
B+Tree Indexes and InnoDB
Ovais Tariq

Percona Live London 2011

www.percona.com

Agenda

•  Why Index
•  What is a B+Tree
•  B+Tree Characteristics
•  Cost Estimation Formulae
•  A Few Advantages
•  B+Tree Index in InnoDB
•  Primary and Secondary B+Tree Indexes
•  Characteristics of an Ideal Primary Index

www.percona.com

Agenda (Cont ..)

•  In-order INSERTs vs Random-order INSERTs
•  Composite Indexes
•  B+Tree and Index Prefix
•  Index Selectivity
•  Speeding up Secondary Indexes
•  Tips and Take-away
•  Percona Live London Sponsors
•  Annual MySQL Users Conference

www.percona.com

Why Index?

•  Linear search is very slow, complexity is O(n)
•  Indexes are used in variety of DBMS
•  Many different type of indexes

•  Hash Indexes (only MEMORY SE and NDB)
•  Bitmap Indexes (not available in MySQL)
•  BTree Indexes and derivates (MyISAM, InnoDB)

•  Indexes improve search performance
•  But add extra cost to INSERT/UPDATE/

DELETE

www.percona.com

What is a B+Tree

•  A generalized version of Binary Search Tree
http://en.wikipedia.org/wiki/Binary_search_tree

•  Classic disk based structure for indexing
records based on an ordered key set

•  Reading a single record from a very large table,
results in only a few pages of data being read

•  Any index structure other then B+Tree is
subject to overflow

www.percona.com

B+Tree Characteristics

•  Every node can have p – 1 key values and p
node pointers (p is called the order of the tree)

•  The leaf node contains data, internal nodes are
only used as guides

•  The leaf nodes are connected together as
doubly linked list

•  Keys are stored in the nodes in sorted order
•  All leaf nodes are at the same height, that’s

why it’s called a balanced tree

www.percona.com

Typical B+Tree structure

www.percona.com

Cost Estimation Formulae

•  Some Assumptions
•  Cost Calculations
•  A Few Extra Considerations

www.percona.com

Some Assumptions

•  h is the height of the tree
•  p is the branching factor of the tree
•  n is the number of rows in a table
•  p = (page size in bytes/key length in bytes) + 1
•  h > log n / log p

www.percona.com

Cost Calculations

•  Search cost for a single row
•  S = h I/O ops

•  Update cost for a single row
•  U = search cost + rewrite data page = h + 1 I/O ops

•  Insert cost for a single row
•  I = search cost + rewrite index page + rewrite data

page
•  I = h + 1 + 1 = h + 2 I/O ops

www.percona.com

Cost Calculations (Cont ..)

•  Delete cost for a single row
•  D = search cost + rewrite index page + rewrite data

page
•  D = h + 1 + 1 = h + 2 I/O ops

www.percona.com

A Few Extra Considerations

•  Updates are in place only if the new data is of
the same size, otherwise its delete plus insert

•  Inserts may require splits if the leaf node is full
•  Occasionally the split of a leaf node

necessitates split of the next higher node
•  In worst case scenarios the split may cascade

all the way up to the root node
•  Deletions may result in emptying a node that

necessitates the consolidation of two nodes

www.percona.com

A Few Advantages

•  Reduced I/O
•  Reduced Rebalancing
•  Extremely efficient range scans
•  Implicit sorting

www.percona.com

Reduced I/O

•  Height of a B+Tree is very small (and has a
very large branching factor)

•  Generally every node in a tree corresponds to a
page of data (page size ranges from 211 to 214
bytes)

•  A node read = read a page = 1 random I/O
•  So to reach leaf node, we need to read h pages
•  No matter if requested row is at the start or end

of table, same number of I/O is needed

www.percona.com

Reduced Rebalancing

•  A tree needs rebalancing after an insertion or
deletion

•  B+Tree is wide, more keys can fit in node, so
rebalancing needed few times on insertions
and deletions

•  Note that rebalancing means extra I/O, so
rebalancing saved is I/O saved

www.percona.com

Extremely Efficient Range Scans

•  Leaf node s are linked together as doubly linked
list

•  So need to traverse from root -> leaf just once
•  Move from leaf -> leaf until you reach the end

of range
•  Entire tree may be scanned without visiting the

higher nodes at all

www.percona.com

Implicit Sorting

•  Nodes contain keys sorted in key-order
•  Therefore records can be implicitly returned in

sorted order
•  No external sorting needed hence memory and

CPU cycles saved
•  Sometimes sorted data cannot fit into buffer,

and data needs to be sorted in passes, needing
I/O, which can be avoided if you need data in
key order

www.percona.com

B+Tree Index in InnoDB

•  B+Tree Index in InnoDB is a typical B+Tree
structure, no strings attached!

•  Leaf nodes contain the data (what the data is
depends whether it’s a Primary Index or a
Secondary Index)

•  Root nodes and internal nodes contain only key
values

www.percona.com

A Typical Index

EMP_NO
1 to 1000000

EMP_NO
1 to 500000

Employee details
for

EMP_NO
1 to 1000

Employee details
for

EMP_NO
1001 to 2000

EMP_NO
500001 to 1000000

Employee details
for

EMP_NO
998001 to 999000

Employee details
for

EMP_NO
999001 to 1000000

Root node

Internal nodes

Leaf nodes

www.percona.com

Primary and Secondary B+Tree
Indexes

•  Primary index holds the entire row data in its
leaf nodes

•  Primary index can also be called a clustered
index, because data is clustered around PK
values

•  A single PK per table means, a single clustered
index per table

•  Secondary Indexes have the key values and
PK values in the index and no row data

www.percona.com

Primary and Secondary B+Tree
Indexes (Cont ..)

•  PK values stored in the leaf nodes of a
secondary index act as pointer to the data

•  This means secondary index lookups are two
lookups

•  Cost of secondary index lookup
•  C = Height of Secondary Index B+Tree + Height of

Primary Index B+Tree

www.percona.com

A Typical Secondary Index

FIRST_NAME
A to Z

FIRST_NAME
A to M

FIRST_NAME
&

PK Column values
(Anna, 1) …

FIRST_NAME
&

PK Column values
(Jacob, 10000) …

FIRST_NAME
N to Z

FIRST_NAME
&

PK Column values
(Nathan, 100000) …

FIRSY_NAME
&

PK Column values
(Zita, 1000000) …

EMP_NO
1 to 1000000

EMP_NO
1 to 500000

Employee details
for

EMP_NO
1 to 1000

Employee details
for

EMP_NO
1001 to 2000

EMP_NO
500001 to 1000000

Employee details
for

EMP_NO
998001 to 999000

Employee details
for

EMP_NO
999001 to 1000000

Secondary Index

Primary Index

www.percona.com

Characteristics of an Ideal
Primary Index

•  Create primary index on column(s) that are not
updated too often

•  Keep the size of the primary index as small as
possible

•  Select the column(s) to create primary index
on, that have sequentially increasing value

•  Random value columns, such as those that
store UUID, are very bad candidates for
primary index

www.percona.com

In-order INSERTs vs Random-
order INSERTs

•  In-order INSERTs result in good page fill
percentage, meaning InnoDB can keep on
inserting in the same page till its full

•  Good insert speed, good page fill percentage
•  Reduced page and extent fragmentation

Leaf Page 001

(1, ‘Alister’)
(2, ‘Anna’)
…..
(100, ‘Cathy’)

Leaf Page 002

(101, ‘Celvin’)
(102, ‘Donald’)
…..
(200, ‘Frank’)

Leaf Page 100

(10001, ‘Stan’)
(10002, ‘Steve’)
…..
(10100, ‘Suzzan’)

www.percona.com

In-order INSERTs vs Random-
order INSERTs (Cont ..)

•  Random-order inserts introduce overhead
•  Result in page and extent fragmentation
•  Bad insert speed and bad page fill percentage

(resulting in wasted space)
•  Data is not actually physically clustered

together
•  Scanning ranges do not result in pages read in

sequential order
•  That is why UUID is not a good PK candidate

www.percona.com

In-order INSERTs vs Random-
order INSERTs (Cont ..)

Leaf Page 101

(10101, ‘Alister’)
(10102, ‘Anna’)
…..
(10200, ‘Cathy’)

Leaf Page 96

(10201, ‘Celvin’)
(10202, ‘Donald’)
…..
(10300, ‘Frank’)

Leaf Page 102

(10301, ‘Stan’)
(10302, ‘Steve’)
…..
(10400, ‘Suzzan’)

Leaf Page 101

(10101, ‘Alister’)

Leaf Page 102

(10201, ‘Celvin’)
(10202, ‘Donald’)

Leaf Page 103

(10301, ‘Stan’)
(10302, ‘Steve’)
…..
(10400, ‘Suzzan’)

Extent Fragmentation

Page Fragmentation

www.percona.com

Example Schema
CREATE TABLE `employees` (

 `emp_no` int(11) NOT NULL,

 `birth_date` date NOT NULL,

 `first_name` varchar(14) NOT NULL,

 `last_name` varchar(16) NOT NULL,

 `gender` enum('M','F') NOT NULL,

 `hire_date` date NOT NULL,

 PRIMARY KEY (`emp_no`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

www.percona.com

Composite Indexes

•  A single index can be defined on more than
one column

•  The index key is composed of more than one
key value

•  Let’s consider a query
•  SELECT emp_no, first_name, last_name

FROM employees
WHERE hire_date = '1985-03-22'
AND last_name = 'Peek';

www.percona.com

Composite Indexes (Cont ..)

•  One way of indexing is to create two separate
indexes on hire_date and last_name columns

•  Search cost would be
•  S = h(hire_date) + h(last_name) + Merge and

Intersect cost
•  S = h1 + h2 I/O ops + Merge and Intersect cost

•  Consider if you create a composite index
(hire_date, last_name)

•  The cost of composite index is one lookup

www.percona.com

Composite Indexes (Cont ..)

•  Composite index will not require extra merge-
intersect step, hence saving memory and CPU
cycles

•  To generalize, if a composite index has k
columns, then equivalent cost in single value
indexes is k index lookups

•  Similarly, k single value indexes will need more
pages to be read into memory

www.percona.com

Composite Indexes (Cont ..)

•  Suppose you have
•  1000 rows match hire_date = '1985-03-22’
•  1000 rows that match last_name = 'Peek’
•  4 rows that match both conditions

•  See less pages to load into memory when
using composite index

www.percona.com

B+Tree and Index Prefix

•  By design B+Tree can only work with filters that
filter at least on the prefix of the index

•  So an index idx(first_name, last_name) can
only be used for following searches

•  SELECT … WHERE first_name = x AND last_name = y
•  SELECT … WHERE first_name = x

•  And cannot be used for the following search
•  SELECT … WHERE last_name = y

www.percona.com

B+Tree and Index Prefix (Cont ..)

•  Same rule also hold for single column indexes
•  So an index idx(first_name) can only be used

for following searches
•  SELECT … WHERE first_name LIKE ‘ova%’

•  But cannot be used for following
•  SELECT … WHERE first_name LIKE ‘%ais’

•  If an index cannot be used that means a table
scan

www.percona.com

Index Selectivity

•  What is selectivity?
•  Selectivity = unique values / total no. of records
•  Primary Index is the most selective index
•  Suppose you index a column that stores

gender, meaning only two distinct values
•  Remember secondary index only store a

pointer to the data in the primary index
•  Indexing a gender column means each key

value with thousands of PK pointers

www.percona.com

Index Selectivity (Cont ..)

•  Each pointer lookup will be a random PK
lookup

•  Its much better to scan the PK in order and
filter by gender

•  But you can improve the selectivity of a column
by combining it with other columns and creating
a composite index

www.percona.com

Speeding up Secondary Indexes

•  Remember secondary indexes only store PK
pointers meaning two index lookups

•  Performance can be dramatically improved if
we avoid extra PK lookups

•  The trick is to include all the columns queried,
in the definition of the secondary index

•  Example query
•  SELECT emp_no, first_name, last_name

FROM employees WHERE hire_date = '1985-03-22'
AND last_name = 'Peek';

www.percona.com

Speeding up Secondary Indexes
(Cont ..)

•  Originally the index is idx(hire_date, last_name)
•  Let’s try to modify the index

•  No need to add the emp_no column as its PK
•  Add first_name column to right of index definition
•  idx(hire_date, last_name, first_name)

•  Note we add the column to the right of index
definition, remember B+Tree can only filter on
prefix of index

•  This is known as covering index optimization

www.percona.com

Tips and Take-away

•  Indexing should always be used to speed up
access

•  Index trade-off analysis can be done easily
using the cost estimation formulae discussed

•  Select optimal data types for columns,
especially ones that are to be indexed – int vs
bigint

•  When selecting columns for PK, select those
that would make the PK short, sequential and
with few updates

www.percona.com

Tips and Take-away (Cont ..)

•  Avoid using UUID style PK definitions
•  Insert speed is best when you insert in PK

order
•  When creating index on string columns, you

don’t need to index the entire column, you can
index a prefix of the column – idx(str_col(4))

•  B+Tree indexes are only suitable for columns
with good selectivity

•  Don’t shy away from creating composite
indexes

www.percona.com

Percona Live London Sponsors
Platinum Sponsor

Gold Sponsor

Silver Sponsors

www.percona.com

Percona Live London Sponsors
Exhibitor Sponsors

Friends of Percona Sponsors

Media Sponsors

www.percona.com

Annual MySQL Users Conference
Presented by Percona Live

The Hyatt Regency Hotel, Santa Clara, CA

April 10th-12th, 2012

Featured Speakers
Mark Callaghan, Facebook

Jeremy Zawodny, Craigslist

Marten Mickos, Eucalyptus Systems

Sarah Novotny, Blue Gecko

Peter Zaitsev, Percona

Baron Schwartz, Percona

The Call for Papers is Now Open!
Visit www.percona.com/live/mysql-conference-2012/

ovais.tariq@percona.com
@ovaistariq

We're Hiring! www.percona.com/about-us/careers/

www.percona.com/live

