VOIt the NewSQL database you’ll never outgrow

Not Your Father’s
Transaction Processing

Michael Stonebraker, CTO
VoltDB, Inc.

How Does This Fit into “Big
Data’”?

" Big volume
" Big velocity

" Big variety

High Velocity Applications

» Traditional transaction processing
" “New” transaction processing
" High velocity ingest

Traditional Transaction
Processing

* Remember how we used to buy airplane
tickets in the 1980s

» Commerce at the speed of the intermediary

"|n 1985, 1,000 transactions per second was
considered an incredible stretch goal!!!!

Traditional Transaction
Processing

» Workload was a mix of updates and queries
*To an ACID data base system

= At human speed
= Bread and butter of RDBMSs (OIdSQL)

How has TP Changed in 25
Years?

The internet
+ Client is no longer a professional terminal operator
+ |Instead Aunt Martha is using the web herself

+ Sends TP volume through the roof
+ Serious need for scalability and performance

VoltDB

How has TP Changed in 25
Years?

PDAs

Need in some traditional markets
for much higher performance!

And TP is Now a Much Broader
Problem

The internet enables a green field of new TP
applications

+ Massively multiplayer games (state of the game,
leaderboards, selling virtual goods are all TP
problems)

+ Social networking (social graph is a TP problem)
+ Real time ad placement
+ Real time couponing

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

VoltDB

And TP is Now a Much Broader

Problem
Sensor Tagging generates new TP applications

VoltDB

+ Marathon runners (fraud detection, leaderboards)
+ Taxicab (scheduling, fare collection)

+ Dynamic traffic routing

+ Car insurance “by the drink”

+ Mobile social networking

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

And TP is Now a Much Broader

Problem
Electronic commerce is here

+ Wall Street electronic trading
+ Real-time fraud detection
+ Micro transactions (through your PDA)

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

VoltDB

10

Add in High Velocity Ingest

VoltDB

+ Real time click stream analysis

+ Most anything upstream from Hadoop

+ Or your data warehouse

+ Real time risk assessment on Wall Street

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

11

In all cases.....

*» Workload is a mix of updates and queries
* Coming at you like a firehose
= Still an ACID problem

» Tends to break traditional solutions

VoltDB

Put Differently

You need to ingest a firehose
in real time

You need to process, validate,
enrich and respond in real-
time (i.e. update)

You often need real-time
analytics (i.e. query)

velocity and

13

Reality Check -- Size

* TP data base size grows at the rate
transactions increase

= 1 Tbyte is a really big TP data base

* 1 Thyte of main memory buyable for around
$50K

" |.e. Moore’s law has eclipsed TP data base
size

* |f your data doesn’t fit in main memory now,
then wait a couple of years and it will.....

Reality Check -- Performance

* TPC-C CPU cycles
* On the Shore DBMS prototype
» Elephants should be similar

Latching

' Useful Work

Locking

\Bu‘l:fery

To Go a Lot Faster You Have

* Focus on overhead

» Get rid of ALL major sources of overhead

Solution Choices

= OldSQL
+ Legacy RDBMS vendors

= NoSQL
+ Give up SQL and ACID for performance

* NewSQL
+ Preserve SQL and ACID
+ Get performance from a new architecture

VoltDB

17

OldSQL

Traditional SQL vendors (the “elephants”)
+ Code lines dating from the 1980’s
+ “bloatware”

+ Mediocre performance on New TP

VoltDB

18

The Elephants

* Are slow because they spend all of their time
on overhead!!!

= Would have to re-architect their legacy code
to do better

Long Term Elephant Outlook

= Up against “The Innovators Dilemma”

* Long term drift into the sunset

NoSQL

= Give up SQL
= Give up ACID

Give Up SQL?

» Compiler translates SQL at compile time into
a sequence of low level operations

» Similar to what the NoSQL products make
you program in your application

» 30 years of RDBMS experience

Give Up ACID

" [f you need data consistency,
giving up ACID is a decision
to tear your hair out by doing

T o 9y = | Vé’
database “heavy lifting” in
user code <) -

Nish & ey,

* Can you guarantee you won'’t
nheed ACID tomorrow?

ACID = goodness, in spite of what these guys say

Who Needs ACID?

* Funds transfer
+ Or anybody moving something from X to Y

= Anybody with integrity constraints
+ Back out if fails

+ Anybody for whom “usually ships in 24 hours” is
not an acceptable outcome

= Anybody with a multi-record state
+ E.g. move and shoot

VoltDB

24

Who needs ACID in replication

= Anybody with non-commutative updates
= Anybody with integrity constraints

= Eventual consistency means “creates garbage”

NoSQL Summary

= Appropriate for non-transactional systems

» Appropriate for single record transactions
that are commutative

* Not a good fit for New TP
» Use the right tool for the job

Interesting

P fused
Two recently-proposed m con ’
NoSQL language standards No wait...

- CQL and UnQL - are
amazingly similar to (you
guessed it!) SQL

Maybe Pm not.

NewSQL

=SQL
= ACID

* Performance and scalability through modern
innovative software architecture

Table Stakes

= Scalability
+ Run on a cluster of nodes
+ One node obviously won’t scale

= Automatic sharding
+ Parallelism

= Focus on OLTP workload

+ A few high volume transaction signatures (do as
stored procedures)

+ Occasional ad-hoc transactions

VoltDB

28

NewSQL Issue #1: Buffer Pool

* Obvious answer: main memory DBMS

Yabut: What if My Data Doesn’t
Fit?

* Main memory DBMSs can spill cold data to
disk

" If your data is zipf-ian, you should be ok

NewSQL Issue #2: Write Ahead
Log

» Obvious answer: replication and tandem-
style failover (and fail back)

Yabut: What if the Power Goes
Out?

" You will die if you use conventional write-
ahead logging (WAL)

" Ergo do something much cheaper

» Way better runtime performance; worse

recovery time

NewSQL Issue #3:
Multithreading

= Don’t do it

Yabut: What About Multicore?

" For A K-core CPU, divide memory into K (non

overlapping) buckets

" j.e. convert multi-core to K single cores

NewSQL Issue #4: Record Level
Locking

* Obvious answer: run to completion in
timestamp order

» Ditto for replicas

The Details (15t of 2)

» Single shard transactions (the common case)
+ Sequenced by shard controller

+ With forwarding to replicas, who do transactions in
sequence order (replicas are ACID)

" “One-shot” multi-shard transactions (the
rare case)
+ Sequenced by a single multi-shard controller

+ |nserted into the single-shard stream at each shard
independently (Everything still ACID)

VoltDB 36

The Details (2" of 2)

*» General transactions (multi-shard, multi-
shot) (the very rare case)
+ Sequenced by the single multi-shard controller

+ |nserted into the single-shard stream at each shard
independently

+ BUT every affected shard must stall until all shots
have been processed (Everything still ACID, but stalls
are bad)

+ To avoid the stall, shards must go into “speculative
execution mode” (process xacts, without commit.

VoltDB 37

VoltDB Summary

* Main-memory storage

» Single threaded, run Xacts to completion

* Built-in HA and durability

Current VoltDB Status

= Runs a subset of SQL (which is getting
larger)

* On VoltDB clusters (in memory on
commodity gear)

= With LAN and WAN replication
= 70X a popular OldSQL DBMS on TPC-C
» 5-7X Cassandra on VoltDB K-V layer

= Scales to 384 cores (biggest iron we could
get our hands on)

» Clearly note this is an open source system!

Summary

OIldSQL for New

NI TD

NoSQL for New
NIl TD

NewSQL for New

NI TD

= Too slow
= Does not scale

= Lacks consistency

guarantees

= Fast, scalable and

consistent

Beware of Any Vendor

= Who is multi-threaded

*Who implements a traditional write-ahead
log

*» Who uses ODBC or JDBC for high volume
transactions

*Who implements record level locking
*Who runs a disk-based system

VOIt the NewSQL database you’ll never outgrow

Thank You

