
Using A Graph Database To Power
The “Web of Things”

Rick Bullotta, CTO at ThingWorx

Emil Eifrem, CEO at Neo Technology

www.thingworx.com

www.neotechnology.com

Standard Disclaimer

80%

20%

Truth
Bullshit

Built the 1st platform designed for applications that
integrate people, systems and the physical world

We’re Solving a Large, Difficult Problem

Cyberspace
(Systems)

Meatspace
(People)

Atomspace
(Physical World)

The world is definitely not flat…

It’s also not (only) tabular…

It’s certainly not (only) hierchial…

It’s actually very complex, interconnected,
constantly changing, and extremely large

Some Factoids

Estimates of so-called
“Smart Grid”data are on the

order of 35-1000
Petabytes/year

A single large chemical plant
generates more raw data in a
day than the NYSE and AMEX

combined

Homes, Cities, and Infrastructure Generate
Lots of Data and Events, Too…

Need to Consider The New Modalities of
Working and Interacting With Data

•  Less structure, more ad-hoc and dynamic
•  More self-service , search as an entry point
•  Ubiquitous access – mobility implications

Objective:
A Platform and API for the “Real World”

•  Mashup the planet
•  Make every(thing)

discoverable & consumable
•  Augment human decision

making
•  Enable fluid app-to-app

interaction

“Thing”

What’s A Thing?

Atomspace
o Refrigerated Truck, Electric Car
o Filling Machine, Industrial Robot
o Power Transformer, Wind Turbine
o Shipping Container
o Building, Floor, Office
o EKG Machine

Meatspace
o People

Cyberspace
o Web platform (Blog, Twitter, S3)
o Line of business system (ERP)
o Web service, database
o E-mail or SMS gateway

Lattice Semantic & Social Storage
Engine

IT Models
Systems/
Devices

Users ad hoc
Search,
Query &
Analyze

(SQUEAL)

Users Build
Solution

Workspaces
(Mashup
Builder)

External
Consume

(REST APIs)

Developers
Compose

Applications
(Composer)

Thing Connectivity Framework

Runtime
Capabilities for

Users and
Developers

IT/Developers
Model “Things”

Embedded

Gateway

Cloud
Embedded

Requirement:
Deploy Anywhere

 Server

ThingWorx scales
large to small,
deploys cloud,

hybrid, on-premise
and federated

•  Deal with “Big Data” – massive amounts of “feeds” put
into the right context (Lattice), at high burst rates

•  Enable answering new kinds of questions to new
kinds of problems – unbounded domain (SQUEAL)

•  Respond quickly and flexibly to changes and
opportunities (dynamic platform)

•  Support modeling of any “real world” scenario
•  Integrate with external data sources on an almost-

equal basis

Additional
Design Goals

Types of Data Storage
Required for ThingWorx

•  Model data
– Persisted objects/configuration data
– Metadata, relationships between entities

•  Storage of collected data
– Activity streams w/structured data
– Collaboration streams
– Table-like data

•  Relationships between data and entities
– UAC/permission models
–  “Where used”, “is a”, containment, app-specific
– Tagging, source, time indexing

Path to a
Graph Database

•  Started with traditional RDBMS’s
–  “Affordable” performance was hard to achieve
– Not friendly to dynamically changing models
– Not easy to model loosely coupled

relationships
– Difficult to model many of our real-world use

cases, particularly relationships
– Extremely awkward to query complex models

•  Saw mention of Neo4J on Twitter!

Quick Intro To
Graph Databases

Graphs Can Be
“Elegant In Their Simplicity”

•  Nodes (Vertices)
•  Relationships

(Edges)
•  Properties
•  Can model almost

anything

…but they can also be
“Challenging In Their Simplicity”

•  Not all graph databases support
relationship/edge properties and types

•  How can regular people, much less
developers, query useful information?

•  What are the “best practices” for persisting
domain objects and data storage?

•  Can be tricky to debug at runtime

Examples of
Real-World Relationships

•  That car is an electric vehicle and contains
battery C91910A (all EV’s contain a battery)

•  My town is in Chester County which is in
Pennsylvania which is in the USA

•  The distance between cell towers 101 and
109 is 5 kilometers

•  Pallet HD104 is in shipping container
SC1101 on train car TC87154

Examples of
Real-World“Networks”

•  Social graphs: Twitter, Facebook, etc.
–  These represent extremely simplistic data models
–  Are your “life” networks that simple?

•  Machines in a manufacturing plant
•  Production, transmission, and consumption in a

utility network
•  A mobile communications network
•  Transportation networks (air, land, sea)
•  Mega value in “networks of networks”

Unique Challenges of
Using A Graph Database

•  Inherent lack of “structure”
•  Lack of a general purpose query language
•  Very few domain model examples or

standards
•  Minimal standards on implementation or

terminology
•  Not all graph databases created equal

Why Neo4J?

•  Supported all of our deployment scenarios
•  Relationships can have types/properties
•  Performance and reliability
•  Platform neutral, many language bindings
•  Open source and extensible
•  Enabled REST API and/or embeddable
•  Reasonable set of admin tools
•  Very responsive dev team & community

Example:
Streams

•  Activity streams plus more
–  Structured data packets w/richer metatagging
–  Implicit linking to hierarchy of things

•  Performance was critical
–  Storage : buffered block writes (up to 10K/second)
–  Retrieval : optimized for time-based query

•  Multiple perspectives
–  Cross-stream (similar to “following”)

•  Follow machines, orders, people, anything
•  Apply filters and transforms
•  Building iPhone/Android/browser apps

–  Within stream (faceted search/query/aggregates)

Implementation:
Streams

•  Data Shapes
– Meta data for data elements/values
– Relationship to data shape

•  Time indexing
– Buckets
– Ordered traversal relationships

•  Implicit Relationships
– Source
– Tagging to Vocabularies

Simplified
Stream Model

Stream
name:BloodSensorData

StreamBucket
StreamBucket

StreamBucket
20110308

StreamEntry
08:26:47.034

TagLink
StreamEntry:

name:1001023423

VocabularyTerm:
name:Sleeping

Streams
name:Streams

Stream

Time-based
partitioning &

clustering StreamBucket
20110308

Pre-filter without
accessing node

Location: -75.4,42.4,0
Typed

Properties
O2Saturation: 98.9

PulseRate: 76

StreamEntry:
name:1001023101

StreamEntry
08:26:44.687

Meta tagging

Vocabulary:
name:PersonStatus

VocabularyTerm

O2Saturation: NUMBER

PulseRate: NUMBER DataShape:
name:BloodSensorData

FieldDefinition isDataShape

ThingShape:
name:CardioMonitor

 Thing:
name:CM6095

ImplementsShape

Source
Bi-directional
Traversal =

Two-way Index

Data Type
Definition

Data Type
Reference

“Is A”
Relationship

Example:
Vocabularies

•  Wanted to enable tagging of:
– Model entities
– Activity streams and data table rows
– Collaboration entries (blog, wiki, forum)
– External references (real or virtual URIs)

•  Wanted some structure
– Static versus dynamic, multiple tags

•  Wanted to use these as search criteria

Solution:
Vocabularies

•  Leverages Relationships
•  Node typing was key

– What am I linked to?
•  Dynamic URI from node hierarchy

– Node/relationship/node/relationship
– The model drives the REST API

Simplified Vocabulary
Model Vocabulary

name:Department

IsVocabularyTerm

IsVocabularyTerm

IsVocabularyTerm

VocabularyTerm
name:Accounting

VocabularyTerm
name:HR

VocabularyTerm
name:Maintenance

TagLink

TagLink

TagLink

ThingShape:
name:Welder

StreamEntry:
name:1001023423

BlogEntry:
name:RepairedMixer

StreamEntry

Stream:
name:Breakdowns

Streams
name:Streams

Stream

/Streams/Breakdowns/StreamEntry/1001023423

Platform
name:Platform

Streams

SQUEAL
(Search, Query, and Analysis)

•  Synthesis of a few concepts:
– Semantic search and keyword search
– Faceted queries
– Aggregation and transformation
– Relationship search

•  Required us to:
– Leverage set processing
–  “Square up” data and
– Develop in-memory engine on top of graph

Case Study:
SQUEAL

•  Queries ultimately return either:
– A set of nodes
– A set of typed data, reflected as an “InfoTable”

•  Needed to support SQL-like functions
– Filter, sort, aggregate, union, intersection…
– …plus location, time aggregates, interpolation

•  Broad set of query criteria
–  “Is A”, “Is Near”, “Written By”, “Tagged With”, etc.
– Full-text search

Implementation:
SQUEAL

•  Metadata from “shapes” (data shapes, thing
shapes) defines facets

•  Traversals & Lucene full-text searches for
node selection

•  Optimized dataset reduction where possible
•  Set functions for nodes, in-memory SQL-ish

functions for data
•  “InfoTable” construct is in-memory “data”

structure: data shape + rows w/values

Brief Demo

Lessons Learned

•  Batch writes where possible for
maximum insert performance

•  Refactoring data models can be
a bit trickier than with other DB’s

•  It is a good “best practice” to
stamp each node/vertex with a
“type” property

•  Use different approaches when
indexing for ordering versus
indexing for searching

•  Graph databases rock

Questions?

“Far better is it to dare mighty things, to win glorious triumphs,
even though checked by failure...than to rank with those poor
spirits who neither enjoy much nor suffer much, because they live
in a gray twilight that knows not victory nor defeat.”

 - Theodore Roosevelt

