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How Does This Fit into “Big 
Data”?
 Big volume

+ I have too much data

 Big velocity
+ Data is coming at me too fast

 Big variety
+ I have too many data sources
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High Velocity Applications

Traditional transaction processing
 “New” transaction processing
High velocity ingest
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Traditional Transaction 
Processing
Remember how we used to buy airplane 

tickets in the 1980s
+ By telephone
+ Through an intermediary (professional terminal 

operator)

Commerce at the speed of the intermediary
 In 1985, 1,000 transactions per second was 

considered an incredible stretch goal!!!!
+ HPTS (1985)
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Traditional Transaction 
Processing
Workload was a mix of updates and queries
To an ACID data base system

+Make sure you never lose my data
+Make sure my data is correct

At human speed
 Bread and butter of RDBMSs  (OldSQL)
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How has TP Changed in 25 
Years?
The internet

+ Client is no longer a professional terminal operator
+ Instead Aunt Martha is using the web herself

+ Sends TP volume through the roof
+ Serious need for scalability and performance
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How has TP Changed in 25 
Years?
PDAs

+ Your cell phone is a transaction originator

+ Sends TP volume through the roof
+ Serious need for scalability and performance

Need in some traditional markets 
for much higher performance!
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And TP is Now a Much Broader 
Problem
The internet enables a green field of new TP 
applications

+Massively multiplayer games (state of the game, 
leaderboards, selling virtual goods are all TP 
problems)

+ Social networking (social graph is a TP problem)
+ Real time ad placement
+ Real time couponing

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!
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And TP is Now a Much Broader 
Problem
Sensor Tagging generates new TP applications

+Marathon runners (fraud detection, leaderboards)
+ Taxicab (scheduling, fare collection)
+ Dynamic traffic routing  
+ Car insurance “by the drink”
+Mobile social networking

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!
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And TP is Now a Much Broader 
Problem
Electronic commerce is here

+Wall Street electronic trading
+ Real-time fraud detection
+Micro transactions (through your PDA)

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!
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Add in High Velocity Ingest

+ Real time click stream analysis
+Most anything upstream from Hadoop
+ Or your data warehouse
+ Real time risk assessment on Wall Street

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!
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In all cases…..

Workload is a mix of updates and queries
Coming at you like a firehose 
 Still an ACID problem

+ Don’t lose my data
+Make sure it is correct

Tends to break  traditional solutions
+ Scalability problems (volume)
+ Response time problems (latency)
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Put Differently

High velocity and 
youYou need to ingest a firehose 

in real time
You need to  process, validate, 
enrich  and respond in real-
time (i.e. update)

You often need real-time 
analytics (i.e. query)
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Reality Check -- Size

TP data base size grows at the rate 
transactions increase

1 Tbyte is a really big TP data base
1 Tbyte of main memory buyable for around 

$50K
+  (say) 64 Gbytes per server in 16 servers

 I.e. Moore’s law has eclipsed TP data base 
size

 If your data doesn’t fit in main memory now, 
then wait a couple of years and it will…..
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Reality Check -- Performance

TPC-C CPU cycles
On the Shore DBMS prototype
 Elephants should be similar

Recovery

Useful Work

Buffer Pool
Locking

Latching
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To Go a Lot Faster You Have 
to……
 Focus on overhead

+ Better B-trees affects only 4% of the path length

Get rid of ALL major sources of overhead
+Main memory deployment – gets rid of buffer pool

—Leaving other 75% of overhead intact
— i.e. win is 25%
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Solution Choices

OldSQL
+ Legacy RDBMS vendors

NoSQL
+ Give up SQL and ACID for performance

NewSQL
+ Preserve SQL and ACID
+ Get performance from a new architecture
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OldSQL

Traditional SQL vendors (the “elephants”)
+ Code lines dating from the 1980’s 
+ “bloatware”
+Mediocre performance on New TP
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The Elephants 

Are slow because they spend all of their time 
on overhead!!!
+ Not on useful work

Would have to re-architect their legacy code 
to do better
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Long Term Elephant Outlook

 Up against “The Innovators Dilemma”
+ Steam shovel example
+ Disk drive example
+ See the book by Clayton Christenson for more details

 Long term drift into the sunset 
+ The most likely scenario
+ Unless they can solve the dilemma

I still 
rock
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NoSQL

Give up SQL
Give up ACID
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Give Up SQL?
Compiler translates SQL at compile time into 

a sequence of low level operations 
 Similar to what the NoSQL products make 

you program in your application
30 years of RDBMS experience

+ Hard to beat the compiler
+ High level languages are good (data independence, 

less code, …)
+ Stored procedures are good!

—One round trip from app to DBMS rather than one one 
round trip per record

—Move the code to the data, not the other way around
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Give Up ACID

 If you need data consistency, 
giving up ACID is a decision 
to tear your hair out by doing 
database “heavy lifting” in 
user code

Can you guarantee you won’t 
need ACID tomorrow?

ACID = goodness, in spite of what these guys say
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Who Needs ACID?

 Funds transfer
+Or anybody moving something from X to Y

 Anybody with integrity constraints
+ Back out if fails
+Anybody for whom “usually ships in 24 hours” is 

not an acceptable outcome

 Anybody with a multi-record state
+ E.g. move and shoot
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Who needs ACID in replication

 Anybody with non-commutative updates
+ For example, + and * don’t commute

 Anybody with integrity constraints
+ Can’t sell the last item twice….

 Eventual consistency means “creates garbage”
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NoSQL Summary
Appropriate for non-transactional systems
Appropriate for single record transactions 

that are commutative
Not a good fit for New TP
Use the right tool for the job

Two recently-proposed 
NoSQL language standards 
– CQL and UnQL – are 
amazingly similar to (you 
guessed it!) SQL 

Interesting 
…
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NewSQL

 SQL
ACID
 Performance and scalability through modern 

innovative software architecture
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Table Stakes

 Scalability
+ Run on a cluster of nodes
+ One node obviously won’t scale

Automatic sharding
+ Parallelism

 Focus on OLTP workload
+ A few high volume transaction signatures (do as 

stored procedures)
+ Occasional ad-hoc transactions
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NewSQL Issue #1:  Buffer Pool

Obvious answer:  main memory DBMS
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Yabut:  What if My Data Doesn’t 
Fit?
Main memory DBMSs can spill cold data to 

disk
+ Without excessive overhead

 If your data is zipf-ian, you should be ok
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NewSQL Issue #2:  Write Ahead 
Log
Obvious answer:  replication and tandem-

style failover (and fail back)
+ Required for New TP anyway
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Yabut:  What if the Power Goes 
Out?
 You will die if you use conventional write-

ahead logging (WAL)

 Ergo do something much cheaper
+ Periodic checkpointing (costs next to nothing)

+ Command log (stored procedure identifer plus 
parameters) with group commit

Way better runtime performance; worse 
recovery time
+ But total cluster failures are quite rare
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NewSQL Issue #3:  
Multithreading
Don’t do it
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Yabut:  What About Multicore?

 For A K-core CPU, divide memory into K (non 
overlapping) buckets

 i.e. convert multi-core to K single cores
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NewSQL Issue #4:  Record Level 
Locking
Obvious answer:  run to completion in 

timestamp order
Ditto for replicas

+ No locking!
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The Details (1st of 2)

 Single shard transactions (the common case)
+ Sequenced by shard controller
+With forwarding to replicas, who do transactions in 

sequence order (replicas are ACID)

 “One-shot” multi-shard transactions (the 
rare case)
+ Sequenced by a single multi-shard controller
+ Inserted into the single-shard stream at each shard 

independently (Everything still ACID)
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The Details (2nd of 2)

General transactions (multi-shard, multi-
shot) (the very rare case)
+ Sequenced by the single multi-shard controller
+ Inserted into the single-shard stream at each shard 

independently 
+ BUT every affected shard must stall until all shots 

have been processed  (Everything still ACID, but stalls 
are bad)

+ To avoid the stall, shards must go into “speculative 
execution mode” (process xacts, without commit.  
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 VoltDB Summary 

Main-memory storage

 Single threaded, run Xacts to completion

+No locking

+No latching

 Built-in HA and durability

+No log (in the traditional sense)
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Runs a subset of SQL (which is getting 
larger)

On VoltDB clusters (in memory on 
commodity gear)

With LAN and WAN replication
70X a popular OldSQL DBMS on TPC-C
5-7X Cassandra on VoltDB K-V layer
 Scales to 384 cores (biggest iron we could 

get our hands on)
Clearly note this is an open source system! 

Current VoltDB Status
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Summary
Old TP

OldSQL for New 
OLTP

 Too slow
 Does not scale

NoSQL for New 
OLTP

 Lacks consistency 
guarantees

 Low-level interfaceNewSQL for New 
OLTP

 Fast, scalable and 
consistent

 Supports SQL 

New TP
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Who is multi-threaded
Who implements a traditional write-ahead 

log
Who uses ODBC or JDBC for high volume 

transactions
Who implements record level locking
Who runs a disk-based system
 

Beware of Any Vendor
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