
the NewSQL database you’ll never outgrow

Not Your Father’s
Transaction Processing

Michael Stonebraker, CTO
VoltDB, Inc.

VoltDB 2

How Does This Fit into “Big
Data”?
 Big volume

+ I have too much data

 Big velocity
+ Data is coming at me too fast

 Big variety
+ I have too many data sources

VoltDB 3

High Velocity Applications

Traditional transaction processing
 “New” transaction processing
High velocity ingest

VoltDB 4

Traditional Transaction
Processing
Remember how we used to buy airplane

tickets in the 1980s
+ By telephone
+ Through an intermediary (professional terminal

operator)

Commerce at the speed of the intermediary
 In 1985, 1,000 transactions per second was

considered an incredible stretch goal!!!!
+ HPTS (1985)

VoltDB 5

Traditional Transaction
Processing
Workload was a mix of updates and queries
To an ACID data base system

+Make sure you never lose my data
+Make sure my data is correct

At human speed
 Bread and butter of RDBMSs (OldSQL)

VoltDB 6

How has TP Changed in 25
Years?
The internet

+ Client is no longer a professional terminal operator
+ Instead Aunt Martha is using the web herself

+ Sends TP volume through the roof
+ Serious need for scalability and performance

VoltDB 7

How has TP Changed in 25
Years?
PDAs

+ Your cell phone is a transaction originator

+ Sends TP volume through the roof
+ Serious need for scalability and performance

Need in some traditional markets
for much higher performance!

VoltDB 8

And TP is Now a Much Broader
Problem
The internet enables a green field of new TP
applications

+Massively multiplayer games (state of the game,
leaderboards, selling virtual goods are all TP
problems)

+ Social networking (social graph is a TP problem)
+ Real time ad placement
+ Real time couponing

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

VoltDB 9

And TP is Now a Much Broader
Problem
Sensor Tagging generates new TP applications

+Marathon runners (fraud detection, leaderboards)
+ Taxicab (scheduling, fare collection)
+ Dynamic traffic routing
+ Car insurance “by the drink”
+Mobile social networking

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

VoltDB 10

And TP is Now a Much Broader
Problem
Electronic commerce is here

+Wall Street electronic trading
+ Real-time fraud detection
+Micro transactions (through your PDA)

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

VoltDB 11

Add in High Velocity Ingest

+ Real time click stream analysis
+Most anything upstream from Hadoop
+ Or your data warehouse
+ Real time risk assessment on Wall Street

+ And TP volumes are ginormous!!
+ Serious need for speed and scalability!

VoltDB 12

In all cases…..

Workload is a mix of updates and queries
Coming at you like a firehose
 Still an ACID problem

+ Don’t lose my data
+Make sure it is correct

Tends to break traditional solutions
+ Scalability problems (volume)
+ Response time problems (latency)

VoltDB 13 1
3

VoltDB 13

Put Differently

High velocity and
youYou need to ingest a firehose

in real time
You need to process, validate,
enrich and respond in real-
time (i.e. update)

You often need real-time
analytics (i.e. query)

VoltDB 14

Reality Check -- Size

TP data base size grows at the rate
transactions increase

1 Tbyte is a really big TP data base
1 Tbyte of main memory buyable for around

$50K
+ (say) 64 Gbytes per server in 16 servers

 I.e. Moore’s law has eclipsed TP data base
size

 If your data doesn’t fit in main memory now,
then wait a couple of years and it will…..

VoltDB 15

Reality Check -- Performance

TPC-C CPU cycles
On the Shore DBMS prototype
 Elephants should be similar

Recovery

Useful Work

Buffer Pool
Locking

Latching

VoltDB 16

To Go a Lot Faster You Have
to……
 Focus on overhead

+ Better B-trees affects only 4% of the path length

Get rid of ALL major sources of overhead
+Main memory deployment – gets rid of buffer pool

—Leaving other 75% of overhead intact
— i.e. win is 25%

VoltDB 17

Solution Choices

OldSQL
+ Legacy RDBMS vendors

NoSQL
+ Give up SQL and ACID for performance

NewSQL
+ Preserve SQL and ACID
+ Get performance from a new architecture

VoltDB 18

OldSQL

Traditional SQL vendors (the “elephants”)
+ Code lines dating from the 1980’s
+ “bloatware”
+Mediocre performance on New TP

VoltDB 19

The Elephants

Are slow because they spend all of their time
on overhead!!!
+ Not on useful work

Would have to re-architect their legacy code
to do better

VoltDB 20

Long Term Elephant Outlook

 Up against “The Innovators Dilemma”
+ Steam shovel example
+ Disk drive example
+ See the book by Clayton Christenson for more details

 Long term drift into the sunset
+ The most likely scenario
+ Unless they can solve the dilemma

I still
rock

VoltDB 21

NoSQL

Give up SQL
Give up ACID

VoltDB 22

Give Up SQL?
Compiler translates SQL at compile time into

a sequence of low level operations
 Similar to what the NoSQL products make

you program in your application
30 years of RDBMS experience

+ Hard to beat the compiler
+ High level languages are good (data independence,

less code, …)
+ Stored procedures are good!

—One round trip from app to DBMS rather than one one
round trip per record

—Move the code to the data, not the other way around

VoltDB 23

Give Up ACID

 If you need data consistency,
giving up ACID is a decision
to tear your hair out by doing
database “heavy lifting” in
user code

Can you guarantee you won’t
need ACID tomorrow?

ACID = goodness, in spite of what these guys say

VoltDB 24

Who Needs ACID?

 Funds transfer
+Or anybody moving something from X to Y

 Anybody with integrity constraints
+ Back out if fails
+Anybody for whom “usually ships in 24 hours” is

not an acceptable outcome

 Anybody with a multi-record state
+ E.g. move and shoot

VoltDB 25

Who needs ACID in replication

 Anybody with non-commutative updates
+ For example, + and * don’t commute

 Anybody with integrity constraints
+ Can’t sell the last item twice….

 Eventual consistency means “creates garbage”

VoltDB 26

NoSQL Summary
Appropriate for non-transactional systems
Appropriate for single record transactions

that are commutative
Not a good fit for New TP
Use the right tool for the job

Two recently-proposed
NoSQL language standards
– CQL and UnQL – are
amazingly similar to (you
guessed it!) SQL

Interesting
…

VoltDB 27

NewSQL

 SQL
ACID
 Performance and scalability through modern

innovative software architecture

VoltDB 28

Table Stakes

 Scalability
+ Run on a cluster of nodes
+ One node obviously won’t scale

Automatic sharding
+ Parallelism

 Focus on OLTP workload
+ A few high volume transaction signatures (do as

stored procedures)
+ Occasional ad-hoc transactions

VoltDB 29

NewSQL Issue #1: Buffer Pool

Obvious answer: main memory DBMS

VoltDB 30

Yabut: What if My Data Doesn’t
Fit?
Main memory DBMSs can spill cold data to

disk
+ Without excessive overhead

 If your data is zipf-ian, you should be ok

VoltDB 31

NewSQL Issue #2: Write Ahead
Log
Obvious answer: replication and tandem-

style failover (and fail back)
+ Required for New TP anyway

VoltDB 32

Yabut: What if the Power Goes
Out?
 You will die if you use conventional write-

ahead logging (WAL)

 Ergo do something much cheaper
+ Periodic checkpointing (costs next to nothing)

+ Command log (stored procedure identifer plus
parameters) with group commit

Way better runtime performance; worse
recovery time
+ But total cluster failures are quite rare

VoltDB 33

NewSQL Issue #3:
Multithreading
Don’t do it

VoltDB 34

Yabut: What About Multicore?

 For A K-core CPU, divide memory into K (non
overlapping) buckets

 i.e. convert multi-core to K single cores

VoltDB 35

NewSQL Issue #4: Record Level
Locking
Obvious answer: run to completion in

timestamp order
Ditto for replicas

+ No locking!

VoltDB 36

The Details (1st of 2)

 Single shard transactions (the common case)
+ Sequenced by shard controller
+With forwarding to replicas, who do transactions in

sequence order (replicas are ACID)

 “One-shot” multi-shard transactions (the
rare case)
+ Sequenced by a single multi-shard controller
+ Inserted into the single-shard stream at each shard

independently (Everything still ACID)

VoltDB 37

The Details (2nd of 2)

General transactions (multi-shard, multi-
shot) (the very rare case)
+ Sequenced by the single multi-shard controller
+ Inserted into the single-shard stream at each shard

independently
+ BUT every affected shard must stall until all shots

have been processed (Everything still ACID, but stalls
are bad)

+ To avoid the stall, shards must go into “speculative
execution mode” (process xacts, without commit.

VoltDB 38

 VoltDB Summary

Main-memory storage

 Single threaded, run Xacts to completion

+No locking

+No latching

 Built-in HA and durability

+No log (in the traditional sense)

VoltDB 39

Runs a subset of SQL (which is getting
larger)

On VoltDB clusters (in memory on
commodity gear)

With LAN and WAN replication
70X a popular OldSQL DBMS on TPC-C
5-7X Cassandra on VoltDB K-V layer
 Scales to 384 cores (biggest iron we could

get our hands on)
Clearly note this is an open source system!

Current VoltDB Status

VoltDB 40

Summary
Old TP

OldSQL for New
OLTP

 Too slow
 Does not scale

NoSQL for New
OLTP

 Lacks consistency
guarantees

 Low-level interfaceNewSQL for New
OLTP

 Fast, scalable and
consistent

 Supports SQL

New TP

VoltDB 41

Who is multi-threaded
Who implements a traditional write-ahead

log
Who uses ODBC or JDBC for high volume

transactions
Who implements record level locking
Who runs a disk-based system

Beware of Any Vendor

the NewSQL database you’ll never outgrow

Thank You

