static storage (the array piece_moves) to avoid creating a new Java object whenever this
method is called; method calcPieceMoves returns an integer count of the number of items placed
in the static array piece_moves. The method calcPieceMoves is called with a position and a
square index; first, the piece type and side are determined for the square index:

private int calcPieceMoves(ChessPosition pos,
int square_index) {

int [] b = pos.board;
int piece = b[square_index];
int piece_type = piece;
if (piece_type < 0) piece_type = -piece_type;
int piece_index = index[piece_type];
int move_index = pieceMovementTable[piece_index];
if (piece < 0) side_index = -1;
else side_index = 1;

Then, a switch statement controls move generation for each type of chess piece (movement
generation code is not shown):

switch (piece_type) {
case ChessPosition.PAWN:

break;
case ChessPosition.KNIGHT:
case ChessPosition.BISHOP:
case ChessPosition.ROOK:
case ChessPosition.KING:
case ChessPosition.QUEEN:

break;
}

The logic for pawn moves is a little complex but the implementation is simple. We start by
checking for pawn captures of pieces of the opposite color. Then check for initial pawn moves of
two squares forward, and finally, normal pawn moves of one square forward. Generated possible

Copyright 2001 by Mark Watson page 55 of 55 1/20/2002 08:48:15

moves are placed in the static array piece_moves and a possible move count is incremented. The
move logic for knights, bishops, rooks, queens, and kings is very simple since it is all table driven.
First, we use the piece type as an index into the static array index; this value is then used as an
index into the static array pieceMovementTable. There are two loops: an outer loop fetches the
next piece movement delta from the pieceMovementTable array and the inner loop applies the
piece movement delta set in the outer loop until the new square index is off the board or “runs
into” a piece on the same side. Note that for kings and knights, the inner loop is only executed
one time per iteration through the outer loop:

move_index = piece;
if (move_index < 0) move_index = -move_index;
move_index = index[move_index];
//System.out.println("move_index="+move_index);
next_square = square_index + pieceMovementTable[move_index];

outer:
while (true) {

inner:
while (true) {

if (next_square > 99) break inner;
if (next_square < 22) break inner;
if (b[next_square] == 7) break inner;

// check for piece on the same side:
if (side_index < 0 && b[next_square] < 0)

break inner;
if (side_index >0 && b[next_square] > 0)

break inner;

piece_moves[count++] = next_square;
if (b[next_square] != 0) break inner;
if (piece_type == ChessPosition.KNIGHT)

break inner;
if (piece_type == ChessPosition.KING) break inner;
next_square += pieceMovementTable[move_index];

Copyright 2001 by Mark Watson page 56 of 56 1/20/2002 08:48:15

}
move_index += 1;
if (pieceMovementTable[move_index] == 0) break outer;
next_square = square_index +

pieceMovementTable[move_index];
}

The method setControlData is very similar to this method; leave it as an exercise to the reader
to read through the source code. Method setControlData differs in also considering moves that
protect pieces of the same color; calculated square control data is stored in the static arrays
computerControl and humanControl. This square control data is used in the method
positionEvaluation that assigns a numerical rating to a specified chessboard position or either the
computer or human side. The following aspects of a chessboard position are used for the
evaluation:

• material count (pawns count 1 point, knights and bishops 3 points, etc.)
• count of which squares are controlled by each side
• extra credit for control of the center of the board
• credit for attacked enemy pieces

Notice that the evaluation is calculated initially assuming the computer’s side to move; if the
position if evaluated from the human player’s perspective, the evaluation value is multiplied by
minus one. The implementation of positionEvaluation is:

public float positionEvaluation(Position p, boolean player) {
ChessPosition pos = (ChessPosition)p;
int [] b = pos.board;
float ret = 0.0f;
// adjust for material:
for (int i=22; i<100; i++) {

if (b[i] != 0 && b[i] != 7) ret += b[i];
}

Copyright 2001 by Mark Watson page 57 of 57 1/20/2002 08:48:15

// adjust for positional advantages:
setControlData(pos);
int control = 0;
for (int i=22; i<100; i++) {

control += humanControl[i];
control -= computerControl[i];

}
// Count center squares extra:
control += humanControl[55] - computerControl[55];
control += humanControl[56] - computerControl[56];
control += humanControl[65] - computerControl[65];
control += humanControl[66] - computerControl[66];

control /= 10.0f;
ret += control;

// credit for attacked pieces:
for (int i=22; i<100; i++) {

if (b[i] == 0 || b[i] == 7) continue;
if (b[i] < 0) {

if (humanControl[i] > computerControl[i]) {
ret += 0.9f * value[-b[i]];

}
}
if (b[i] > 0) {

if (humanControl[i] < computerControl[i]) {
ret -= 0.9f * value[b[i]];

}
}

}
// adjust if computer side to move:
if (!player) ret = -ret;
return ret;

}

Copyright 2001 by Mark Watson page 58 of 58 1/20/2002 08:48:15

It is simple to compile and run the example chess program: change directory to src/search/game
and type:

javac *.java
java Chess

When asked to enter moves, enter string like “d2d4” to enter a move in chess algebraic notation.
Here is sample output from the program:

Board position:

BR BN BB . BK BB BN BR
BP BP BP BP . BP BP BP

. . BP BQ .
. . . .

. WP . .
. . . WN .
WP WP WP . WP WP WP WP
WR WN WB WQ WK WB . WR
Your move:
c2c4

The example chess program plays, in general good moves, but its play could be greatly enhanced
with an “opening book” of common chess opening move sequences. If you run the example chess
program, depending on the speed of your computer and your Java runtime system, the program
takes a while to move (about 15 seconds per move on my PC). Where is the time spent in the
chess program? Table 1.1 shows the total runtime (i.e., time for a method and recursively all
called methods) and method-only time for the most time consuming methods. Methods that show
zero percent method only time used less that 0.1 percent of the time so they print as zero values.

Table 1.1

Class.method name Percent of total runtime Percent in this method

Copyright 2001 by Mark Watson page 59 of 59 1/20/2002 08:48:15

only
Chess.main 97.7 0.0
GameSearch.playGame 96.5 0.0
GameSearch.alphaBeta 82.6 0.0
GameSearch.alphaBetaHelper 82.6 0.0
Chess.positionEvaluate 42.9 13.9
Chess.setControlData 29.1 29.1
Chess.possibleMoves 23.2 11.3
Chess.calcPossibleMoves 1.7 0.8
Chess.calcPieceMoves 1.7 0.8

The interested reader is encouraged to choose a simple two-player game, and using the game
search class framework, implement your own game-playing program.

Copyright 2001 by Mark Watson page 60 of 60 1/20/2002 08:48:15

Chapter 2. Natural Language Processing

Human understanding of language requires background or common sense knowledge of the
world. Human consciousness is tightly coupled with both language and our internal models of the
outer world. Indeed, many (e.g., [Capra 1966]) argue that it is our consciousness that creates our
own world (i.e., we create the worlds that we live in). I think that it is likely that the most
accurate model of consciousness (human or otherwise) requires that the effect of consciousness
on the external world is important; it makes little sense to assume that the real world is static and
is not affected by conscious entities living in that world.

So, in trying to understand life and consciousness, it is important to understand the context of
experiences in the world. Children playing often make up new words spontaneously that for the
children involved has real meaning in the context of their lives. Where does this leave us if we
want to write software for Natural Language Processing (NLP)? There are two basic approaches
depending on whether we want to write an effective “natural language front end” to a software
system (e.g., a query system for a database, which we will do in this chapter) or if we are
motivated to do fundamental research on minds and consciousness by building a system that
acquires structure and intelligence through its interaction with its environment (e.g., the Magnus
system [Aleksander, 1996]).

The examples for this chapter are found in the subdirectory src in:

• src
• src/nlp
• src/nlp/ATN – ATN parser that uses data from Wordnet
• src/nlpNLBean – my Open Source natural language database interface
• src/nlp/prolog – NLP using embedded Prolog
• src/prolog – source code for Prolog engine written by Sieuwert van Otterloo

There are several common techniques for practical NLP systems:

Copyright 2001 by Mark Watson page 61 of 61 1/20/2002 08:48:15

• Finite state machines that recognize word sequences as syntactically valid sentence (often
called augmented transition networks, or ATNs). These state machines are often written in
Prolog, LISP, or C.

• Conceptual dependency parsers that stress semantics rather than syntax. These are usually
written in LISP.

This chapter uses three example systems:

• An ATN based parser using parts of the Wordnet 1.6 lexicon
• An existing Open Source system written by the author for accessing relational databases

with simple natural language queries. This example uses information from the databases
(e.g., table and column names) in parsing natural language and producing valid SQL
database queries.

• A parser written in Prolog, with an example of using this parser in a Java application

2.1 ATN Parsers

ATN parsers are finite state machines that recognize word sequences as specific words, noun
phrases, verb phrases, etc. The original work done on ATNs was done by W. A. Woods in the
late 1960s to address a shortcoming of context free grammars for NLP, which include:

• Difficulty in dealing with different sentence structures that has the same meanings.
Typically, the grammar has to be expanded to handle many special cases.

• Handling number agreement between subjects and verbs.
• Determining the “deep structure” of input texts.

The term morphological tags (or features) refers to the labeling of words with part of speech tags;
for example:

Copyright 2001 by Mark Watson page 62 of 62 1/20/2002 08:48:15

• Noun – cat, dog, boy, etc.
• Pronouns – he, she, it

o Relative pronouns – which, who, that
• Verb – run, throw, see, etc.
• Determiners

o Articles – a, an, the
o Possessives – my, your, theirs, etc.
o Demonstratives – this, that, these, those
o Numbers

• Adjectives – big, small, purple, etc.
• Adverbs

o Describe how something is done – fast, well, etc.
o Time – after, soon, etc.
o Questioning – how, why, when, where
o Place – down, up, here, etc.

In general, accurately assigning correct morphological tags (i.e., parts of speech) to input text is a
difficult problem, as we will see when we build an ATN parser. There are other good techniques
for assigning word types, like Hidden Markov Model and Bayesian techniques (web search “part
of speech tagging Bayesian”). One problem with assigning parts of speech is that a given word
can be used in many ways; for example, bank (noun, verb, adjective). English grammar is
complex! The important steps in building NLP technology into your own programs are:

• Reduce the domain of discourse (i.e., what the system can “understand”) to a minimum
• Create a set of “use cases” to focus your effort in designing and writing ATNs, and to use

for testing your NLP system during development
• When possible, capture text input from real users of your system, and incrementally build

up a set of “use cases” that your system can handle correctly
• Map identified words/parts of speech to actions that your system should perform (e.g., see

the data base query system developed at the end of this chapter)

Copyright 2001 by Mark Watson page 63 of 63 1/20/2002 08:48:15

ATN parsers can be represented graphically, with different graph structures for handling
complete sentences, noun phrases, verb phrases, etc. We will look at a very simple example in
Figure 2.1.

Figure 2.1 A simplified ATNs for handling a few cases of noun and verb phrases

We will parse a simple example using the ATNs in Figure 2.1 so you get a feeling for how ATN-
based parsers work. ATNs in Figure 2.1 are always evaluated from top to bottom; it is common
to evaluate more complex ATNs of the same type before simpler ones. For example, we always
test the more complex NP ATN in Figure 2.1 before trying the simpler one. As a first example,
consider the sentence “a dog ran”. We street any input text as being an ordered sequence of

Copyright 2001 by Mark Watson page 64 of 64 1/20/2002 08:48:15

words, in this case [a, dog, ran]. The arrows in Figure 2.1 represent tests that must be passed
before proceeding to the next node in the ATN. If the sequence [a, dog, ran] is input to the top
level Sentence node, in order to pass the first test, the ATN NP must accept the word or words
at the beginning of this sequence. The first test to transition between NP and NP1 is a test to see
if the first word in the sequence is in the set [the, a, and]. This test is passed, so the word or
words that satisfied the test are removed from the input sequence. In order to transition between
the node NP1 and the Done node, the next remaining word in the input sequence must be a noun,
which it is; so, the word dog is removed from the input sequence, and we are done with the NP
ATN, returning the shortened input sequence to node S1 of the top level Sentence ATN. In order
to transition from node S1 to the Done node, the shortened input sequence [ran] must pass the
VP ATN test. We can transition from node VP to node VP1 because the first word in the input
sequence [ran] is a verb. However, we cannot transition from node VP1 to the Done node
because there are no remaining words in the input sequence. Not a problem; we return from the
first VP ATN, restoring the input sequence to the state that it was in when we entered the ATN,
in this case [ran]. Now, we try the simpler VP ATN at the bottom of Figure 2.1, and we can
successfully transition from the VP node to the Done node because the first word in the input
sequence is a verb. This allows us to return to the calling Sentence ATN and transition to the
Done node.

In this example, the individual ATNs might have been augmented to contain code and data to
remember words that appeared in a specific context. For example, the noun that helped pass the
NP test could be saved. However, this example is actually a Recursive Transition Network
because it has not been augmented. We will see that it is fairly easy to augment the code for
recognizing individual ATNs to save word values. In Woods original system, he used the term
registers to indicate the memory used to, for example, remember the leading noun in a noun
phrase (see the NP ATNs in Figure 2.1).

In the Java example that we will shortly write, the example ATN program has placeholder code
that can be used to remember specific words while processing ATNs. Also, we use many ATNs,
always trying more complex ATNs of the same type before the simpler ones.

The ATNs in Figure 2.1 implement the following pattern:

Copyright 2001 by Mark Watson page 65 of 65 1/20/2002 08:48:15

NP� VP

Here is a short list of the ATN patterns (taken from the Java example source code) that we will
use:

Listing 2.1

int [] ALL_S [] = {
{NP, VP, NP, PP, VP},
{NP, VP, PP, NP},
{NP, VP, NP},
{VP, NP, PP, NP},
{VP, PP, NP},
{NP, VP}, // this one matches Figure 2.1
{VP, PP},
{VP, NP},
{VP}
};

We will write Java methods to recognize if word sequences satisfying the NP, VP, and PP tests.
PP stands for prepositional phrase. Parsing using ATN networks is a depth first search process. In
our example system, this search process will halt as soon as an input word sequence is recognized;
this is the reason that we check the most complex ATNs first.

2.1.1 Lexicon data for defining word types

In the example in Figure 2.1, we assumed that we could tell if a word was a noun, verb, etc. In
order to meet this requirement in the example system, we will build a lexicon that indicates word
types for many common words. For example, lexicon entries might look like:

• book – noun, verb (e.g., “I want to book a flight”)
• run – noun (e.g., “did you hit in a run?”), verb, adjective (e.g., “you look run down”)

Copyright 2001 by Mark Watson page 66 of 66 1/20/2002 08:48:15

We will use the Wordnet lexical database to build a lexicon. The Wordnet lexical database from
Princeton University is one of the most valuable tools available for experimenting with NLP
systems. The full Wordnet system contains information on “synsets” of collection of synonyms
and example uses for most commonly used English words. Wordnet data files comprise index and
separate data files. We use the index files for the word types noun, verb, adjective and adverb.
Additional words are added for the word types articles, conjunctions, determiners,
prepositions, and pronouns in the Java ATN parser class that will be designed and implemented
later in this chapter. The Wordnet synset data is not used in the example ATN system.

2.1.2 Design and implementation of an ATN parser in Java

The example ATN parsing system consists of two Java classes, the original Wordnet index files,
and a serialized Java object file containing hash tables for the word types noun, verb, adjective and
adverb. The ZIP file for this book contains the serialized data file, but not the original Wordnet
data files; the interested reader will find a link to the Wordnet web site on the support web page
for this book.

Figure 2.1 shows the Java classes for the utility class MakeWordnetCache and the ATN
example program. You will not need to run MakeWordnetCache since the file wncache.dat is
provided. You can use MakeWordnetCache to recreate this data file form the original Wordnet
index files however.

Copyright 2001 by Mark Watson page 67 of 67 1/20/2002 08:48:15

Copyright 2001 by Mark Watson page 68 of 68 1/20/2002 08:48:15

Figure 2.2 ATN and MakeWordnetCache UML class diagrams.

Both the MakeWordnetCache and ATN Java classes show a very useful technique:
preprocessing data required by an executing Java program, and saving it as a serialized object.
The MakeWordnetCache program is fairly simple, basically using the method helper(String
file, Hashtable hash) to read a Wordnet index file and fill in each word in the provided hash
table. It is worth taking a quick look at the code to serialize the four generated hash tables into a
file:

try {
FileOutputStream ostream = new FileOutputStream("wncache.dat");
ObjectOutputStream p = new ObjectOutputStream(ostream);
p.writeObject(adj); // adj is a hash table
p.writeObject(adv); // adv is a hash table
p.writeObject(noun); // noun is a hash table
p.writeObject(verb); // verb is a hash table
p.flush();
ostream.close();
} catch (Exception e) {
e.printStackTrace();
}

The code in the ATN class constructor will either read the file wncache.dat from the local
directory, or if the compiled ATN class and the wncache.dat files are delivered in a JAR archive
file, the wncache.dat data file will be automatically read from the JAR file. This is a very useful
technique so let’s take a quick look at the code that reads a data file from either the current
directory or a JAR archive that is in the CLASSPATH used when running the ATN program:

try {
// the following code will read either a local file of a
// resource in a JAR file:
InputStream ins =

ClassLoader.getSystemResourceAsStream("wncache.dat");
if (ins==null) {

Copyright 2001 by Mark Watson page 69 of 69 1/20/2002 08:48:15

System.out.println("Failed to open 'wncache.dat'");
System.exit(1);

} else {
ObjectInputStream p = new ObjectInputStream(ins);
adj = (Hashtable)p.readObject();
adv = (Hashtable)p.readObject();
noun = (Hashtable)p.readObject();
verb = (Hashtable)p.readObject();
ins.close();

}
}

If you wanted to package the ATN example for someone, you could make a JAR file by using the
following commands:

jar cvf atn.jar ATN.class wncache.dat
erase *.class
erase wncache.dat

You could then run the system, using only the jar file, by using:

java –classpath atn.jar ATN “the dog ran down the street”

Processing : the dog ran down the street
'the' possible word types: art
'dog' possible word types: noun verb
'ran' possible word types: verb
'down' possible word types: adj adv noun prep verb
'the' possible word types: art
'street' possible word types: noun

Best ATN at word_index 0
word: the part of speech: art
word: dog part of speech: noun
word: ran part of speech: verb

Copyright 2001 by Mark Watson page 70 of 70 1/20/2002 08:48:15

word: down part of speech: adj
word: the part of speech: art
word: street part of speech: noun

The primary class methods for ATN are:

• ATN – class constructor reads hash tables for noun, verb, adverb, and adjective from a
serialized data file and then creates smaller has tables for handling articles, conjunctions,
determiners, pronouns, and prepositions.

• addWords – private helper method called by the class constructor to add an array of
strings to a specified hash table

• checkWord – checks to see is a given word is of a specified word type
• parse – public method that handles parsing a sequence of words stored in a single Java

string. The words are copied to an array of strings one word per string); this array is a
class variable words. Then the helper function parse_it is called to test the word sequence
in the array words against all ATN test in the class variable ALL_S. The ATN test that
parses the most words in the input word sequence is then used.

• parse_it – uses the ATN test method parseSentence to run all of the ATN tests. Note that
parseSentance and all of the other ATN implementation methods take an integer
argument hat is an index into the class array words.

• parseSentence – evaluates all ATN tests seen in Listing 2.1 to see which one parses the
most words in the input word sequence. The private method parseHelper is called with
each array element of the array ALL_S.

• parseHelper – uses the ATN implementation methods parseNP, parseVP, and parsePP to
evaluate one of the test ATNs in the global array ALL_S. The return value is the number
of words in the original input word sequence that this particular test ATN recognized.

The ATN implementation methods parseNP, parseVP, and parsePP all use the same process
that we used in Section 2.1 to manually process the word sequence [a, dog, ran] using the simple
test ATNs in Figure 2.1. We will look at one of these methods, parseNP, in detail; the others
work in a similar way. The following listing shows parts of the method parseNP with comments:

Copyright 2001 by Mark Watson page 71 of 71 1/20/2002 08:48:15

The method parseNP has two arguments, the starting word index in the array words, and an
offset from this starting word index:

int parseNP(int start_word_index, int word_index) {

We first check to make sure that there is still work to do:

if (word_index >= num_words) return word_index;

The following code tests for the pattern of a noun followed by a conjunction, followed by another
noun phrase:

// test ATN transitions <NOUN> --> <CONJ> --> <NP>
if (word_index < num_words - 2 &&

checkWord(words[word_index], NOUN))
{

if (checkWord(words[word_index + 1], CONJ)) {
int ii = parseNP(start_word_index, word_index + 2);
if (ii > -1) {

partsOfSpeech[start_word_index + word_index] = NOUN;
partsOfSpeech[start_word_index + word_index + 1]

= CONJ;
return ii;

}
}

}

In this code, it is necessary to first check to see if there are sufficient words to process, then we
test for a noun/conjunction pair, then recursively call parseNP again for the word sequence
occurring after the noun and conjunction. If this last recursive call tests out OK, then we set the
word types of the noun and conjunction, and return with the index of the word in the input
sequence following the last word in the recognized noun phrase.

Copyright 2001 by Mark Watson page 72 of 72 1/20/2002 08:48:15

The next test, for an article followed by another noun phrase, is similar, except we only need to
check for one extra word past the current word index:

// test ATN transitions <ART> --> <NP>
if (word_index < num_words - 1 &&

checkWord(words[word_index], ART))
{

int ii = parseNP(start_word_index, word_index + 1);
if (ii > -1) {

partsOfSpeech[start_word_index + word_index] = ART;
return ii;

}
}

The next test is different because we do not recursively call parseNP. Instead, we just check for
two nouns together at the beginning of the tested word sequence:

// test ATN transitions <NOUN> --> <NOUN>
if (word_index < num_words - 1 &&

checkWord(words[word_index], NOUN))
{

if (checkWord(words[word_index + 1], NOUN)) {
partsOfSpeech[start_word_index + word_index] = NOUN;
partsOfSpeech[start_word_index + word_index + 1] = NOUN;
return word_index + 2;

}
}

The next check is even simpler (remember, we favor the more complex tests by evaluating them
first); here we simply check to see if the next word is a noun, and if it is, we recognize a noun
phrase, returning the word index following the noun:

if (checkWord(words[word_index], NOUN)) {
partsOfSpeech[start_word_index + word_index] = NOUN;

Copyright 2001 by Mark Watson page 73 of 73 1/20/2002 08:48:15

return word_index + 1;
}

In the next test, we accept a pronoun followed by another noun phrase. As before, we use a
recursive call to parseNP:

if (checkWord(words[word_index], PRON)) {
int ii = parseNP(start_word_index, word_index + 1);
if (ii > -1) {

partsOfSpeech[start_word_index + word_index] = PRON;
return ii;

}
}

The final test that we perform, if required, I to check to see if the next word in the input sequence
is a pronoun: if it is, we accept the current sequence as a noun phrase and return in the index of
the word following the pronoun:

if (checkWord(words[word_index], PRON)) {
partsOfSpeech[start_word_index + word_index] = PRON;
return word_index + 1;

}

If all of the above tests fail, we return the value of minus one as a flag to the parseHelper method
that this ATN test failed.

return -1;

The other built in methods for ATN tests like parseVP and parsePP are similar to parseNP, and
we will not review the code for them.

2.1.3 Testing the Java ATN parser

Copyright 2001 by Mark Watson page 74 of 74 1/20/2002 08:48:15

The main method of the class ATN will parse the word sequence “the dog ran down the street” if
no command line arguments are supplied. Otherwise, each command line argument is considered
to be a string and the words in each input string are parsed in order. For example:

java ATN “the cat sees the dog” “I like to see a movie”

Processing : the cat sees the dog
'the' possible word types: art
'cat' possible word types: noun verb
'sees' possible word types:
'the' possible word types: art
'dog' possible word types: noun verb

Best ATN at word_index 0
word: the part of speech: art
word: cat part of speech: noun
word: sees part of speech: verb
word: the part of speech: art
word: dog part of speech: noun

Processing : I like to see a movie
'i' possible word types: adj noun
'like' possible word types: adj verb
'to' possible word types: prep
'see' possible word types: adv noun verb
'a' possible word types: art noun
'movie' possible word types: noun

Best ATN at word_index 0
word: i part of speech: noun
word: like part of speech: verb
word: to part of speech: prep
word: see part of speech: adv
word: a part of speech: art

Copyright 2001 by Mark Watson page 75 of 75 1/20/2002 08:48:15

word: movie part of speech: noun

One thing that you will notice when you experiment with this ATN parser: it sometimes
incorrectly identifies the part of speech for one or more words in the input word sequence. It is
important, when using NLP in your programs, to identify a set of test sentences that might be
typically used in running you application, and you will need to modify the parser in two ways to
tailor it for your application:

• Change the top level ATN tests shown in Listing 2.1
• Change some of the built in ATN test methods like parseNP and parseVP

We will see an example of an NLP system in the next section that has been tailored to one specific
domain: querying a database when we know the meta data (e.g., column names and database
names) for a database.

2.2 Natural Language Interfaces for Databases

So, in this chapter at least, we give up the near term desire to create a “real AI” and get down to
the engineering task of designing and implementing an effective NLP front end of querying a
database. Here, we will manually “build in” knowledge (and I use the term “knowledge” loosely
here) of the context database queries; This context involves:

• Understanding how to log-on and access a database
• Ability to do meta-level queries to get available database and table names, column labels,

etc.
• Augment a small vocabulary with terms specific to a given database
• Ability to do simple spelling correction to improve the performance (i.e., accuracy) of the

NLP querying capability of the system

Since this is a book that uses Java, it is most convenient to use a portable pure Java database

Copyright 2001 by Mark Watson page 76 of 76 1/20/2002 08:48:15

product. Here we will use Peter Hearty’s InstantDB that is available as a software product at
www.lutris.com (Note: Lutris Inc. permits me to distribute an older version of InstantDB with the
NLBean for non-commercial use.) There is a link to the current InstantDB web site on the web
site that supports this book.

2.2.2 History of the NLBean development

The NLBean was originally designed as a client server based NLP toolkit and released in 1997 as
a free program (released as Open Source in 1998). The original NLBean was about 9000 lines of
Java code, almost half of that being “client-server infrastructure” code. A common request from
users was to decouple the client-server from the NLP code, so I re-released the NLBean in 1999,
removing all the client server code; this reduced the code size to about 6000 lines of code. In May
2000, I did a major rewrite of the NLBean for inclusion in this book, removing code for spelling
checking, a lexicon of words and types that was used only minimally in the NLBean’s
functionality, and other behavior not required for this example. The class SmartTextField, that
contained built in support for spelling checking, was removed to greatly simplify the user interface
for the NLBean. The resulting code that this chapter is based on has been reduced to about 1800
lines of Java code. Figure 2.3 shows the current version of the NLBean standalone application
running.

Copyright 2001 by Mark Watson page 77 of 77 1/20/2002 08:48:15

Figure 2.3 the NLBean

2.2.3 Design of the NLP Database Interface

Figure 2.4 shows the UML class diagram for the redesigned NLBean system.

Copyright 2001 by Mark Watson page 78 of 78 1/20/2002 08:48:15

Copyright 2001 by Mark Watson page 79 of 79 1/20/2002 08:48:15

Figure 2.4 UML class diagram for the NLBean system

The following list summarizes the responsibilities for all NLBean classes:
• DBInfo – this class encapsulates the data required to keep track of the information for a

single database resource; all information for the tables in a database are stored in the same
DBInfo instance

• DBInterface – this class contains the static methods Query and Update used for all
database access; this class is set up to use both InstantDB and IBM’s DB2, defaulting to
InstantDB. Supporting other databases is usually a simple as setting the URL for the
database and login information.

• Help – this class is derived from the standard Dialog class and is used to show help
information

• MakeTestDB – this classes creates test database tables for running the NLBean as a
standalone demo

• NLBean – the main class for the NLBean system. This class uses an instance of NLEngine
to perform NLP operations

• NLEngine – the top-level class for NLP operations, including adding database tables to
the system, parsing natural language queries, etc.

• NLP – a helper class for performing NLP operations, including translating SQL queries
back into a natural language form for display

• SmartDate – a utility for parsing and recognizing dates in a variety of formats

2.2.4 Implementation of the NLP Database Interface

The following sections briefly discuss the Java implementation classes for the NLBean.

2.2.4.1 DBInfo class

The DBInfo class is used to manage the data associated with a database. One instance of the

Copyright 2001 by Mark Watson page 80 of 80 1/20/2002 08:48:15

DBInfo class manages all tales in a single database. The following class data is used:

• columnNames – a two-dimensional array of strings used to store the names of all column
names in every table in a database. The first array index is the table number in the database
and the second index is the column number index. This data will be added to the static
word dictionary (or lexicon) and be used in parsing natural language queries.

• databaseNames – an array of strings containing the names of databases that have been
loaded into the NLBean. Indexed by table number.

• numTables – the total number of tables loaded into the system
• password. Indexed by table number.
• userNames – the user name for each table. Indexed by table number.

Note that we are storing some information redundantly here: the user name and password are
specific to an entire database, but we store this information indexed by table number. This is a
programming convenience that costs a small amount of additional storage. Also, the maximum
number of tables that can be loaded into the NLBean is set to a maximum of ten because of the
use of static arrays instead of Java vectors. The following methods supply the behavior of the
DBInfo class:

• DBInfo – class constructor that statically allocates the arrays for holding table
information.

• addTable – adds data for table name, database login information, and column names for a
specific table.

• clearTables – removes all tables from the NLBean system
• debug – prints out information for all tables that have been loaded
• findColumnName – given a column name, this method returns an array of all tables that

contain that column name
• isColumn – returns Boolean true if a string is a valid database column name, otherwise

returns a Boolean false value.
• isTable – returns Boolean true if a string is a valid database table name, otherwise returns

a Boolean false value.

Copyright 2001 by Mark Watson page 81 of 81 1/20/2002 08:48:15

2.2.4.2 DBInterface class

The DBInterface class encapsulates all database access in one class so that you can add support
for alternative database products, etc., by modifying a single small piece of code. All class data
and methods are static, so you never create an instance of the DBInterface class. A static Boolean
variable needToInit is used to ensure that the database access setup calls are only executed one
time. The following static methods are used to implement the class behavior (only the methods
query, update, and getColumnNames are public):

• checkConnection – this method is passed an instance of the class java.sql.SQLwarning
and determines if the current database connection is OK

• doInit – if required, this method loads the drivers for the current database product (set up
for InstantDB) and connects to the selected database

• getColumnNames – returns an array of strings containing the column names of the
specified table

• query – used to do SQL queries against a connected database
• resultSetToString – a private utility method for converting a java.sql.ResultSet object to a

string
• update – used to do SQL updates (i.e., to modify a connected database). This method is

not used in the NLBean, but it is used in the utility class MakeTestDB for creating a test
database.

2.2.4.3 Help class

The Help class is derived from java.awt.Dialog class. This class contains text explaining the use of
the NLBean.

Copyright 2001 by Mark Watson page 82 of 82 1/20/2002 08:48:15

2.2.4.4 MakeTestDB class

The class MakeTestDB contains a static main method so it can be run as a standalone program.
Running MakeTestDB creates a test database containing three tables: NameTable, products, and
Employees. This class uses the DBInterface utility class to access a local InstantDB database.

2.2.4.5 NLBean class

The NLBean class is the main application class for this demo system. It is derived from the class
java.awt.Panel and provides both a user interface and natural language processing behavior by
using instances of classes NLEngine and NLP. The original NLBean system could be used as a
JavaBean component or a standalone application. In order to make the NLBean a simpler example
for this book, I removed code that allowed the NLBean to function as a full-featured JavaBean;
currently the NLBean can only be run as a standalone demo application. The NLBean class
contains several internal helper class definitions that support the user interface:

• MouseHelp – an adapter class to handle events from the “help” button. The method
mouseReleased causes the help window to be visible.

• ChoiceListener – derived from java.awt.ItemListener. The method itemStateChanged is
called when the example choice control is changed.

• MouseSelect1 – derived from the adapter class java.awt.MouseAdapter to handle events
in the top left database selection list.

• MouseSelect2 – derived from the adapter class java.awt.MouseAdapter to handle events
in the top middle database table selection list.

• MouseSelect3 – derived from the adapter class java.awt.MouseAdapter to handle events
in the top left database table column name selection list.

• MouseQuery – derived from the adapter class java.awt.MouseAdapter. The method
mouseReleased starts the database query process when the “query” button is clicked.

Copyright 2001 by Mark Watson page 83 of 83 1/20/2002 08:48:15

Most of the code in the NLBean class is user interface specific and was written for the original
1997 version of the NLBean.

2.2.4.6 NLEngine class

The class NLEngine is used by the NLBean user interface code to perform natural language
queries against either the test database, or any other database if DBInterface is modified to
support the new database system, if required. The NLEngine class stores information for all
loaded databases and tables. This class converts natural language queries to SQL statements. This
class uses the generated SQL statement for a natural language query to query the database using
the DBInterface class. The public API for the NLEngine class is:

• NLEngine – class constructor that creates instances of classes DBInfo and NLP.
• addDB – used to add database information to the system
• addSynonym – used to define a new parsing synonym
• breaklines – utility to convert a single Java string tht contains multiple lines into an array

of strings
• clearDB – removes all loaded database information
• clearSynonyms – removes all loaded synonym information
• createResultSet – used to make a database query from a generated SQL statement
• getColumnNames – used return the column names generated for a SQL query
• getRows – used to execute a SQL query and return all lines as a single Java string
• getSQL – calls the NLP class getSQL method to get the last generated SQL statement
• initDB – initializes database data and connections
• parse – performs some preprocessing and cleanup of natural language queries and then

calls the NLP class parse method.
• toEnglish – calls the NLP class toEnglish method to convert SQL statements back into a

natural language representation for display

2.2.4.7 NLP class

Copyright 2001 by Mark Watson page 84 of 84 1/20/2002 08:48:15

The NLP class is the top-level class responsible for parsing natural language queries. The NLP
class maintains an array of strings currentWords and an index into this array currentWordIndex
while parsing a natural language query. The class methods are:

• NLP – class constructor that requires an instance of DBInfo
• eatColumnName – processes and removes a column name from a query.
• eatWord – a utility method that is passed an array of strings; any words in this array at the

current word index are processed and removed.
• getSQL – returns the SQL for the last processed query as a Java string
• parse – top level parsing method. There are three parsing modes: a new query, processing

an “and clause”, and processing an “and <condition>” clause.
• quoteLiteral – adds single quote marks, if required, around a literal before insertion into a

generated SQL query
• toEnglish – converts an SQL query back into natural language

Please note that the parsing in the NLBean is a hack. If you look at the comments in NLP.java
you will see that there are three major modes:

• Start of a new query (mode == 0)
• Handle phrase and <column name> (mode == 1)
• Handle phrase and <condition> which add a new SQL condition clause to the query

(mode == 2)

Two tricks that make the NLBean parser work fairly well is recognizing database column names
as nouns in a query and allowing a user to set up synonyms for column names. For the simple test
database, synonym substitutions for column names are defined in NLBean.java:

// Set up for synonyms:
private String [] synonyms = {

"employee name=EmpName",
"hire date=HireDate",

Copyright 2001 by Mark Watson page 85 of 85 1/20/2002 08:48:15

"phone number=PhoneNumber",
"email address=Email",
"product name=productname",
"products=productname",
"product=productname"

};

Since the parsing in NLBean is a hack, it also helps to show the user valid queries against the
example database (these examples are also defined in NLBean.java):

• list email address where name equals Mark
• list salary where employee name equals Mark
• list salary where hire date is after 1993/1/5 and employee name equals Mark
• list name, phone number, and email address where name equals Mark
• list employee name, salary, and hire date where hire date is after January 10, 1993
• list salary where hire date is after January 1, 1993 or employee name equals Carol
• list product name where cost is less than $20

The NLBeanEngine class uses the SmartDate class (described in the next section) to handle a
fairly wide range of date types.

2.2.4.8 SmartDate class

The SmartDate class is used to detect the presence of legal date string in a natural language
query. This class recognizes many possible date formats by using the Java Calendar and
SimpleDateFormat classes to attempt to parse any test string.

2.2.5 Running the NLBean NLP System

The directory src/nlp contains two useful Windows command files (conversion to UNIX scripts is
trivial):

• build.bat – compiles the NLBean system and creates a runtime JAR file

Copyright 2001 by Mark Watson page 86 of 86 1/20/2002 08:48:15

• run.bat – runs the demo system

Before running the demo system for the first time, you might want to re-create the demo
InstantDB database by running the following command from the src/nlp/nlbean directory:

java –classpath nlbean.jar;idb.jar MakeTestDB

Figure 2.3, seen in Section 2.2.2, shows the NLBean application executing.

2.3 Using Prolog for NLP

This section is the second time in this book that we use the declarative nature of Prolog to solve a
problem in a more natural notation than we could in procedural Java code. If the reader has had
no exposure to Prolog, I suggest doing a web search for “Prolog logic tutorial”. We used ATN
parsers at the beginning of this chapter; ATNs are procedural, so an implementation in Java made
sense. In this section, we will see how effective Prolog is for NLP. If this short treatment of NLP
in Prolog whets the readers appetite, a web search for “Prolog NLP” will provide access to a huge
body of work; the interested reader can use the techniques for using the pure Java Prolog Engine
(written by Sieuwert van Otterloo) in her own programs.

2.3.1 Prolog examples of parsing simple English sentences

We will start by using Prolog to recognize a subset of English sentences. Consider the following
Prolog rules (excerpts from the file src/nlp/prolog/p0.pl):

The following Prolog rule can recognize a noun phrase:

noun_phrase([D,N]) :-
determiner(D),
noun(N).

noun_phrase([N]) :-

Copyright 2001 by Mark Watson page 87 of 87 1/20/2002 08:48:15

noun(N).

The first rule states that we can return a list [D,N] if D is a determiner and N is a noun. The
second rule states that we can return a list [N] if N is a noun.

If we can test this with:

?- noun_phrase([the,dog]).
yes.

Here, I am using a standalone Prolog system. The “?-“ is a prompt for a query, and the response
“yes” means that the list [the,dog] was recognized as a noun phrase. The list [the, throws] will not
be recognized as a noun phrase:

?- noun_phrase([the, throws]).
no.

We can recognize word types using the Prolog member rule and a list of words of a desired type;
for example:

determiner(D) :-
member(D,[the,a,an]).

noun(N) :-
member(N,[dog, street, ball, bat, boy]).

verb(V) :-
member(V,[ran, caught, yelled, see, saw]).

A rule for recognizing a complete sentence might look like:

sentence(S) :-
noun_phrase(NP),
verb_phrase(VP),
append(NP,VP,S).

Copyright 2001 by Mark Watson page 88 of 88 1/20/2002 08:48:15

This rule uses a standard Prolog technique: for recognizing lists like [the,dog, ran] or [the,dog,
ran, down, the, street], we do not know how many words will be in the noun phrase and how
many will be in the verb phrase. Here, the Prolog rule append comes to the rescue: using
backtrack search, the append rule will cycle through the permutations of splitting up a list into
two parts, one sub list for NP and one sub list for VP. We now can recognize a sentence:

?- sentence([the,dog, ran, down, the, street]).
yes.

This is fine for a demonstration of how simple it is to use Prolog to recognize a subset of English
sentences, but it does not give us the structure of the sentence. The example file p.pl is very
similar to the last example file p0.pl, but each rule is augmented to store the structure of the
words being parsed. The following code fragments show part of the example file p.pl:

We will start be looking at the modifications required for storing the parsed sentence structure for
two of the rules. Here is the original example for testing to see if a word is a determiner:

determiner(D) :-
member(D,[the,a,an]).

Here are the changes for saving the struture after a determiner word has been recognized:

determiner([D],determiner(D)) :-
member(D,[the,a,an]).

We will test this to show how the structure appears:

?-determiner([a],D).
D=determiner(a)
yes.

If we look at a more complex rule that uses the determiner rule, you can see how the structure is

Copyright 2001 by Mark Watson page 89 of 89 1/20/2002 08:48:15

built from sub lists:

noun_phrase(NP,noun_phrase(DTree,NTree)) :-
append(D,N,NP),
determiner(D,DTree),
noun(N,NTree).

Again, we will test this new rule to see how the structure is built up:

?- noun_phrase([a,street], NP).
NP=noun_phrase(determiner(a),noun(street))
yes.

Skipping some of the rules defined in the file p.pl, here is the top level parsing rule to recognize
and produce the structure of a simple sentence:

sentence(S, sentence(NPTree,VPTree)) :-
append(NP,VP,S),
noun_phrase(NP,NPTree),
verb_phrase(VP,VPTree).

Here, we use the built in append rule to generate permutations of dividing the list S into two sub
lists NP and VP, and the rules for recognizing and building structures for noun and verb phrases.
To demonstrate how the append rule works, we will use it to slice up a short sentence (as we saw
in Appendix B, we type “;” to get additional matches):

?- append(NP,VP,[the,dog,ran]).

NP=[]
VP=[the,dog,ran] ;

NP=[the]

Copyright 2001 by Mark Watson page 90 of 90 1/20/2002 08:48:15

VP=[dog,ran] ;

NP=[the,dog]
VP=[ran] ;

NP=[the,dog,ran]
VP=[] ;

Here is a final example of parsing and building the structure for a longer sentence:

?- sentence([the,dog,ran,down,the,strret],S).
S=sentence(noun_phrase(determiner(the),noun(dog)),verb_phrase(ver
b(ran)))
yes.

This could be “pretty printed” as:

sentence(
noun_phrase(

determiner(the),
noun(dog)),

verb_phrase(verb(ran)))

2.3.2 Embedding Prolog rules in a Java application

In this section, we will write a Java program that uses both the pure Java Prolog Engine and the
rules in the file p.pl that we saw in the last section. The code for using these Prolog rules is only
about 25 lines of Java code, so we will just walk through it, annotating it were necessary:

We place all of the access code inside a try-catch block since we are doing IO. Here, we open a
buffered reader for standard input:

try {

Copyright 2001 by Mark Watson page 91 of 91 1/20/2002 08:48:15

BufferedReader in
= new BufferedReader(new InputStreamReader(System.in));

Next, we create a new instance of the class Prolog and load in the file p.pl in “quiet mode”:

Prolog prologEngine = new Prolog();
prologEngine.consultFile("p.pl", true);

Now, we will enter a loop where the following operations are performed:

• Read a line of input into a string
• Tokenize the input into separate words (an alternative would have been to replace all

spaces in the input text with commas, but using the tokenizer makes this a more general
purpose example)

• Build and print out the Prolog query
• Call the Prolog.solve method to et back a vector of all possible answers
• Print out the first answer, discarding the rest (here we are wasting a small amount of

processing time, since in principle we could extend the API for the class Prolog to add a
method for finding just a single solution to a query)

• Print out the first solution

Here is the remaining code:

while (true) {
System.out.println("Enter a sentence:");
String line = in.readLine();
if (line == null || line.length() < 2) return;
line = line.trim().toLowerCase();
if (line.endsWith("."))

line = line.substring(0, line.length() - 1);
StringBuffer sb = new StringBuffer("sentence([");
StringTokenizer st = new StringTokenizer(line);
while (st.hasMoreTokens()) {

Copyright 2001 by Mark Watson page 92 of 92 1/20/2002 08:48:15

sb.append(st.nextToken() + ",");
}
// drop the last comma and close the brace:
String query =

sb.toString().substring(0, sb.length()-1) + "],S).";
System.out.println("Generated Prolog query: " + query);
Vector v = prologEngine.solve(query);
Hashtable the_answers = (Hashtable)v.elementAt(0);
Enumeration enum = the_answers.keys();
while (enum.hasMoreElements()) {

String var = (String)enum.nextElement();
String val = (String)the_answers.get(var);
System.out.println(val);

}
}

} catch (Exception e) {
System.out.println("Error: " + e);

}

If you were adding NLP capability to an application, you would have to write some code that
used the generated sentence structure. Here is some sample output from this example:

java Parser

CKI Prolog Engine. By Sieuwert van Otterloo.

Enter a sentence:
the boy ran down the street
Generated Prolog query:
sentence([the,boy,ran,down,the,street],S).
Results:
sentence(noun_phrase(determiner(the),noun(boy)),verb_phrase(verb(
ran),prep_phrase(prep(down),noun_phrase(determiner(the),noun(stre
et)))))
Enter a sentence:

Copyright 2001 by Mark Watson page 93 of 93 1/20/2002 08:48:15

the boy saw the dog
Generated Prolog query: sentence([the,boy,saw,the,dog],S).
Results:
sentence(noun_phrase(determiner(the),noun(boy)),verb_phrase(verb(
saw),noun_phrase(determiner(the),noun(dog))))

This short section provided a brief introduction to Prolog NLP; the interested reader will find
many Prolog NLP systems on the web. More importantly, you see how easy it is to combine
Prolog and Java code in an application. There is some overhead for using Prolog in a Java
application, but some problems are solved much easier in Prolog than in a procedural language
like Java. There is a list of free and commercial Prolog systems on my web page for this book; get
a Prolog system, and experiment with it; if you like Prolog, now you know that you can use it in
your Java applications.

Copyright 2001 by Mark Watson page 94 of 94 1/20/2002 08:48:15

Chapter 3. Expert Systems

The topic of writing expert systems is huge, and this chapter will focus on three rather narrow
topics: using an expert system framework for writing a reasoning system, using a rule based
system for reasoning, and using machine learning techniques to induce a set of production rules
from training data.

We will use the Jess Expert System software written by Ernest J. Friedman at Sandia National
Laboratory. A copy of Jess is available on Ernest’s web site http://herzberg.ca.sandia.gov/jess/.
We will begin this chapter with a short tutorial for using Jess, and then design and implement a
reasoning system that uses Jess.

The examples for this chapter are found in the subdirectory src in:

• src
• src/expertsystem – Jess rule files

The material in this chapter exclusively covers forward chaining expert systems. Forward chaining
systems start with a set of known facts, and apply rules to work towards solving one or more
goals. An alternative approach, often used in Prolog programs, is to use backward chaining.
Backward chaining systems start with a final goal and attempt to work backwards towards
currently known facts.

Historically, the phrase expert systems was almost synonymous with artificial intelligence in the
early and mid 1980s. Frankly, the application of expert system techniques to real problems, like
configuring DEC VAX minicomputers, medical diagnosis, and evaluating seismic data for
planning oil exploration had everyone very excited. Unfortunately, expert systems were very
“over hyped” and there was an eventual backlash that affected the entire field of AI. Still, the
knowledge of how to write expert systems is a useful skill. This short chapter contains a tutorial
for using the Jess expert system shell and also shows how to use machine learning to help
generate rules when training data is available. The interested reader is encouraged to follow up

Copyright 2001 by Mark Watson page 95 of 95 1/20/2002 08:48:15

reading this chapter by reading through the documentation that is included with the Jess system as
well as experimenting with the examples included in the Jess distribution.

3.1 A tutorial on writing expert systems with Jess

The Jess system implements the CLIPS language developed at NASA. CLIPS is based on the
original OPS5 language developed by Charles Forgy. OPS5 has been widely used for expert
system development because it used a very efficient pattern-matching algorithm (the Rete
network) and because it is freely available in source form. It is difficult to find documents about
expert system technology that do not at least mention OPS5. (If you are curious, you can search
for “OPS5” on the World Wide Web using your favorite search engine.)

Researchers at NASA re-implemented OPS5 in the C language, renaming it CLIPS. Ernest
Friedman-Hill re-implemented CLIPS in the Java language, renaming it Jess. Jess supports most
of the capabilities of CLIPS and is downward compatible; that is, any expert systems that you
write for Jess will probably run with little or no modification under CLIPS. All expert system
examples and tutorial material in this chapter use the Jess syntax.

I prefer to refer to expert systems by a more precise name: production systems. Productions are
rules for transforming strings. For example, given the three production rules:
a => b
b => c
c => d
then if a production system is initialized with the state a, the state d can be derived by applying
these three production rules in order. The form of these production rules is:

<left-hand side> => <right-hand side>

Like the reasoning system developed in Chapter 3, much of the power of a rule-based system
comes from the ability to use variables so that the left hand side (LHS) patterns can match a
variety of known facts (called working memory in Jess). The values of these variables that are
set in the LHS matching process are substituted for the variables on the right hand side (RHS)

Copyright 2001 by Mark Watson page 96 of 96 1/20/2002 08:48:15

patterns.

It may seem like expert systems have much programming overhead; that is, it will seem
excessively difficult to solve simple problems using production systems. However, for encoding
large ill-structured problems, production systems provide a convenient notation for collecting
together what would otherwise be too large of a collection of unstructured data and heuristic
rules (Brownston et al. 1985). As a programming technique, writing rule-based expert systems is
not for everyone. Some programmers find rule-based programming to be cumbersome, while
others find it a good fit for solving a wide variety of problems. I encourage the reader to have
some fun experimenting with Jess, both with the examples in this chapter, and the many examples
in the Jess distribution package.

Before starting a moderate or large expert system project, there are several steps that are
recommended:

• Write a detailed description of the problem to be solved
• Decide what structured data elements best describe the problem space (see the discussion

of deftemplate later in this section)
• Try to break the problem down into separate modules of rules; if possible, try to develop

and test these smaller modules independently, preferable one source file per module.
• Plan on writing specific rules that test parts of the system by initializing working memory

for specific tests for the various modules; these tests will be very important when testing
all of the modules together because tests that work correctly for a single module may fail
when all modules are loaded because of unexpected rule interactions.

Production systems fairly accurately model stimulus-response behavior in people. The left-hand
side (LHS) terms represent environmental data that triggers a response or action represented by
the right-hand side (RHS) terms in production rules. Simple stimulus-response types of
production rules might be adequate for modeling simple behaviors, but our goal in writing expert
systems is to encode deep knowledge and the ability to make complex decisions in a very narrow
(or limited) problem domain. In order to model complex decision-making abilities, we also often
need to add higher-level control functionality to expert systems.

Copyright 2001 by Mark Watson page 97 of 97 1/20/2002 08:48:15

It is useful to consider how we consciously control our thought processes. From a lifetime of
experience in interacting with our environment and other people, we have a very large amount of
real-world knowledge. When we are faced with a specific problem—for example, finding a new
friend’s house if we only have the street address—we obviously use a very small percentage of the
total knowledge that we have learned from childhood. To find our new friend’s house, we set
aside almost all of our knowledge and might only consider the following:

• Do we know where the street is? Have we been on the street before?
• If not, did the friend mention a well known nearby cross street?
• If not, can I find an accurate street map?

o If I have a street map, do I see the street my friend lives on?
• If not, do I have my friend’s telephone number?

o If my friend is at home, can I get better directions?

Here, I have indented sub goals and actions that we think when trying to solve a preceding goal.
In a production expert system, the rules for solving sub goals would likely be placed in separate
modules. We have a wealth of real-world knowledge for solving many different types of
problems, but we apply a high-level control process to set aside knowledge that is probably
irrelevant to solving a specific problem. An expert system must be laboriously programmed to
solve very specific types of problems. Even working in narrow problem areas, we will see that it is
very important to support both high-level control structures and low-level stimulus-response types
of rules. The high-level control structure is a set of rules that enable or disable stimulus-response
rules based on the current goal(s) and/or sub goal(s) that the expert system is processing.

Production system rule interpreters that start with facts that are matched to the LHS term(s) of
production rules are called forward chaining production systems. Production system rule
interpreters that start with desired goal states that are matched to the RHS term(s) are called
backward chaining production systems. For the introduction and tutorial for expert system
technology in this chapter, we will use a forward chaining production system interpreter written in
Java by Ernest Friedman-Hill of the Sandia National Laboratories that supports most of the
capabilities of the “classic” expert system language OPS5 developed by Charles Forgy at

Copyright 2001 by Mark Watson page 98 of 98 1/20/2002 08:48:15

Carnegie-Mellon University.

The three sample production rules listed at the beginning of this chapter look rather sparse and
abstract. Please remember that production system interpreters manipulate symbols, not real-world
knowledge. The three production rules could have their symbols a, b, c, and d changed to make
the rules more meaningful to human readers:

I_am_hungry => find_food
find_food => cook_food
cook_food => eat_food

This substitution of symbols makes a difference for human readers, but a production system
interpreter does not care. Still the form of these three rules is far too simple to encode interesting
knowledge. We will extend the form of the rules by allowing:

• Variables in both the LHS and RHS terms of production rules
• Multiple LHS and RHS terms in rules
• The ability to perform arithmetic operations in both LHS and RHS terms

The use of variables in rules is crucial since it allows us to properly generalize knowledge encoded
in rules. The use of multiple LHS terms allows us to use compound tests on environmental data.
In an English syntax, if we use a question mark to indicate a variable, rather than a constant, a rule
might look like this:

If
have food ?food_object
?food_object is_frozen
?food_object weight ?weight
have microwave_oven

Then
place ?food_object in microwave_oven
set microwave_oven timer to (compute ?weight * 10)
turn on microwave_oven

Copyright 2001 by Mark Watson page 99 of 99 1/20/2002 08:48:15

This rule is still what I think of as a stimulus-response rule; higher-level control rules might set a
goal of being hungry that would enable this rule to execute. We need to add an additional LHS
term to allow higher-level control rules to set a “prepare food” goal; we can rewrite this rule and
add an additional rule that could execute after the first rule (additional terms and rules are shown
in italic):

If
state equals I_am_hungry
have food ?food_object
?food_object is_frozen
?food_object weight ?weight
have microwave_oven

Then
place ?food_object in microwave_oven
set microwave_oven timer to (compute ?weight * 10)
turn on microwave_oven
set state to (I_am_hungry and food_in_microwave)
set microwave_food to ?food_object

If
state equals food_in_microwave
microwave_timer ?value < 0
microwave_food ?what_food_is_cooking

Then
remove ?what_food_is_cooking from microwave
eat ?what_food_is_cooking

A higher-level control rule could set an environmental variable state to the value I_am_hungry,
which would allow the RHS terms of this rule to execute if the other four LHS terms matched
environmental data. We have assumed that rules match their LHS terms with environmental data.
This environmental data and higher-level control data is stored in working memory. If we use a
weak analogy, production rules are like human long-term memory, and the transient data in

Copyright 2001 by Mark Watson page 100 of 100 1/20/2002 08:48:15

working memory is like human short-term memory. The production rules are stored in
production memory. We will see in the next section how the OPS5/CLIPS language supports
structured working memory that is matched against the LHS terms of rules stored in production
memory.

The examples in this chapter were developed using version 5.1 of Jess, but since my book
examples are Open Source and available on my web site, I will update the examples if necessary
to work with future versions of Jess. If you get the Jess ZIP file from Ernest Friedman-Hill’s web
site (linked from my web site also), UNZIP the file creating a directory Jess51 and copy the
examples in src/expertsystem to the top level Jess51 directory. The example shown previously in
an “English-like format” is converted to a Jess notation and is available in the file food.clp and is
shown below with interpersed comments.

The following statement, deftemplate, is used to define position-independent data structures. In
this case, we are defining a structure have_food that contains named slots name, weight, and
is_frozen:

(deftemplate have_food
(slot name)
(slot weight)
(slot is_frozen (default no)))

Notice that the third slot is_frozen is given a default value of “no”. It is often useful to set default
slot values when a slot usually has a value, with rare exceptions.

The Jess interpreter always attempts to run a rule called startup when the system is reset using
the build in function reset. The startup rule in this example adds to data elements to working
memory:

(defrule startup
=>
(assert (have_food (name spinach) (weight 10)))
(assert (have_food (name peas) (weight 14) (is_frozen yes))))

Copyright 2001 by Mark Watson page 101 of 101 1/20/2002 08:48:15

This rule startup creates two structured working memory elements. Once these working memory
elements (or facts) are created, then, using the Rete algorithm, the Jess runtime system
automatically determines which other rules are eligible to execute. As it happens, the following
rule is made eligible to execute (i.e., it is entered into the conflict set of eligible rules) after the
two initial working memory elements are created by the rule startup:

(defrule thaw-frozen-food "thaw out some food"
?fact <- (have_food (name ?name) (is_frozen yes) (weight ?w))
=>
(retract ?fact)
(assert (have_food (name ?name) (weight ?w) (is_frozen no)))
(printout t "Using the microwave to that out " ?name crlf)
(printout t "Thawing out " ?name " to produce "

?w " ounces of " ?name crlf))

We see several new features in the rule thaw-frozen-food:

• The LHS pattern (only one in this rule, but there could be many) is assigned to a variable
?fact that will reference the specific working memory element that matched the LHS
pattern.

• The first RHS action (retract ?fact) removes from working memory the working memory
element that instantiated this rule firing; note that this capability did not exist in the simple
reasoning system implemented in Chapter 3.

• The second RHS action asserts a new fact into working memory; the variables ?name and
?w are set to the values matched in the first LHS pattern. Setting the slot is_frozen is not
necessary in this case because we are setting it to its default value.

• The third and fourth RHS actions prints out (the “t” indicates print to standard output)
messages to the user. Note that the Jess printout function can also print to an opened file.

The next two lines in the input file reset the system (making the rule startup eligible to execute)
and runs the system until no more rules are eligible to execute:

Copyright 2001 by Mark Watson page 102 of 102 1/20/2002 08:48:15

(reset)
(run)

To run this example, copy the contents of the directory from the directory src/expertsystem to the
top level Jess51 directory, change directory to the top level Jess directory, and then type the
following:

javac jess/*.java
java jess.Main food.clp

The first statement compiles the Jess system; you only need to do this one time. Here is the output
that you will see:

Jess, the Java Expert System Shell
Copyright (C) 1998 E.J. Friedman Hill and the Sandia Corporation
Jess Version 5.1 4/24/2000

Using the microwave to thaw out peas
Thawing out peas to produce 14 ounces of peas

This example is simple and tutorial in nature, but will give the reader sufficient knowledge to read
and understand the examples that come with the Jess distribution. You should pause to
experiment with the Jess system before continuing on with this chapter.

3.2 Implementing a reasoning system with Jess

In this section, we will see how to design and implement a reasoning system using a forward
chaining production system interpreter like CLIPS or Jess. There are two common uses for
reasoning in expert systems:

1. Perform meta-level control of rule firing (e.g., prefer rules that indicate the use of
cheaper resources, prefer rules written by experts over novices, etc.)

Copyright 2001 by Mark Watson page 103 of 103 1/20/2002 08:48:15

2. Implement a planning/reasoning system using forward chaining rules

We will choose option 2 for the example in this section.

The following source listing is in the file src/expertsystem/reasoning.clp. This listing is
interspersed with comments explaining the code:

We define three working memory data templates to solve this problem: the state of a block, an old
state of a block (to avoid executing rules in infinite cycles or loops), and a goal that we are trying
to reach. The template block has three slots: name, on_top_of, and supporting:

(deftemplate block
(slot name)
(slot on_top_of (default table))
(slot supporting (default nothing)))

The template old_block_state has the same three named slots as the template block:

(deftemplate old_block_state
(slot name)
(slot on_top_of (default table))
(slot supporting (default nothing)))

The template goal has two slots: a supporting block name and the block sitting on top of this first
block):

(deftemplate goal
(slot supporting_block)
(slot supported_block))

As with our previous Jess example, the rule startup is eligible to execute after calling the functions
(reset) and (run).

Copyright 2001 by Mark Watson page 104 of 104 1/20/2002 08:48:15

(defrule startup "This is executed when (reset) (run) is
executed"

=>
(assert (goal (supporting_block C) (supported_block A)))
(assert (block (name A) (supporting B)))
(assert (block (name B) (on_top_of A) (supporting C)))
(assert (block (name C) (on_top_of B)))
(assert (block (name D)))
(assert (block (name table) (supporting A)))
(assert (block (name table) (supporting C))))

Figure 3.1 shows the initial block setup and the goal state created by the rule startup.

Figure 3.1 The goal set up in the rule startup is to get block a on top of
block c

The following rule set-block-on attempts to move one block on top of another. There are two
preconditions for this rule to fire:

Copyright 2001 by Mark Watson page 105 of 105 1/20/2002 08:48:15

• Both blocks must not have any other blocks on top of them
• We can not already have cleared the bottom block (this condition is prevent infinite loops)

We see a condition on the matching process in the second LHS element: the matching variable
?block_2 can not equal the matching variable ?block_1. Here, we use the not-equals function
neq; the corresponding equals function is eq.

(defrule set-block-on "move ?block_1 to ?block_2 if both
are clear"

?fact1 <- (block (name ?block_1)
(on_top_of ?on_top_of_1)
(supporting nothing))

?fact2 <- (block (name ?block_2&:(neq ?block_2 ?block_1))
(supporting nothing)
(on_top_of ?on_top_of_2))

?fact3 <- (block (name ?on_top_of_1)
(supporting ?block_1)
(on_top_of ?on_top_of_3))

(not (old_block_state (name ?block_2)
(on_top_of ?on_top_of_2) (supporting ?block_1)))

=>
(retract ?fact1)
(retract ?fact2)
(retract ?fact3)
(assert (block (name ?block_1) (on_top_of ?block_2)

(supporting nothing)))
(assert (block (name ?block_2) (on_top_of ?on_top_of_2)

(supporting ?block_1)))
(assert (old_block_state (name ?block_2)

(supporting nothing) (on_top_of ?on_top_of_2)))
(assert (block (name ?on_top_of_1) (supporting nothing)

(on_top_of ?on_top_of_3)))
(printout t "Moving " ?block_1 " from " ?on_top_of_1

" to " ?block_2 crlf))

Copyright 2001 by Mark Watson page 106 of 106 1/20/2002 08:48:15

The following rule clear-block has two pre-conditions:

• That the block being removed from another block has nothing on top of it
• That the block being moved is not already on the table

(defrule clear-block "remove ?block_1 from ?block_2 if ?block1 is
clear"

?fact1 <- (block (name ?block_1)
(on_top_of ?block_2&:(neq ?block_2 table))
(supporting nothing))

?fact2 <- (block (name ?block_2) (supporting ?block_1)
(on_top_of ?on_top_of_2))

=>
(retract ?fact1)
(retract ?fact2)
(assert (block (name ?block_1)

(on_top_of table)
(supporting nothing)))

(assert (block (name ?block_2) (on_top_of ?on_top_of_2)
(supporting nothing)))

(assert (block (name table) (supporting ?block_1)))
(printout t "Clearing " ?block_1 " from " ?block_2

" on to table" crlf))

The following rule my-halt-rule has a new feature: changing a rule’s default execution priority (or
salience). The default rule salience is zero, but by setting the salience for my-halt-rule to a high
value, we are guaranteed that this rule will immediately execute as soon as its conditions are met:

(defrule my-halt-rule "to stop when the goal is reached"
(declare (salience 100))
(goal (supporting_block ?b1) (supported_block ?b2))
(block (name ?b1) (supporting ?b2))
=>

Copyright 2001 by Mark Watson page 107 of 107 1/20/2002 08:48:15

(printout t "Done: goal is satisfied" crlf)
(halt))

The RHS action function (halt) immediately stops the Jess interpreter.

Note that on any execution cycle, more than one rule may be eligible to execute because all of its
preconditions are satisfied. Choosing which rule to execute is called conflict resolution. The
conflict set is the set of rules that are currently eligible to execute. The default conflict resolution
strategy implements what is effectively a depth first search strategy because rules are assigned a
higher priority if the working memory elements (i.e., facts) that satisfy their preconditions (i.e.,
LHS terms) are newer (i.e., have been more recently added to working memory). The following
statement in the reasoning.clp input file changes the default strategy to a breadth first search:

(set-strategy breadth)

The following four function calls at the bottom of the reasoning.clp input file reset the system, run
the Jess interpreter for 20 cycles (or until the halt function is executed), and then prints out the
facts left in the system after the interpreter has halted:

(reset)
(run 20)
(printout t crlf "Facts in system at the end of the run:" crlf)
(facts)

The following listing shows the output generated from loading the reasoning.clp input file into
the Jess system:

C:\Jess51> java jess.Main reasoning.clp

Jess, the Java Expert System Shell
Copyright (C) 1998 E.J. Friedman Hill and the Sandia Corporation
Jess Version 5.1 4/24/2000

Copyright 2001 by Mark Watson page 108 of 108 1/20/2002 08:48:15

Clearing C from B on to table
Clearing B from A on to table
Moving C from table to D
Clearing C from D on to table
Moving A from table to B
Clearing A from B on to table
Moving C from table to table
Moving B from table to D
Clearing B from D on to table
Moving A from table to C
Done: goal is satisfied

Facts in system at the end of the run:
f-0 (initial-fact)
f-1 (goal (supporting_block C) (supported_block A))
f-15 (old_block_state (name D) (on_top_of table) (supporting
nothing))
f-22 (old_block_state (name B) (on_top_of table) (supporting
nothing))
f-27 (block (name table) (on_top_of table) (supporting C))
f-28 (old_block_state (name table) (on_top_of table)
(supporting nothing))
f-29 (block (name table) (on_top_of table) (supporting
nothing))
f-32 (block (name B) (on_top_of table) (supporting nothing))
f-33 (block (name D) (on_top_of table) (supporting nothing))
f-34 (block (name table) (on_top_of table) (supporting B))
f-35 (block (name A) (on_top_of C) (supporting nothing))
f-36 (block (name C) (on_top_of table) (supporting A))
f-37 (old_block_state (name C) (on_top_of table) (supporting
nothing))
For a total of 13 facts.

If you try writing your own rules, you will probably be surprised that at least initially, the rules to
not do what you expected! There are a few techniques that will help you get started. Pay attention

Copyright 2001 by Mark Watson page 109 of 109 1/20/2002 08:48:15

to Jess error messages! You will probably see both compiler errors and runtime errors. Compiler
errors indicate the line number in the input file where the error occurred and frequently a hint; for
example: “missing)”. Runtime errors will usually indicate which rule was executing when the
error occurred. Another technique for getting your rules to execute properly is to set up small test
cases, and print the contents of working memory using the function (facts) before and after
running the system. Another good technique is to call the function (run 1) with an argument of
one to only run one cycle at a time; you can then examine working memory by calling the (facts)
function.

Copyright 2001 by Mark Watson page 110 of 110 1/20/2002 08:48:15

Chapter 4. Genetic Algorithms

We will see how AI systems can be evolved using genetic algorithms (GA) in this chapter. There
are two schools of thought on building AI systems: encoding knowledge “by hand” using a
knowledge representation language like we did in Chapter 3 or allowing a system to evolve
internal state and behavior while interacting with its environment. The AI programming
techniques of GA is very useful for AI systems that must adapt to changing conditions. You will
probably find GAs to be more practical for your AI programming projects. The examples for this
chapter are in the directory:

• src
• src/ga – genetic algorithm code

GAs are typically used to search very large and possibly very high dimensional search spaces.
Using a GA toolkit, like the one developed in Section 6.1, requires two problem-specific
customizations:

• Characterize the search space by a set of parameters that can be encoded in a chromosome
(more on this later). GAs work with the coding of a parameter set, not the parameters
themselves (Goldberg, 1989).

• Provide a numeric fitness function that allows us to rate the fitness of each chromosome in
a population. We will use these fitness values to determine which chromosomes in the
population are most likely to survive and reproduce using genetic crossover and mutation
operations.

The GA toolkit developed in this Chapter treats genes as a single bit; while you can consider a
gene to be an arbitrary data structure, the approach of using single bit genes and specifying the
number of genes (or bits) in a chromosome is very flexible. A population is a set of
chromosomes. A generation is defined as one reproductive cycle of replacing some elements of
the chromosome population with new chromosomes produced by using a genetic crossover
operation followed by optionally mutating a few chromosomes in the population.

Copyright 2001 by Mark Watson page 111 of 111 1/20/2002 08:48:15

We will start the introduction to GAs by walking through a very simple example, then discuss
some of the advantages of using GAs before implementing the toolkit in Section 6.1. In Section
6.2, we will use this GA toolkit to solve a regression problem. For the remainder of this session,
we will solve this first example problem by writing the customizations for the GA toolkit that we
will discuss in detail in Section 6.1.

For a sample problem, suppose that we want to find the maximum value of the function F with
one independent variable x:

F(x) = sin(x) * sin(0.4 * x) * sin(3 * x)

over the interval [0, 10]. This function is plotted in Figure 4.1. The problem that we want to
solve is finding a good value of X to find the largest possible value of F(x).

Copyright 2001 by Mark Watson page 112 of 112 1/20/2002 08:48:15

Figure 4.1 The test function evaluated over the interval [0.0, 10.0]. The
maximum value of 0.56 occurs at x=3.8. This plot was produced by the file
src/ga/misc/Graph.java.

While this problem can be solved trivially by a brute force search over the range of the
independent variable x, the GA method scales very well to similar problems of a higher
dimensionality; for example, we might have products of sine waves using 20 independent variables
x1, x2, ..x20. In this case, a brute force search would be prohibitively expensive. Still, the one-
dimensional case seen in Figure 4.1 is a good starting point for discussing GAs.

Out first task is to characterize the search space as one or more parameters. In Section 6.2, we
will show how to encode several parameters in a single chromosome, but in this problem, we have
only one parameter, the independent variable x. For this example, we will choose to encode the

Copyright 2001 by Mark Watson page 113 of 113 1/20/2002 08:48:15

parameter x using ten bits (so we have ten 1-bit genes per chromosome). A good starting place is
to write utility method for converting the 10-bit representation to a floating-point number in the
range [0.0, 10.0]:

float geneToFloat(int geneIndex) {
int base = 1;
float x = 0;
for (int j=0; j<numGenes; j++) {

if (getGene(geneIndex, j)) {
x += base;

}
base *= 2;

}
x /= 128.0f; // hard wired for 10-bit chromosomes
return x;

}

Note that we do not need the reverse method! The GA toolkit will create population of 10-bity
chromosomes; in order to evaluate the fitness of each chromosome in a population, we only have
to convert the 10-bit representation to a floating-point number for evaluation using the following
fitness function:

float fitness(float x) {
return (float)(Math.sin(x) * Math.sin(0.4f * x) *

Math.sin(3.0f * x));
}

That is all there is to it! Problem solved! Table 6.1 shows the results of a run, using the GA
toolkit in src/ga. As seen in Table 6.1, for this “easy problem”, the GA quickly settles on a good
answer, very close to the function’s maximum value in the interval 0.0, 10.0].

Table 4.1

Generation number X for best fitness Best fitness value Average fitness value

Copyright 2001 by Mark Watson page 114 of 114 1/20/2002 08:48:15

0 2.67 0.391 -0.038
1 2.67 0.391 0.352
2 2.64 0.417 0.392
7 2.64 0.417 0.416
8 3.64 0.474 0.419
16 3.64 0.474 0.472
20 3.70 0.526 0.470
21 3.73 0.545 0.515

Now that we have seen how easy it is to run GA experiments like solving the problem in Figure
4.1, we will “go behind the scenes” to see how GAs work. After this discussion, implementing the
toolkit in Section 4.1 will be straightforward. A GA framework provides the following behavior:

• Generates an initial random population with a specified number of bits (or genes) per
chromosome and a specified number of chromosomes in the population

• Ability to evaluate each chromosome based on a numeric fitness function
• Ability to create new chromosomes from the most fit chromosomes in the population

using the genetic crossover and mutation operations

Figure 4.2 shows a sample crossover operation for chromosomes with ten bits per chromosome.
Crossover works by choosing two chromosomes and a random gene (or in our case bit) index
where the chromosomes will be split. After splitting each chromosome, the split parts are
switched producing two new chromosomes from the two original chromosomes. Crossover
reproduction will be used by the GA toolkit for creating a new population of chromosomes from
an existing population.

Copyright 2001 by Mark Watson page 115 of 115 1/20/2002 08:48:15

Figure 4.2 Crossover operation

Figure 4.3 shows the operation of the genetic mutation operation on a chromosome with ten
genes (or bits). A random gene (or bit) is chosen and its value is reversed.

Copyright 2001 by Mark Watson page 116 of 116 1/20/2002 08:48:15

Figure 4.3 Mutation operation

4.1 Java classes for Genetic Algorithms

The classes developed in this section are located in the src/ga directory. The GA toolkit is
contained in the Java class Genetic, and the file TestGenetic.java contains a subclass of Genetic
that solves the problem shown in Figure 4.1. The class Genetic is abstract: you must subclass
Genetic and implement the method:

public void calcFitness()

in your derived class; we will see how this is done later in the TestGenetic class. The primary
class data that must be stored and maintained is an array of chromosomes and an associated array
of fitness values; it is this array of fitness values that must be set in the method calcFitness. The
Java class BitSet is used to represent a chromosome; this works well because the BitSet class
stores sets of bits efficiently and has a good API for accessing and modifying the elements of the
set.

There are two class constructors for Genetic:

Copyright 2001 by Mark Watson page 117 of 117 1/20/2002 08:48:15

public Genetic(int num_genes_per_chromosome,
int num_chromosomes)

public Genetic(int num_genes_per_chromosome,
int num_chromosomes,
float crossover_fraction,
float mutation_fraction)

The optional constructor argument crossover_fraction sets the fraction of chromosomes in the
population that considered for the genetic crossover operation. This value could be in the range
[0.0, 1.0], but for practical applications, I usually set it to a value in the interva [0.1, 0.5]. The
optional constructor argument mutation_fraction sets the fraction of chromosomes that undergo
mutation each generation.

The constructors build an array of integers rouletteWheel which is used to weight the most fit
chromosomes in the population for being the parents of crossover operations. When a
chromosome is being chosen, a random integer is selected that is used as an index into the
rouletteWheel array; the values in the array are all in the range of [0, number of genes per
chromosome – 1]. More fit chromosomes are heavily weighted in favor of being chosen as parents
for the crossover operations. The algorithm for the crossover operation is fairly simple; here is the
implementation:

public void doCrossovers() {
int num = (int)(numChromosomes * crossoverFraction);
for (int i=num-1; i>=0; i--) {

int c1 =
(int)(rouletteWheelSize * Math.random() * 0.9999f);

int c2 =
(int)(rouletteWheelSize * Math.random() * 0.9999f);

c1 = rouletteWheel[c1];
c2 = rouletteWheel[c2];
if (c1 != c2) {

int locus = 1 +
(int)((numGenesPerChromosome - 2) * Math.random());

Copyright 2001 by Mark Watson page 118 of 118 1/20/2002 08:48:15

for (int g=0; g<numGenesPerChromosome; g++) {
if (g < locus) {

setGene(i, g, getGene(c1, g));
} else {

setGene(i, g, getGene(c2, g));
}

}
}

}
}

The class variable crossOverFraction is used to calculate the number of chromosomes in the
population will be replaced by the results of crossover reproduction. The array of chromosomes
has been sorted in decreasing order of fitness before this method is called, so the least fit
individuals are at the higher array indices; these individuals will be replaced. Two chromosome
indices c1 and c2 are calculated using a random number generator and the rouletteWheel array.
The index locus is a random value in the range [1, number of bits per chromosome – 2].
Remember that all indexing is zero based. Genes at index less than locus are copied from the
beginning of the chromosome indexed by c1 and genes at index greater than or equal to locus are
replaced by the genes at the end of the chromosome indexed by c2.

The algorithm for mutating a chromosome is simple: randomly choose a gene and flip its value.

Copyright 2001 by Mark Watson page 119 of 119 1/20/2002 08:48:15

Figure 4.4 UML class diagrams for genetic algorithm Java classes

The method sort re-orders both the chromosome array and the associated fitness array in
decreasing order of fitness. The top level control method in class Genetic is evolve. This method
is called once per generation and performs the following actions:

• Calculates the fitness of the chromosomes in the population by calling the abstract method
calcFitness

• Sort the chromosomes in decreasing order of fitness by calling method sort
• Perform genetic crossover reproductions by calling method doCrossOvers
• Perform genetic mutations by calling method doMutations

We will now return to the simple problem seen in Figure 4.1. We need to write two classes, which

Copyright 2001 by Mark Watson page 120 of 120 1/20/2002 08:48:15

I call:

• MyGenetic – a subclass of Genetic that provides a utility method to convert a gene to a
floating point value and defines the method calcFitness

• TestGenetic – a main program that creates an instance of class MyGenetic and calls the
evolve and print methods for this instance of MyGenetic in a loop over generations

Note that the class MyGenetic is defined as an inner class in the file TestGenetic.java. The only
interesting methods that we need to define are MyGenetic.calcFitness and the utility method that
it calls MyGenetic.geneToFloat. We already saw the implementation of these methods in the
introduction to this chapter.

4.2 Example System for solving polynomial regression problems

We will look at a more interesting problem in this section: solving a polynomial regression
problem. We will try to fit the following function in both this section and in Chapter 7 using
genetic programming techniques:

F(X) = X*X*X*X + X*X*X + X*X + X

We will attempt to fit the following fourth degree polynomial function with 5 constant coefficients
A,B,C,D,E by searching for good vales for A,B,C,D, and E:

F(X) = A*X*X*X*X + B*X*X*X + C*X*X + D*X + E

Clearly, we want:

A = B = C = D = 1.0
E = 0.0

In this problem, the chromosomes must encode the values of the 5 constant coefficients. We

Copyright 2001 by Mark Watson page 121 of 121 1/20/2002 08:48:15

implement this example using the classes (source files are in the directory src/ga):

• RegressionTest – contains a main program that creates an instance of the class
RegressionGenetic and runs several generations

• RegressionGenetic – derived from the class Genetic

The class RegressionGenetic is defined as a utility class in the file RegressionTest.java. The
method RegressionGenetic.geneToFloat is used to extract any of the five coefficients from a
specified chromosome:

float geneToFloat(int chromosomeIndex, int numberIndex) {
int base = 1;
float x = 0;
for (int j=0; j<bitsPerNumber; j++) {

if (getGene(chromosomeIndex,
j + numberIndex * bitsPerNumber))

{
x += base;

}
base *= 2;

}
x /= normalization;
x -= 5.0f;
if (gmin > x) gmin = x;
if (gmax < x) gmax = x;
return x;

}

The class RegressionGenetic supports any number of bits (or genes) per coefficient; the class
constructor terminates with an error if the specified number of bits (or genes) per chromosome is
not evenly divisible by 5. The fitness function calcFitness evaluates each chromosome by
extracting the 5 coefficient values for each chromosome and then calling the auxiliary method
calcFitnessForCoefficients:

Copyright 2001 by Mark Watson page 122 of 122 1/20/2002 08:48:15

public void calcFitness() {
for (int i=0; i<numChromosomes; i++) {

for (int j=0; j<5; j++) {
coefficients[j] = geneToFloat(i, j);

}
fitness[i] = calcFitnessForCoefficients(coefficients);

}
}

The definition of calcFitnessForCoefficients is:

private float calcFitnessForCoefficients(float [] coef) {
float ret = 0.0f;
// evaluate function error over a range of values of x:
for (float x=0.0f; x<=10.0f; x+= 0.05) {

// true value of regression function:
float Ftrue = x*x*x*x + x*x*x + x*x + x;
// value of generated function at x:
float F = coef[0] * x*x*x*x +

coef[1] * x*x*x +
coef[2] * x*x +
coef[3] * x +
coef[4];

ret += (F - Ftrue) * (F - Ftrue);
}
return 25000.0f - ret;

}

Note that the scaling (and any offsets) of fitness values is immaterial as long as the ranking
preserves the order best chromosomes having higher fitness values; the constant 25000.0f in this
method was merely chosen to place fitness values in a reasonable numeric range for viewing.

Table 4.2 shows the results of an example run where we allow just four bits per encoded

Copyright 2001 by Mark Watson page 123 of 123 1/20/2002 08:48:15

coefficient. At this “coarse resolution”, allowed values for the independent variable are (-5, -4.5, -
4, -3.4, -3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5), sixteen possible values in all. The
constructor call for this experiment uses 20 genes per chromosome (4 bits per coefficient), a
population size of 300, a 0.98 crossover fraction, and 0.05 mutation rate; here is the constructor
call:

g = new RegressionGenetic(20, 300, 0.98f, 0.05f);

Table 4.2 – Best of generation evolved coefficients (best fit is all equal to
1.0, except E=0)

Generation A B C D E
1 1.5 1.5 2.0 -1.5 -0.5
2 1.0 0.5 2.5 2.5 -3.0
3 1.0 1.0 2.0 -4.5 -2.0
4 1.0 1.0 1.0 -1.5 -0.5
6 1.0 1.0 1.0 1.0 1.5
8 1.0 1.0 1.0 1.0 0.0

Even though this problem is of moderate dimensionality (with 5 dimensions), the coarseness of
the number representations combined with the “lucky accident” of the existence of the two
necessary coefficient values of 0.0 and 1.0, makes this a fairly uninteresting experiment. We have
already found a perfect chromosome in the population by generation 7 using a fairly small
population of just 300 chromosomes; there is a tradeoff in population size versus the number of
generation necessary to find a fit individual (i.e., a chromosome that encodes a solution to the
problem that we are trying to solve).

In Table 4.3, instead of just using 4 bits to encode each coefficient, we will use 6 bits (so we get
64 possible values instead of 16). This is a fair test of the GA toolkit. For this evolutionary
experiment, we use a much larger population (5000 chromosomes), and find a perfect
chromosome in the population by generation 5:

Copyright 2001 by Mark Watson page 124 of 124 1/20/2002 08:48:15

Table 4.3 Best of generation evolved coefficients (best fit is all equal to
1.0, except E=0)

Generation A B C D E
1 -0.875 2.2125 -0.75 -5.0 -2.125
2 1.0 2.0 1.25 -3.875 -3.875
3 1.0 1.0 1.125 0.125 -3.125
4 1.0 1.0 1.125 0.125 -0.875
5 1.0 1.0 1.0 1. 0.0

This second example shows that as the complexity of the data that is represented in a
chromosome increases, that it is efficient to greatly increase the population size in order to find a
fit individual in a small number of generations.

Copyright 2001 by Mark Watson page 125 of 125 1/20/2002 08:48:15

Chapter 5. Neural networks

I believe that the techniques for using neural networks efficiently solve many problems that are
intractable or difficult using other AI programming techniques. Although most of this book is
intended to provide practical advice (with some theoretical background) on using AI
programming techniques, I can not imagine being interested in practical AI programming without
also wanting to think about the philosophy and mechanics of how the human mind works. I hope
that my readers share this interest. The examples for this chapter are in the directory:

• src
• src/neural – Hopfield and Back Propagation neural network code

In this book, we have examined techniques for focused problem solving, concentrating on
performing one task at a time. However, the physical structure and dynamics of the human brain
is inherently parallel and distributed [Rumelhart, McClelland, etc. 1986]. We are experts at doing
many things at once. For example, I simultaneously can walk, talk with my wife, keep our puppy
out of cactus, and enjoy the scenery behind our house in Sedona Arizona. AI software systems
struggle to perform even narrowly defined tasks well, so how is it that we are able to
simultaneously perform several complex tasks? There is no clear and absolute answer to this
question at this time, but certainly the distributed neural architecture of our brains is a requirement
for our abilities.

Also interesting is the distinction between instinctual behavior and learned behavior. Our
knowledge of GAs from Chapters 4 provides a clue to how the brains of especially lower order
animals can be hardwired to provide efficient instinctual behavior under the pressures of
evolutionary forces (i.e., likely survival of more fit individuals). While we will study supervised
learning techniques in this chapter, it is possible to evolve both structure and attributes of neural
networks using GA techniques [Watson, 1995], and some neural network models like ART
autonomously learn to classify learning examples without intervention.

Copyright 2001 by Mark Watson page 126 of 126 1/20/2002 08:48:15

We will start this chapter by discussing human neuron cells and what features of real neurons that
we will model. Unfortunately, we do not yet understand all of the biochemical processes that
occur in neurons, but there are fairly accurate models available (web search “neuron
biochemical”). Neurons are surrounded by thin hair like structures called dendrites, which serve to
accept activation from other neurons. Neurons sum up activation from their dendrites and each
neuron has a threshold value; if the activation summed over all incoming dendrites exceeds this
threshold, then the neuron fires, spreading its activation to other neurons. Dendrites are very
localized round a neuron. Output from a neuron is carried by an axon, which is thicker than
dendrites and potentially much longer than dendrites in order to affect remote neurons. Figure 5.1
shows the physical structure of a neuron; in general, the neuron’s axon would be much longer
than is seen in Figure 5.1. The axon terminal buttons transfer activation to the dendrites of
neurons that are close to the individual button. An individual neuron is connected to up to ten
thousand other neurons in this way.

Figure 5.1 Physical structure of a neuron

The activation absorbed through dendrites is summed together, but the firing of a neuron only
occurs when a threshold is passed.

5.1 Hopfield neural networks

Hopfield neural networks implement associative (or content addressable) memory. A Hopfield
network is trained using a set of patterns. After training, the network can be shown a pattern

Copyright 2001 by Mark Watson page 127 of 127 1/20/2002 08:48:15

similar to one of the training inputs and it will hopefully associate the “noisy” pattern with the
correct input pattern. Hopfield networks are very different that back propagation networks
because the training data only contains input examples. Internally, the operation of Hopfield
neural networks is very different that back propagation networks that we will see later in this
chapter. We use Hopfield neural networks to introduce the subject of neural nets because they are
very easy to simulate with a program, and they can also be very useful in practical applications.

The inputs to Hopfield networks can be any dimensionality. Often, Hopfield networks are shown
as having a two-dimensional input field and are demonstrated recognizing characters, pictures of
faces, etc. However, we will loose no generality by implementing a Hopfield neural network
toolkit with one-dimensional inputs because a two-dimensional image can be “liberalized” into an
equivalent one-dimensional array.

How do Hopfield networks work? A simple analogy will help. The trained connection weights in
a neural network represent a high dimensional space. This space is folded and convoluted with
local minima representing areas around training input patterns. For a moment, visualize this very
high dimensional space as just being the three dimensional space inside a room. Now, the floor of
this room is a convoluted and curved surface. If you pick up a basketball and bounce it around the
room, it will settle at a low point in this curved and convoluted floor. Now, consider that the
space of input values is a two dimensional grid a foot above the floor. For any new input, that is
equivalent to a point defined in horizontal coordinates; if we drop our basketball from a position
above an input grid point, the basketball will tend to roll down hill into local gravitational minima.
Now, the shape of the curved and convoluted floor is a calculated function of a set of training
input vectors. After the “floor has been trained” with a set of input vectors, then the operation of
dropping the basketball from an input grid point is equivalent to mapping a new input into the
training example that is closest to this new input using a neural network.

A common technique in training and using neural networks is to add noise to training data and
weights. In the basketball analogy, this is equivalent to “shaking the room” so that the basketball
finds a good minima to settle into, and not a non-optimal local minima. We use this technique
later when implementing back propagation networks. The weights of back propagation networks
are also best visualized as defining a very high dimensional space with a manifold that is very

Copyright 2001 by Mark Watson page 128 of 128 1/20/2002 08:48:15

convoluted with areas of local minima defined centered near coordinates defined by an input
vector.

5.2 Java classes for Hopfield neural networks

The Hopfield neural network model is defined in the file src/neural/Hopfield.java. Since this file
only contains about 65 lines of code, we can review both the code and the algorithms for storing
and recall of patterns at the same time. In a Hopfield neural network simulation, every neuron is
connected to every other neuron.

Consider a pair of neurons indexed by i and j. We can define energy between the associations of
these two neurons as:

energy[i,j] = - weight[i,j] * activation[i] * activation[j]

In the Hopfield neural network simulator, we store activations (i.e., the input values) as floating
point numbers that get clamped in value to –1 (for off) or +1 (for on). In the energy equation, we
consider an activation that is not clamped to a value of one to be zero. This energy is analogous
to “gravitational energy potential” in the basketball analogy. For a new input, we are looking for a
low energy point near the new input vector. The total energy is a sum of the above equation over
all (i,j).

The class constructor allocates storage for input values, temporary storage, and a two dimensional
array to store weights:

public Hopfield(int numInputs) {
this.numInputs = numInputs;
weights = new float[numInputs][numInputs];
inputCells = new float[numInputs];
tempStorage = new float[numInputs];

Copyright 2001 by Mark Watson page 129 of 129 1/20/2002 08:48:15

}

Remember that this model is general purpose: multi-dimensional inputs can be converted to an
equivalent one-dimensional array. The method addTrainingData is used to store another input
data array for later training. All input values get clamped to an “off” or “on” value by the utility
method adjustInput. The utility method truncate truncates floating-point values to an integer
value. The utility method deltaEnergy has one argument: the index of the input vector. The class
variable tempStorage is set during training to be the sum of a row of trained weights. So, the
method deltaEnergy returns a measure of the energy difference between the input vector in the
current input cells and the training input examples:

private float deltaEnergy(int index) {
float temp = 0.0f;
for (int j=0; j<numInputs; j++) {

temp += weights[index][j] * inputCells[j];
}
return 2.0f * temp - tempStorage[index];

}

The method train is used to set the two dimensional weight array and the one dimensional
tempStorage array in which each element is the sum of the corresponding row in the two
dimensional weight array:

public void train() {
for (int j=1; j<numInputs; j++) {

for (int i=0; i<j; i++) {
for (int n=0; n<trainingData.size(); n++) {

float [] data = (float [])trainingData.elementAt(n);
float temp1 =

adjustInput(data[i]) * adjustInput(data[j]);
float temp = truncate(temp1 + weights[j][i]);
weights[i][j] = weights[j][i] = temp;

}
}

Copyright 2001 by Mark Watson page 130 of 130 1/20/2002 08:48:15

}
for (int i=0; i<numInputs; i++) {

tempStorage[i] = 0.0f;
for (int j=0; j<i; j++) {

tempStorage[i] += weights[i][j];
}

}
}

Once the arrays weight and tempStorage are defined, it is simple to recall an original input
pattern from a similar test pattern:

public float [] recall(float [] pattern, int numIterations) {
for (int i=0; i<numInputs; i++) inputCells[i] = pattern[i];
for (int ii = 0; ii<numIterations; ii++) {

for (int i=0; i<numInputs; i++) {
if (deltaEnergy(i) > 0.0f) {

inputCells[i] = 1.0f;
} else {

inputCells[i] = 0.0f;
}

}
}
return inputCells;

}

Figure 5.2 shows the UML class diagram for both the Hopfield class and a text based test
program.

Copyright 2001 by Mark Watson page 131 of 131 1/20/2002 08:48:15

Figure 5.2 UML class diagram for the Hopfield class and the test class
Test_Hopfield

5.3 Testing the Hopfield neural network example class

The test program for the Hopfield neural network class is Test_Hopfield. This test program
defined three test input patterns, each with ten values:

static float [] data [] = {
{ 1, 1, 1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, 1, 1, 1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, 1, 1, 1}

};

The following code fragment shows how to create a new instance of the Hopfield class and train it
to recognize these three test input patterns:

test = new Hopfield(10);

Copyright 2001 by Mark Watson page 132 of 132 1/20/2002 08:48:15

test.addTrainingData(data[0]);
test.addTrainingData(data[1]);
test.addTrainingData(data[2]);
test.train();

The static helper method is used to slightly scramble an input pattern, then test the training
Hopfield neural network to see if the original pattern is re-created:

helper(test, "pattern 0", data[0]);
helper(test, "pattern 1", data[1]);
helper(test, "pattern 2", data[2]);

Here is the implementation of the helper method (the called method pp simply formats a floating
point number for printing by clamping it to zero or one):

private static void helper(Hopfield test, String s,
float [] test_data) {

float [] dd = new float[10];
for (int i=0; i<10; i++) {

dd[i] = test_data[i];
}
int index = (int)(9.0f * (float)Math.random());
if (dd[index] < 0.0f) dd[index] = 1.0f;
else dd[index] = -1.0f;
float [] rr = test.recall(dd, 5);
System.out.println(s);
for (int i=0; i<10; i++) System.out.print(pp(rr[i]) + " ");
System.out.println();

}

Listing 5.1 shows how to run the program, and lists the example output.

Listing 5.1

Copyright 2001 by Mark Watson page 133 of 133 1/20/2002 08:48:15

java Test_Hopfield
pattern 0
1 1 1 0 0 0 0 0 0 0
pattern 1
0 0 0 1 1 1 0 0 0 0
pattern 2
0 0 0 0 0 0 0 1 1 1

In Listing 5.1, we see that the three sample training patterns defined in Test_Hopfield.java are
re-created after scrambling the data by changing one randomly chosen value to its opposite value.

5.5 Backpropagation neural networks

The next neural network model that we will use is called back propagation, also known as back-
prop and delta rule learning. In this model, neurons are organized into data structures that we call
layers. Figure 5.A shows a simple neural network with two layers; this network is shown in two
different views: just the neurons organized as two one-dimensional arrays, and as two one-
dimensional arrays with the connections between the neurons. In our model, there is a
connection between two neurons that is characterized by a single floating-point number that we
will call the connection’s weight. A weight W[i,j] connects input neuron i to output neuron j. In
the back propagation model, we always assume that a neuron is connected to every neuron in the
previous layer. In Figure 5.3, we only have two neuron layers, one for the input neurons and one
for the output neurons.

Copyright 2001 by Mark Watson page 134 of 134 1/20/2002 08:48:15

Figure 5.3 Two views of a two layer neural network; the view on the right also
shows the connection weights between the input and output layers.

To calculate the activation of the first output neuron O1, we evaluate the sum of the products of
the input neurons times the appropriate weight values; this sum is input to a Sigmoid activation
function (see Figure 8.4) and the result is the new activation value for O1. Here is the formula for
the simple network in Figure 8.3:

O1 = Sigmoid (I1 * W[1,1] + I2 * W[2,1])
O2 = Sigmoid (I2 * W[1,2] + I2 * W[2,2])

Figure 5.4 shows a plot of the Sigmoid function and the derivative of the sigmoid function
(SigmoidP). We will use the derivative of the Sigmoid function when training a neural networks
(with at least one hidden neuron layer) with classified data examples.

Copyright 2001 by Mark Watson page 135 of 135 1/20/2002 08:48:15

Figure 5.4 Sigmoid and derivative of the Sigmoid (SigmoidP) functions. This
plot was produced by the file src/neural/misc/Graph.java

A neural network like the one seen in Figure 5.3 is trained by using a set of training data. For
back propagation networks, training data consists of matched sets of input and output values. We
want to train a network to not only produce the same outputs for training data inputs as appear in
the training data, but also to generalize its pattern matching ability based on the training data. A
key here is to balance the size of the network against how much information it must hold. A
common mistake when using back propagation networks is to use too large of a network (more
on what this means later); a network that contains too many neurons will simply memorize the
training examples, including any noise in the training data. However, if we use a smaller number
of neurons, with a very large number of training data examples, then we force the network to
generalize, ignoring noise in the training data.

How do we train a back propagation neural network given that we have a good training data set?
The algorithm is quite easy; we will now walk through the simple case of a two layer network like
the one in Figure 5.3, and later in Section 5.6 we will review the algorithm in more detail when
we have either one or two hidden neuron layers between the input and output layers.

Copyright 2001 by Mark Watson page 136 of 136 1/20/2002 08:48:15

In order to train the network in Figure 5.3, we repeat the following learning cycle several times:

1. Zero out temporary arrays for holding the error at each neuron. The error, starting at the
output layer, is the difference between the output value for a specific output layer neuron
and the calculated value from setting the input layer neuron’s activation values to the input
values in the current training example, and letting activation spread through the network.

2. Update the weight W[i,j] (where i is the index of an input neuron, and j is the index of an
output neuron) using the formula W[i,j] += learning_rate * output_error[j]*I[i], where
the learning_rate is a tunable parameter, output_error[j] was calculated in step 1, and
I[i] is the activation of input neuron at index i.

This process is continued to either a maximum number of learning cycles or until the calculated
output errors get very small. We will see later that the algorithm is similar, but slightly more
complicated, when we have hidden neuron layers; the difference is that we will “back propagate”
output errors to the hidden layers in order to estimate errors for hidden neurons; more on this
later. The type of neural network is two simple to solve very many interesting problems, and in
practical applications we almost always use either one additional hidden neuron layers or two
additional hidden neuron layers. Figure 5.5 shows the types of problems that can be solved by
zero hidden layer, one hidden layer, and two hidden layer networks.

Copyright 2001 by Mark Watson page 137 of 137 1/20/2002 08:48:15

Figure 5.5 Capabilities of zero, one, and two hidden neuron layer neural
networks. The grayed areas depict one of two possible output values based on
two input neuron activation values. Note that this is a two dimensional case
for visualization purposes; if a network had ten input neurons instead of two,
then these plots would have to be ten dimensional instead of two dimensional.

5.6 A Java class library and examples for using back propagation neural
networks

The source directory src/neural contains example programs for both back propagation neural
networks and Hopfield neural networks, which we saw at the beginning of this chapter. The
relevant files for the back propagation examples are:

• Neural_1H.java – contains a class for simulating a neural network with one hidden neuron
layer

• Test_1H.java – a text based test program for the class Neural_1H
• GUITest_1H.java – a GUI based test program for the class Neural_1H
• Neural_2H.java – contains a class for simulating a neural network with two hidden neuron

layers

Copyright 2001 by Mark Watson page 138 of 138 1/20/2002 08:48:15

• Test_2H.java – a text based test program for the class Neural_2H
• GUITest_2H.java – a GUI based test program for the class Neural_2H
• Plot1DPanel – a Java JFC graphics panel for the values of a one dimensional array of

floating point values
• Plot2DPanel – a Java JFC graphics panel for the values of a two dimensional array of

floating point values

The four GUI files are for demonstration purposes only, and we will not discuss the code for
these classes; if you are interested in the demo graphics code and do not know JFC Java
programming, there are a few good JFC tutorials at the web site java.sun.com. Figure 5.6 shows
the UML class diagrams for all of the back propagation classes and the text based test programs,
but we will only discuss in depth the classes Neural_1H and Neural_2H in this text, while
quickly reviewing the code in the text based test programs as examples for setting up neural
network problems.

Copyright 2001 by Mark Watson page 139 of 139 1/20/2002 08:48:15

Figure 5.6 UML class diagrams for the neural network examples for one hidden

Copyright 2001 by Mark Watson page 140 of 140 1/20/2002 08:48:15

layer (classes ending in _1H) and two hidden layers (classes ending in _2H)

The class Neural_1H contains the following methods:

• Neural_1H – class constructor requires three arguments: the number of neurons in the
input, hidden, an output layers. Storage is allocated for neuron activations, neuron errors
for the hidden and output layers, and weights. The method randomizeWeights is called to
initialize the weight values to random floating point values in the range [-0.05, 0.05].

• AddTrainingExample – adds a single training exemplar to the current training data set
• Factory – a static function that creates an instance of the Neural_1H class from a

serialized file. This method is useful for quickly loading a neural network that has already
been trained into an application program.

• save – saves the neural network to a serialized data file that can be efficiently reloaded
using the static Factory method

• randomizeWeights – sets the weights to random values in the range [-0.5, 0.5]
• recall – accepts an array of floating point values that are used to set the activation values

of the input layer neurons. The utility method forwardPass is used to propagate activation
values through the network using the current weight values; this results in a new activation
pattern on the output layer neurons.

• forwardPass – a utility method that is used to propagate activation values from the input
neurons, to the hidden layer neurons, and finally to the output layer neurons

• train – two methods for training one cycle. A cycle is defined as showing the network the
training examples one time, and adjusting the weights in the network based on errors at
each neuron.

• sigmoid – the Sigmoid function seen in Figure 5.4
• sigmoidP – the derivative of the Sigmoid function seen in Figure 5.4

The code in the class Neural_1H is all fairly simple; we will look in detail at only the methods
forwardPass and train. The following code fragment are from the definition of forwardPass.

This code uses the input to hidden layer weights to calculate the activation values of the hidden

Copyright 2001 by Mark Watson page 141 of 141 1/20/2002 08:48:15

layer neurons:

for (h=0; h<numHidden; h++) {
hidden[h] = 0.0f;

}
for (i=0; i<numInputs; i++) {

for (h=0; h<numHidden; h++) {
hidden[h] +=

inputs[i] * W1[i][h];
}

}

Similar code calculates the output layer neuron’s activation values:

for (o=0; o<numOutputs; o++)
outputs[o] = 0.0f;

for (h=0; h<numHidden; h++) {
for (o=0; o<numOutputs; o++) {

outputs[o] +=
sigmoid(hidden[h]) * W2[h][o];

}
}
for (o=0; o<numOutputs; o++)

outputs[o] = sigmoid(outputs[o]);

Here, we apply the Sigmoid function (seen in Figure 5.4) to the output activation values.

The method train(Vector v_ins, Vector v_outs) is used to make one training cycle. The first
thing to be done is to zero out the error array for the hidden and output layers:

for (h=0; h<numHidden; h++)
hidden_errors[h] = 0.0f;

for (o=0; o<numOutputs; o++)
output_errors[o] = 0.0f;

Copyright 2001 by Mark Watson page 142 of 142 1/20/2002 08:48:15

Next, we copy the input and output values to local arrays for faster data access:

for (i=0; i<numInputs; i++) {
inputs[i] =

((float [])v_ins.elementAt(current_example))[i];
}
float [] outs =

(float [])v_outs.elementAt(current_example);

We use the utility method forwardPass to spread the new input activtions through the neural
network:

forwardPass();

Then we calculate adjusted output errors by comparing the output neuron’s spreading activation
with the values in this training data example:

for (o=0; o<numOutputs; o++) {
output_errors[o] =

(outs[o] - outputs[o]) * sigmoidP(outputs[o]);
}

It is a little complicated to approximate the hidden layer neurons we need to backwards propagate
the output neuron’s errors, scaling this by the relative connection weights between the hidden
layer and output layer neurons:

for (h=0; h<numHidden; h++) {
hidden_errors[h] = 0.0f;
for (o=0; o<numOutputs; o++) {

hidden_errors[h] +=
output_errors[o]*W2[h][o];

}
}

Copyright 2001 by Mark Watson page 143 of 143 1/20/2002 08:48:15

for (h=0; h<numHidden; h++) {
hidden_errors[h] =

hidden_errors[h]*sigmoidP(hidden[h]);
}

Once we have the hidden layer and output layer neuron errors, it is easy to update the weights:

for (o=0; o<numOutputs; o++) {
for (h=0; h<numHidden; h++) {

W2[h][o] +=
0.5 * output_errors[o] * hidden[h];

}
}
// update the input to hidden weights:
for (h=0; h<numHidden; h++) {

for (i=0; i<numInputs; i++) {
W1[i][h] +=

0.5 * hidden_errors[h] * inputs[i];
}

}
for (o=0; o<numOutputs; o++) {

for (h=0; h<numHidden; h++) {
W2[h][o] +=

0.5 * output_errors[o] * hidden[h];
}

}
// update the input to hidden weights:
for (h=0; h<numHidden; h++) {

for (i=0; i<numInputs; i++) {
W1[i][h] +=

0.5 * hidden_errors[h] * inputs[i];
}

}

The class Neural_1H is fairly simple, but you are likely to find it very useful for both training

Copyright 2001 by Mark Watson page 144 of 144 1/20/2002 08:48:15

three layer (i.e., one hidden layer) neural networks and for embedding them in applications. The
file Test_Neural_1H.java is a text based test program that demonstrates how to define training
data, train a neural network, and for using the recall method for testing. First, we statically define
training and separate testing data:

static float [] in1 = { -0.4f, -0.4f, +0.4f };
static float [] in2 = { -0.4f, +0.4f, -0.4f };
static float [] in3 = { +0.4f, -0.4f, -0.4f };

static float [] out1= { +0.4f, -0.4f, -0.4f};
static float [] out2= { -0.4f, -0.4f, +0.4f};
static float [] out3= { -0.4f, +0.4f, -0.4f};

static float [] test1 = { -0.2f, -0.45f, +0.35f };
static float [] test2 = { -0.33f, +0.41f, -0.38f };
static float [] test3 = { +0.33f, -0.41f, -0.23f };

The following code fragment creates a new neural network object, trains it, and tests it:

Neural_1H nn = new Neural_1H(3, 3, 3);
nn.addTrainingExample(in1, out1);
nn.addTrainingExample(in2, out2);
nn.addTrainingExample(in3, out3);
for (int i=0; i<302; i++) {

float error = nn.train();
if ((i + 19) % 20 == 0)

System.out.println("cycle " + i + " error is " +
error);

}
test_recall(nn, test1);
test_recall(nn, test2);
test_recall(nn, test3);

The file Test_Neural_1H.java also contains some demo code for saving a trained neural network

Copyright 2001 by Mark Watson page 145 of 145 1/20/2002 08:48:15

to a serialized data file, then reloading it using the static Factory method.

The file GUITest_Neural_1H.java is similar to Test_Neural_1H.java except that it also
provides a simple GUI for visualizing the network dynamics during training. See Figure 5.7 to see
this GUI test program running. In Figure 5.7, there are only three neurons in each of the input,
hidden, and output layers; these three layers appear on the GUI test program as thin horizontal
displays that were created using the Plot1Dpanel class. The input to hidden weights, and the
hidden to output weights are shown as a two dimensional grid that were created using the
Plot2Dpanel class. In all cases, dark values indicate higher activation and weight values and
lighter values indicate smaller activations and weights.

Figure 5.7 A one hidden layer back propagation neural network using the GUI
test program GUITest_Neural_1H.java

Copyright 2001 by Mark Watson page 146 of 146 1/20/2002 08:48:15

Although back propagation networks with two hidden layers are more capable (see Figure 5.???)
than networks with only one hidden layer, I recommend always trying a one hidden layer network
first for your applications. Two hidden later networks generally take a lot longer to train and
require slightly more execution time during recall.

For cases where a two hidden layer network is required, use the class Neural_2H instead of
Neural_1H. There are only two changes required to use Neural_2H. You must add an additional
constructor argument for the number of neurons in the second hidden layer and you will have to
run many more training cycles. The class Neural_2H has associated test programs
Test_Neural_2H.java and GUITest_Neural_2H.java.

The only new code in Neural_2H is an extra loops in forwardPass for zeroing out the second
hidden layer error array and handling the additional hidden layer. There is also some additional
code for back propagating errors to the new hidden layer in the method train. The interested
reader can read the code in Neural_2H.java. Figure 5.8 shows the GUI test program
GUITest_Neural_2H running.

Copyright 2001 by Mark Watson page 147 of 147 1/20/2002 08:48:15

Figure 5.8 A two hidden layer back propagation neural network

5.7 Notes on using back propagation neural networks

Effectively using back propagation neural networks in applications is somewhat of an acquired
art. The following ad hoc notes are derived from my experience of using neural networks over the
last 14 years:

Get as much training data as possible: an effective neural network has the ability to generalize

Copyright 2001 by Mark Watson page 148 of 148 1/20/2002 08:48:15

from training data, usually in the sense of ignoring noise and spurious training examples. For this
to occur, you might need thousands of training examples, depending on the complexity of the
problem. Also, some training data can be set aside (i.e., not used for training) and saved for
testing the network.

For very large training data sets, try using only 10% of the data initially for training. After the
output errors are small, add in more training data sets; repeat this process until training on the
entire training data set produces small errors.

Do not use too many hidden layer neurons: if there are too many hidden layer neurons, then the
network will not learn to generalize, rather, it will just remember all of the training data, including
noise and bad training examples. Start with a very small number of hidden neurons, and see if the
training data set can be learned with very small output errors; if necessary, slowly increase the
number of hidden neurons, and repeat the training process.

Copyright 2001 by Mark Watson page 149 of 149 1/20/2002 08:48:15

6. Machine Learning using Weka

Note that I reused the material in this chapter of my free web book in my recent Java J2EE
tchnologies book (“Sun ONE Servcies”, M&T Press, 2001) where I cover Weka and this example
with additional material. The example files for this chapter are in the directory:

• src
• src/expertsystem
• src/expertsystem/weka

6.1 Using machine learning to induce a set of production rules

While the topic of machine learning is not covered directly in this book (see [Witten and Frank,
1999] for a good introduction to machine learning), we will use the Weka machine learning
software package described in [Witten and Frank, 1999] as a “black box” for generating rules for
expert systems. Weka is available under a GPL license on the web at
http://www.cs.waikato.ac.nz/ml/weka. The techniques of machine learning have many practical
applications; one example is shown in this section.

Weka supports several popular machine-learning techniques for automatically calculating
classification systems. Some of the learning algorithms supported by Weka are listed here (see
[Witten and Frank, 1999, chapter 8] for a complete list):

• Naïve Bayes – uses Bayes’s rule for probability of a hypothesis given evidence for the
hypothesis

• Instance-based learner – store all training examples and use the closest training example to
classify a new data item

• C4.5 – a learning scheme by J Ross Quinlan that calculates decision trees from training
data. It is also possible to induce rules from training data that are equivalent to decision
trees for the same training data

• Linear regression – uses training data with numeric attributes. The learned model uses
linear combinations of attribute values for classification.

Copyright 2001 by Mark Watson page 150 of 150 1/20/2002 08:48:15

Weka uses training data files in the ARFF format. This format specifies what attributes are
allowed for a specified relation as well as the data type of each attribute (i.e., character string or
numeric value). We will specify a test ARFF file later in the next section; the format is simple
enough to be self-explanatory.

Our example will use Quinlan’s C4.5 learning algorithm, with a special Weka option to output
rules instead of a decision tree. We will list both the C4.5 generated rules later in a Section 6.3
after we discuss the sample problem.

One of the most practical aspects of machine learning is that it helps us to recognize patterns in
data. The example seen in the next section shows how a learning system like Weka can detect
patterns in data that we can often exploit by writing rules that take advantage of patterns detected
by automated learning systems. Learning systems like C4.5 produce decision trees that can be
easily implemented in Java or produces equivalent rule sets that can be easily translated into rule
languages like CLIPS/Jess.

6.2 A sample learning problem

We will use as training data a small set of stock market buy/sell/hold suggestions. Please note that
this will be a simple demonstration system and is not recommended for use in stock trading! We
start using Weka for machine learning by selecting a learning mode (C4.5 here), designing a
relation to represent the problem at hand, prepare training data, running Weka, and then
interpreting/using the results.

The first time that I set up this example system, I used a relation name stock with the following
attributes (all numeric, except for the last attribute):

• last_trade – this is the current stock price
• percent_change_since_open – the percentage difference between the current price and the

opening price today

Copyright 2001 by Mark Watson page 151 of 151 1/20/2002 08:48:15

• day_low – the lowest price so far today
• day_high – the highest price so far today
• action – legal values: buy, sell, or hold

The results of the trained system were bad because rules were defined for testing for the absolute
value of a stock based on specific stock pries in the training data. As a result of this experiment, I
decided to make all numeric attributes relative to the opening stock price. I ended up using the
following attributes:

• percent_change_since_open – the percentage difference between the current price and the
opening price today

• percent_change_from_day_low – the lowest price so far today
• percent_change_from_day_high – the highest price so far today
• action – legal values: buy, sell, or hold

There are many other reasonable attributes that we might use, but these five attributes are
sufficient for a demo program. We could have included the stock ticker name (e.g., “MSFT” for
Microsoft, “SUNW” for Sun Microsystems, etc.), but this would cause Weka to use the stock
name in building the decision tree and rule set. The first four attributes are all numeric values.
The last attribute is the buy/sell/hold action on the stock. Listing 6.1 shows the file
training_data.arff that is in the directory src/expertsystem/weka. There are three sections in an
ARFF file: relation name, attribute specification, and data. Key words @relation, @attribute, and
@data have special meaning to define sections. The keyword real implies that an attribute takes
on a numeric value. The attribute action can have one of three values specified in a set.

Listing 6.1

@relation stock

@attribute percent_change_since_open real
@attribute percent_change_from_day_low real
@attribute percent_change_from_day_high real

Copyright 2001 by Mark Watson page 152 of 152 1/20/2002 08:48:15

@attribute action {buy, sell, hold}

@data
-0.2,0.1,-0.22,hold
-2.2,0.0,-2.5,sell
0.2,0.21,-0.01,buy
-0.22,0.12,-0.25,hold
-2.0,0.0,-2.1,sell
0.28,0.26,-0.04,buy
-0.12,0.08,-0.14,hold
-2.6,0.1,-2.6,sell
0.24,0.25,-0.03,buy

6.3 Running Weka

Although Weka is a complex system, it is simple to use when using default settings. I assume that
you have installed Weka on your system (i.e., you have the weka.jar file on your system and that
either your CLASSPATH contains this jar file, or the Weka jar file is in the JDK/jre/lib/ext
directory on your system). The directory src/expertsystem/weka contains two batch files:

• weka_decision_tree.bat – runs Weka using C4.5 learning algorithm to produce a decision
tree from the training data

• weka_rules.bat – runs Weka using C4.5 learning algorithm to produce a set of ordered
rules that is equivalent to a decision tree

Both of these batch files (that are Windows specific but can be trivially changed to UNIX shell
files) use the “-t” option to specify the input ARFF training file. The generate decision tree
produced when running weka_decision_tree.bat is equivalent to:

If percent_change_from_day_low <= 0.12 then
if percent_change_since_open <= -2 then sell
else hold

else buy

Copyright 2001 by Mark Watson page 153 of 153 1/20/2002 08:48:15

Admittedly, this is a very simple decision tree, but it does show how the C4.5 learning algorithm
in Weka finds patterns in data that we can use. The ordered set of three rules generated from
running the weka_rules.bat command file is:

percent_change_from_day_low <= 0.12 AND
percent_change_since_open <= -2: sell

percent_change_since_open <= =0.12: hold

: buy

These rules must be evaluated in this order to be equivalent to the generated decision tree.

Copyright 2001 by Mark Watson page 154 of 154 1/20/2002 08:48:15

Index
activation value, 134
alpha beta, 33
Apple Macintosh, 7
ARFF format, 150
ATN parsers, 61
axon terminal buttons, 126
back propagation, 133
back-prop, 133
backward chaining, 98
brain, 125
Carnegie-Mellon University, 98
Charles Forgy, 95, 98
Chess, 48
CLIPS, 95
connections, 133
crossover, 114, 123
database, 75
delta rule learning, 133
dendrites, 126
directed graph, 13
edges, 25
Ernest Friedman-Hill, 95, 98
Ernest J. Friedman, 94
expert systems, 94
fitness, 119, 121
forward chaining, 97
GA, 110
genetic algorithms, 110
genetic crossover, 110
Gnu Public License, 6

graph, 25
hidden layer, 136
Hopfield, 127
InstantDB, 76
Java development, 7
Java Prolog Engine, 86
Jess, 94
Kevin Knight, 5
leaf node, 13
learning cycle, 136
LHS, 96
Linux, 7
local minima, 127
M&T Press, 149
machine learning, 149
mutation, 115
NASA, 95
Natural Language Processing, 60
NetBeans Java IDE, 5
network dynamics during training, 145
neuron layers, 133
neurons, 126
Nintendo, 7
NLBean, 76
NLP, 60
PC video games, 7
production memory, 100
production systems, 95
Prolog, 86
RHS, 96

Copyright 2001 by Mark Watson page 155 of 155 1/20/2002 08:48:15

right hand side, 96
root node, 13
Sandia National Laboratories, 98
search algorithms, 12
search operators, 14
search tree, 13
Sieuwert van Otterloo, 5, 86
stimulus-response rules, 97
stock market, 150
successor node search operators, 13
Sun ONE Servcies, 149
The left hand side, 96

the Rete network, 95
threshold, 126
tic-tac-toe, 34
TogetherJ UML modeling tool, 5
training data, 148
Unified Modeling Language, 8
weight, 133
Weka, 149
Windows 2000, 7
Wordnet, 66, 68
working memory, 96, 100
Xerox LISP machines, 7

Copyright 2001 by Mark Watson page 156 of 156 1/20/2002 08:48:15

Bibliography

“Data Mining”, Ian Witten and Eibe Frank, 1999, Morgan Kaufmann Publishers

Brownston, Lee, Robert Farrell, Elaine Kant, and Nancy Martin. 1985. Programming Expert
Systems in OPS5. Reading, MA: Addison-Wesley.

“Genetic Programming”, John Koza, 1992, The MIT Press

“Genetic Programming II”, John Koza, 1994, The MIT Press

Goldberg, David E. 1989. Genetic Algorithms. Reading, MA: Addison-Wesley.

“C++ Power Paradigms” Mark Watson, McGraw-Hill 1995. (Covers constraint programming,
neural netowrks, and genetic algorithms)

“Parallel Distributed Processing” volumes I and II, David E. Rumelhart, James L. McClelland,
and the PDP Research Group, MIT Press, 1986.

“Impossible Minds”, Igor Aleksander, 1996, Imperial College Press.

“Artificial Intelligence”, Elaine Rich and Kevin Knight, 1991, McGraw-Hill

“Intelligent Java Applications”, Mark Watson, 1997, Morgan Kaufmann Publishers

“Inside Computer Understanding”, Roger Schank and Christopher Riesbeck, 1981, Lawrence
Erlbaum Associates Publishers

“Inside Case-Based Reasoning”, Christopher Riesbeck and Roger Schank, 1989, Lawrence
Erlbaum Associates Publishers

Copyright 2001 by Mark Watson page 157 of 157 1/20/2002 08:48:15

“Reasoning About Plans”, James Allen, Henry Kautz, Richard Pelavin, and Josh Tenenberg, 1991,
Morgan Kaufmann Publishers

“The Web of Life”, Fritjof Capra, 1996, Anchor Books

“Common Lisp Modules, Artificial Intelligence in the Era of Neural Networks and Chaos
Theory”, Mark Watson, 1991, Springer-Verlag

“Programming in Scheme, Learn Scheme through Artificial Intelligence Programs”, Mark
Watson, 1996, Springer-Verlag

