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Abstract

Most persistence architectures for Java and .NET provide interfaces
to execute queries written in an architecture-specific query language.
These interfaces are string based : queries are defined in strings that
are passed to the persistence engine for interpretation. String-based
query interfaces have significant negative impact on programmer pro-
ductivity. The queries are not accessible to development environment
features like compile-time type checking, auto-completion, and refac-
toring. Programmers must work in two languages: the implementa-
tion language and the query language. This paper introduces Native
Queries, a concise and type-safe way to express queries directly as
Java and C# methods. We describe the design of Native Queries and
provide an overview of implementation and optimization issues. The
paper also includes a discussion of the advantages and disadvantages
of the current design of Native Queries.

1 Introduction

While today’s object databases and object-relational mappers do a great job
in making object persistence feel native to the developer, queries look for-
eign in an object-oriented program. They are expressed using either simple
strings, or object graphs with strings interspersed. Let’s take a look at a
few examples.

For all examples in this paper we will assume the following class:

// Java
public class Student {
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private String name;
private int age;
public String getName(){
return name;

}
public int getAge(){
return age;

}
}

// C#
public class Student {
private string name;
private int age;
public string Name {
get { return name; }

}
public int Age {
get{ return age; }

}
}

How would queries look for “all Student objects where the Student is
younger than 20” using some of the existing object querying languages or
APIs?

OQL [8, 1]

String oql =
"select * from student in AllStudents where student.age < 20";

OQLQuery query = new OQLQuery(oql);
Object students = query.execute();

JDOQL [7, 9]

Query query =
persistenceManager.newQuery(Student.class, "age < 20");

Collection students = (Collection)query.execute();

db4o SODA, using C# [4]

Query query = database.Query();
query.Constrain(typeof(Student));
query.Descend("age").Constrain(20).Smaller();
IList students = query.Execute();

2



All of the above approaches share a common set of problems:

• Modern integrated development environments (IDEs) do not check
embedded strings for semantic and syntactic errors. In all the queries
above, both the field age and the value 20 are expected to be numeric,
but no IDE or compiler will check that this is actually correct. If the
developer mistyped the query code – changing the name or type of
the field age, for example – all of the above queries would break at
runtime, without a single notice at compile time.

• Since modern IDEs will not automatically refactor field names that
appear in strings, refactorings will cause class model and query strings
to get out of sync. Suppose the field name age in the class Student is
changed to _age because of a corporate decision on standard coding
conventions. Now all existing queries for age would be broken, and
would have to be fixed by hand.

• Modern agile development techniques encourage constant refactoring
to maintain a clean and up-to-date class model that accurately repre-
sents an evolving domain model. If query code is difficult to maintain,
it will delay decisions to refactor and inevitably lead to low-quality
source code.

• All listed queries operate against the private implementation of the
Student class

student.age

instead of using it’s public interface

student.getAge() / student.Age

and thereby they break object-oriented encapsulation rules, disobeying
the object-oriented principle that interface and implementation should
be decoupled.

• Developers are constantly required to switch contexts between imple-
mentation language and query language. Queries can not use code
that already exists in the implementation language.

• There is no explicit support for creating reusable query components.
A complex query can be built by concatenating query strings, but none
of the reusability features of the programming language (method calls,
polymorphism, overriding) are available to make this process manage-
able. Passing a parameter to a string-based query is also awkward and
error-prone.

• Embedded strings can be subject to injection attacks.
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2 Design Goals

What if we could simply express the same query in plain Java or C# 1?

// Java
student.getAge() < 20

// C#
student.Age < 20

The developer could write queries without having to think about a custom
query language or API. The IDE could actively help to reduce typos. Queries
would be fully type safe and accessible to the refactoring features of the IDE.
Queries could also be prototyped, tested, and run against plain collections
in memory without a database backend.

At first sight, this approach seems unsuitable as a database query mech-
anism. Naively executing Java/C# code against the complete extent of all
stored objects of a class would incur a huge performance penalty, because
all candidate objects would have to be instantiated from the database. A
solution to this problem has been published in the paper on “Safe Query
Objects” by Cook and Rai[3]: The source code or the byte code of the
Java/C# query expression can be analyzed and optimized by translating
it to the underlying persistence system’s query language or API (SQL[6],
OQL[1], JDOQL[9], EJBQL[11], SODA[10], etc.), and thereby take advan-
tage of indexes and other optimizations of a database engine. In this paper
we refine the original idea of safe query objects to provide a more concise and
natural definition of native queries. We will also examine integrating queries
into Java and .NET by leveraging more recent features of those language
environments, including anonymous classes and delegates.

Therefore, our goals for native queries are:

100% native Queries should be completely expressed in the implementa-
tion language (Java or C#), and they should fully obey all language
semantics.

100% object-oriented Queries should be runnable in the language itself,
to allow unoptimized execution against plain collections without cus-
tom preprocessing.

100% type-safe Queries should be fully accessible to modern IDE features
like syntax checking, type checking, refactoring, etc.

1C# or any other managed language with similar capabilities
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optimizable It should be possible to translate a native query to a persis-
tence architecture’s query language or API for performance optimiza-
tion. This could be done at compile time or at load time by source
code or bytecode analysis and translation.

3 Defining the Native Query API

How should native queries look ? To produce a minimal design, we will
evolve a simple query by adding each design attribute, one at a time. We
will use Java and C# (.NET 2.0) as the implementation languages.

Let’s begin with the class that we designed at the beginning of this paper.
Furthermore, we’ll assume that we want to query for “all students that are
younger than 20 where the name contains an ‘f’ ”.

1. The main query expression is easily written in the programming lan-
guages:

// Java
student.getAge() < 20 && student.getName().contains("f")

// C#
student.Age < 20 && student.Name.Contains("f")

2. We need some way to pass a Student object to the expression, as well
as a way to pass the result back to the query processor. We can do
this by defining a student parameter and by returning the result of
our expression as a boolean value:

// pseudo-Java
(Student student){
return student.getAge() < 20

&& student.getName().contains("f");
}

// pseudo-C#
(Student student){
return student.Age < 20

&& student.Name.Contains("f");
}

3. Now we have to wrap the above partial construct into an object that
is valid in our programming languages. That will allow us to pass it

5



to the database engine, a collection, or any other query processor. In
.NET 2.0, we can simply use a delegate. In Java, we need a named
method, as well as an object of some class to put around the method.
This requires, of course, that we choose a name for the method as
well as a name for the class. We decided to follow the example that
.NET 2.0 sets for collection filtering. Consequently, the class name is
“Predicate” and the method name is “match”.

// Java
new Predicate(){
public boolean match(Student student){
return student.getAge() < 20

&& student.getName().contains("f");
}

}

// C#
delegate(Student student){
return student.Age < 20

&& student.Name.Contains("f");
}

4. For .NET 2.0, we are done designing the simplest possible query inter-
face. The above is a valid object. For Java, our querying conventions
should be standardized by designing an abstract base class for queries:
the Predicate class.

// Java
public abstract class Predicate <ExtentType> {

public <ExtentType> Predicate (){}
public abstract boolean match (ExtentType candidate);

}

We still have to alter our Java query object slightly by adding the
extent type to comply with the generics contract.

new Predicate <Student> () {
public boolean match(Student student){
return student.getAge() < 20

&& student.getName().contains("f");
}

}
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5. Although the above is conceptually complete, we would like to finish
the derivation of the API by providing a full example. Specifically,
we want to show what a query against a database would look like,
so we can compare it against the string-based examples given in the
introduction.

// Java
List <Student> students = database.query <Student> (
new Predicate <Student> () {
public boolean match(Student student){
return student.getAge() < 20

&& student.getName().contains("f");
}

});

// C#
IList <Student> students = database.Query <Student> (
delegate(Student student){
return student.Age < 20

&& student.Name.Contains("f");
});

The above example completes the core idea. We have refined Cook/Rai’s
concept of safe queries[3] by leveraging anonymous classes in Java and dele-
gates in .NET. The result is a more concise and straightforward description
of queries.

Adding all required elements of the API in a step-by-step fashion has
allowed us to find the most natural and efficient way of expressing queries in
Java and C#. Additional features, like parameterized and dynamic queries,
can be included in native queries using a similar approach.

We have overcome the shortcomings of existing string-based query lan-
guages and provided an approach that promises improved productivity, ro-
bustness, maintainability and performance.

4 Specification Details

A final and thorough specification of native queries will only be possible after
practical experience. Therefore, this section is speculative. We would like
to point out where we see choices and issues with the native query approach
and how they might be resolved.
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4.1 Optimization

Regarding the API alone, native queries are not new. Without optimiza-
tions, we have merely provided “the simplest concept possible to run all
instances of a class against a method that returns a boolean value”. Such
interfaces are well-known: Smalltalk 80 includes methods to select items
from a collection based on a predicate [5, 2].

Optimization is the key new component of native queries. Users should be
able to write native query expressions and the database should execute them
with performance on par with the string-based queries that we described in
the introduction to this paper.

Although the core concept of native queries is simple, the work needed
to provide a performant solution is non-trivial. Code written in a query
expression must be analyzed and converted to an equivalent database query
format. It is not necessary for all code in a native query to be translated.
If the optimizer cannot handle some or all code in a query expression, there
always is the fallback to instantiate the actual objects and to run the query
expression code, or part of it, with real objects after the query has returned
intermediate values. Because this may be slow, it will be helpful to provide
developers with feedback at development time. This feedback might include
how the optimizer “understands” query expressions, and some description of
the underlying optimization plan created for the expressions. This will help
developers to adjust their development style to the syntax that is optimized
best and will enable developers to provide feedback about desirable improved
optimizations.

How will optimization actually work? At compile or load time, an en-
hancer (a separate application, or a “plug-in” to the compiler or loader)
will inspect all native query expressions in source code or byte code, and
will generate additional code in the most performant format the database
engine supplies. At runtime, this substituted code will be executed instead
of the former query expression. This mechanism will be transparent to the
developer after she adds the optimizer to her compilation- or build-process
or both.

Our peers have expressed doubts that satisfactory optimization is possible.
Because both the native query format and the native database format are
well defined, and because the development of an optimizer can be an ongoing
task, we are very optimistic that excellent results are achievable. of an
optimizer is ongoing evidence that excellent results are achievable?] The first
results that Cook/Rai [3] produced with a mapping to JDO implementations
are very encouraging. db4objects already shows a first preview of db4o with
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unoptimized native queries today[4] and plans to ship a production ready
version 5.0 with optimized native queries in November 2005.

4.2 Restrictions

Ideally, any code should be allowed in a query expression. In practice,
restrictions are required to guarantee a stable environment, and to place an
upper limit on resource consumption. We recommend:

variables Variable declarations should be legal in query expressions.

object creation Temporary objects are essential for complex queries so
their creation should also be supported in query expressions.

static calls Static calls are part of the concept of OO languages so they
should be legal.

faceless Query expressions are intended to be fast. They should not inter-
act with the GUI.

threads Query expressions will likely be triggered in large numbers. There-
fore, they should not be allowed to create threads.

security restrictions Since query expressions may actually be executed
with real objects on the server, there need to be restrictions for what
they are allowed to do there. It would be reasonable to allow and disal-
low method execution and object creation in certain namespaces/packages.

read only No modifications of persistent objects should be allowed within
running query code. This limitation guarantees repeatable results and
keeps transactional concerns out of the specification.

timeouts To allow for a limit to the use of resources, a database engine may
choose to timeout long running query code. Timeout configuration
does not have to be part of the native query specification, but it should
be recommended to implementors.

memory limitation Memory limitations can be treated like timeouts. A
configurable upper memory limit per query expression is a recom-
mended feature for implementors.

undefined actions Unless explicitly not permitted by the specification, all
constructs should be allowed.
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4.3 Exceptions

It seems desirable that processing should continue after any Exception oc-
curs in query expressions. A query expression that throws an uncaught
exception should be treated as if it returned false. There should be a mech-
anism for developers to discover and track exceptions. We recommend that
implementors support both exception callback mechanisms and exception
logging.

4.4 Sorting

The sort order of returned objects might also be defined using native code.
An exact definition goes beyond the scope of this paper but a simple example
illustrates what this might look like. Using a Java Comparator:

// Java
List <Student> students = database.query <Student> (
new Predicate <Student> () {
public boolean match(Student student){
return student.getAge() < 20 && student.getName().contains("f");

}
});
Collections.sort(students, new Comparator <Student>(){

public int compare(Student student1, Student student2) {
return student1.getAge() - student2.getAge();

}
});

The above code should be runnable both with and without an optimiza-
tion processor. Querying and sorting could be optimized to be executed
as one step on the database server, using the sorting functionality of the
database engine.

5 Conclusion

There are powerful reasons for considering native queries as a mainstream
standard. As we have shown, they overcome the shortcomings of string-
based APIs. The full potential of native queries will be explored with their
use in practice. They have already been demonstrated to provide high value
in these areas:

Power Standard object-oriented programming techniques are available for
querying.

Productivity Native queries enjoy the benefits of advanced development
tools, including static typing, refactoring, and auto-completion.
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Standard What SQL has never managed to achieve because of the diver-
sity of SQL dialects may be achievable for native queries: Because the
standard is well defined by programming language specifications, na-
tive queries can provide 100% compatibility across different database
implementations.

Efficiency Native queries can be automatically compiled to traditional
query languages or APIs so that they can leverage existing high-
performance database engines.

Simplicity As shown, the API for native queries is only one class with one
method. Hence, native queries are easy to learn, and a standardization
body will find them easy to define. They could be submitted as a JSR
to the Java Community Process.

Acknowledgments

We would like to thank Johan Strandler for his posting to a thread at The-
ServerSide that brought the two authors together, Patrick Römer for get-
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