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Abstract

Building highly concurrent systems, such as large-scale
Internet services, requires managing many information flows
at once and maintaining peak throughput when demand ex-
ceeds resource availability. In addition, any platform sup-
porting Internet services must provide high availability and
be able to cope with burstiness of load. Many approaches
to building concurrent systems have been proposed, which
generally fall into the two categories of threaded and event-
driven programming. We propose that threads and events
are actually on the ends of a design spectrum, and that
the best implementation strategy for these applications is
somewhere in between.

We present a general-purpose design framework for build-
ing highly concurrent systems, based on three design com-
ponents — tasks, queues, and thread pools — which encapsu-
late the concurrency, performance, fault isolation, and soft-
ware engineering benefits of both threads and events. We
present a set of design patterns that can be applied to map
an application onto an implementation using these compo-
nents. In addition, we provide an analysis of several systems
(including an Internet services platform and a highly avail-
able, distributed, persistent data store) constructed using
our framework, demonstrating its benefit for building and
reasoning about concurrent applications.

1 Introduction

Large Internet services must deal with concurrency
at an unprecedented scale. The number of concurrent
sessions and hits per day to Internet sites translates
into an even higher number of I/O and network re-
quests, placing enormous demands on underlying re-
sources. Microsoft’s web sites receive over 300 million
hits with 4.1 million users a day; Lycos has over 82 mil-
lion page views and more than a million users daily. As
the demand for Internet services grows, as does their
functionality, new system design techniques must be
used to manage this load.

In addition to high concurrency, Internet services
have three other properties which necessitate a fresh
look at how these systems are designed: burstiness,
continuous demand, and human-scale access latency.
Burstiness of load is fundamental to the Internet; deal-
ing with overload conditions must be designed into the
system from the beginning. Internet services must also
exhibit very high availability, with a downtime of no
more than a few minutes a year. Finally, because ac-
cess latencies for Internet services are at human scale
and are limited by WAN and modem access times, an
important engineering tradeoff to make is to optimize
for high throughput rather than low latency.

Building highly concurrent systems is inherently dif-
ficult. Structuring code to achieve high throughput
is not well-supported by existing programming mod-
els. While threads are a commonly used device for
expressing concurrency, the high resource usage and
scalability limits of many thread implementations has
led many developers to prefer an event-driven ap-
proach. However, these event-driven systems are gen-
erally built from scratch for particular applications,
and depend on mechanisms not well-supported by most
languages and operating systems. In addition, us-
ing event-driven programming for concurrency can be
more complex to develop and debug than threads.

That threads and events are best viewed as the op-
posite ends of a design spectrum; the key to developing
highly concurrent systems is to operate in the middle
of this spectrum. Event-driven techniques are useful
for obtaining high concurrency, but when building real
systems, threads are valuable (and in many cases re-
quired) for exploiting multiprocessor parallelism and
dealing with blocking I/O mechanisms. Most devel-
opers are aware that this spectrum exists, by utilizing
both thread and event-oriented approaches for concur-
rency. However, the dimensions of this spectrum are
not currently well understood.

We propose a general-purpose design framework for



building highly concurrent systems. The key idea be-
hind our framework is to use event-driven program-
ming for high throughput, but leverage threads (in
limited quantities) for parallelism and ease of program-
ming. In addition, our framework addresses the other
requirements for these applications: high availability
and maintenance of high throughput under load. The
former is achieved by introducing fault boundaries be-
tween application components; the latter by condition-
ing the load placed on system resources.

This framework provides a means to reason about
the structural and performance characteristics of the
system as a whole. We analyze several different sys-
tems in terms of the framework, including a distributed
persistent store and a scalable Internet services plat-
form. This analysis demonstrates that our design
framework provides a useful model for building and
reasoning about concurrent systems.

2 Motivation: Robust Throughput

To explore the space of concurrent programming
styles, consider a hypothetical server (as illustrated in
Figure 1) that receives A tasks per second from a num-
ber of clients, imposes a server-side delay of L seconds
per task before returning a response, but overlaps as
many tasks as possible. We denote the task completion
rate of the server as S. A concrete example of such a
server would be a web proxy cache; if a request to the
cache misses, there is a large latency while the page is
fetched from the authoritative server, but during that
time the task doesn’t consume CPU cycles. For each
response that a client receives, it immediately issues
another task to the server; this is therefore a closed-
loop system.

There are two prevalent strategies for handling
concurrency in modern systems: threads and events.
Threading allows programmers to write straight-line
code and rely on the operating system to overlap com-
putation and I/O by transparently switching across
threads. The alternative, events, allows programmers
to manage concurrency explicitly by structuring code
as a single-threaded handler that reacts to events (such
as non-blocking I/O completions, application-specific
messages, or timer events). We explore each of these
in turn, and then formulate a robust hybrid design pat-
tern, which leads to our general design framework.

2.1 Threaded Servers

A simple threaded implementation of this server
(Figure 2) uses a single, dedicated thread to service

server 
latency: 
L sec

task arrival rate: 
A tasks / sec

# concurrent 
tasks in server:

A x L tasks

completion rate: 
S tasks / sec

closed loop 
implies  S = A

Figure 1: Concurrent server model: The server receives
A tasks per second, handles each task with a latency of
L seconds, and has a service response rate of S tasks per
second. The system is closed loop: each service response
causes another tasks to be injected into the server; thus,
S = A in steady state.

the network, and hands off incoming tasks to individ-
ual task-handling threads, which step through all of
the stages of processing that task. One handler thread
is created per task. An optimization of this simple
scheme creates a pool of several threads in advance
and dispatches tasks to threads from this pool, thereby
amortizing the high cost of thread creation and de-
struction. In steady state, the number of threads T
that execute concurrently in the server is S × L. As
the per-task latency increases, there is a corresponding
increase in the number of concurrent threads needed to
absorb this latency while maintaining a fixed through-
put, and likewise the number of threads scales linearly
with throughput for fixed latency.

Threads have become the dominant form of ex-
pressing concurrency. Thread support is standard-
ized across most operating systems, and is so well-
established that it is incorporated in modern lan-
guages, such as Java [9]. Programmers are comfortable
coding in the sequential programming style of threads
and tools are relatively mature. In addition, threads
allow applications to scale with the number of proces-
sors in an SMP system, as the operating system can
schedule threads to execute concurrently on separate
processors.

Thread programming presents a number of correct-
ness and tuning challenges. Synchronization primi-
tives (such as locks, mutexes, or condition variables)
are a common source of bugs. Lock contention can
cause serious performance degradation as the number
of threads competing for a lock increases.



closed loop 
implies  S = A

task arrival rate: 
A tasks / sec

# concurrent 
threads in server:

T threads

completion rate: 
S tasks / sec

thread.sleep( L secs )

dispatch( ) or 
create( )

Figure 2: Threaded server: For each task that arrives at
the server, a thread is either dispatched from a statically
created pool, or a new thread is created to handle the task.
At any given time, there are a total of T threads executing
concurrently, where T = A× L.

Regardless of how well the threaded server is crafted,
as the number of threads in a system grows, operat-
ing system overhead (scheduling and aggregate mem-
ory footprint) increases, leading to a decrease in the
overall performance of the system. There is typically
a maximum number of threads T ′ that a given system
can support, beyond which performance degradation
occurs. This phenomenon is demonstrated clearly in
Figure 3. In this figure, while the thread limit T ′ would
be large for general-purpose timesharing, it would not
be adequate for the tremendous concurrency require-
ments of an Internet service.

2.2 Event-Driven Servers

An event-driven implementation of this server uses
a single thread and non-blocking interfaces to I/O sub-
systems or timer utilities to “juggle” between the con-
current tasks, as shown in Figure 4. Event-driven sys-
tems are typically structured as a program thread that
loops continuously, processing events of different types
from a queue. This thread either blocks on or polls the
queue to wait for new events.

Event-driven programming has its own set of inher-
ent challenges. The sequential flow of each task is no
longer handled by a single thread; rather, one thread
processes all tasks in disjoint stages. This can make
debugging difficult, as stack traces no longer represent
the control flow for the processing of a particular task.
Also, task state must be bundled into the task itself,
rather than stored in local variables or on the stack as
in a threaded system. Event packages are not stan-
dardized, and there are few debugging tools for event-
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Figure 3: Threaded server throughput degradation: This
benchmark has a very fast client issuing many concurrent
150-byte tasks over a single TCP connection to a threaded
server as in Figure 2 with L = 50ms on a 167 MHz Ultra-
SPARC running Solaris 5.6. The arrival rate determines the
number of concurrent threads; sufficient threads are preal-
located for the load. As the number of concurrent threads
T increases, throughput increases until T ≥ T ′, after which
the throughput of the system degrades substantially.

driven programmers. However, event-driven program-
ming avoids many of the bugs associated with synchro-
nization, such as race conditions and deadlocks.

Events generally cannot take advantage of SMP sys-
tems for performance, unless multiple event-processing
threads are used. Also, event processing threads can
block regardless of the I/O mechanisms used. Page
faults and garbage collection are common sources of
thread suspension that are generally unavoidable. In
addition, it may be impossible for all application code
be non-blocking; often, standard library components
and third-party code export blocking interfaces. In
such cases, threads are valuable in that they provide a
mechanism for obtaining concurrency over these block-
ing interfaces.

Event-driven systems tend to be robust to load, with
little degradation in throughput as offered load in-
creases beyond that which the system can deliver. If
the handling of events and bundling of task state is
efficient, the peak throughput can be high. Figure 5
shows the throughput achieved on an event-driven im-
plementation of the network service from Figure 4 as
a function of the load. The throughput exceeds that
of the threaded server, but more importantly does not
degrade with increased concurrency. As the number
of tasks increases, the server throughput increases un-
til the pipeline fills and the bottleneck (the CPU in
this case) becomes saturated. If the number of tasks
in the pipeline is increased further, the excess tasks
are absorbed in the queues of the system, either in
the main event queue of the server, or in the network



closed loop 
implies  S = A

task arrival rate: 
A tasks / sec

completion rate: 
S tasks / sec

timer queue 
with latency:
L seconds

Figure 4: Event-driven server: Each task that arrives at
the server is placed in a main event queue. The dedicated
thread serving this queue sets an L second timer per task;
the timer is implemented as queue which is processed by
another thread. When a timer fires, a timer event is placed
in the main event queue, causing the main server thread to
generate a response.

stack queues associated with the client/server trans-
port connection. The throughput of the server remains
constant in such a situation, although the latency of
each task increases.

Concurrency is explicit in the event-driven approach
and associated directly with queues. With multi-
ple tasks at various stages exposed in one or more
queues, programmers can make use of application-
specific knowledge to reorder event processing for pri-
oritization or efficiency reasons.

2.3 The Thread and Event Spectrum

Although highly concurrent services provide new
fuel for the debate over threads and events, a key ob-
servation is that the design space for concurrency isn’t
limited to these two points. Rather, there is a spec-
trum between these extremes and it is possible to build
hybrid systems that strategically exploit properties of
both. The goal is to obtain the benefit of threads, but
to limit their number so as to prevent performance
degradation. The question to be asked is how many
threads are needed, and whether that number can fit
within the operating range of the system.

The simplest example of a hybrid thread and event
server is shown in Figure 6. It limits the number of con-
current threads running in the system to no more than
T threads in a preallocated thread pool, and buffers in-
coming tasks in an event queue from which the thread
pool feeds. Each task is handled by a single thread us-
ing standard blocking interfaces and developed using
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Figure 5: Event-driven server throughput: Using the same
benchmark setup as in Figure 3, this figure shows the
event-driven server’s throughput as a function of the num-
ber of tasks in the pipeline. The event-driven server has
one thread receiving all tasks, and another thread han-
dling timer events. The throughput flattens in excess of
that of the threaded server as the system saturates, and
the throughput does not degrade with increased concurrent
load.

familiar tools. Excess concurrency is absorbed by the
queue, and thus the response time increases with load
but throughput does not degrade.

This hybrid approach makes it possible to determine
whether a given implementation is sufficient to meet a
target efficiency and throughput. Returning to our ex-
ample service, the concurrency demand on the system
is A×L, which is serviced by the T threads in the pool.
Within the operating regime where A × L ≤ T ≤ T ′,
the hybrid server performs as well as an event-driven
server, as shown in Figure 7(a). However, if A×L > T ′,
then it will be impossible to service the concurrency de-
mand without creating more than T ′ threads, as shown
in Figure 7(b). If the size of the thread pool exceeds T ′,
throughput degrades regardless of whether the thread
pool is as large as the concurrency load. Therefore,
T should be set to never exceed T ′, and if A > T/L,
then the excess tasks will accumulate in the task queue,
which absorbs bursts but increases the latency to pro-
cess each task.

Figure 7(c) shows the performance of a microbench-
mark implementation of this hybrid server for various
values of L, demonstrating that as L increases, the hy-
brid system will be unable to meet the concurrency
demand A × L. Note that because tasks are buffered
by the incoming queue, throughput will not degrade as
long as the size of the thread pool is chosen to be less
than T ′, as shown in Figure 7(d).
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Figure 7: Throughput of the hybrid event and thread system: (a) and (b) illustrate the theoretical performance of the
hybrid server, where T ′ is larger or smaller than the concurrency demand A×L. (c) shows measurements of the benchmark
presented in Figure 3, augmented by placing a queue in front of the thread pool, for different values of L and T . (d) shows
the throughput of the hybrid server when T = T ′, which is the optimal operating point of the server. Here, L = 50ms.
The middle plateau in (d) corresponds to the point where the pipeline has filled and convoys are beginning to form in the
server. The right-hand plateau in (d) signifies that the convoys in all stages of the pipeline have merged. Note that the
x-axis of (a) and (b) are on a linear scale, while (c) and (d) are on logarithmic scales.

closed loop 
implies  S = A

task arrival rate: 
A tasks / sec

completion rate: 
S tasks / sec

# concurrent 
threads in server:

T<T’ threads

thread.sleep( L secs )

thread pool 
of T’ threads

event queue to 
absorb bursts 

of tasks

Figure 6: A hybrid thread and event system: This server
uses a constant-size thread pool of T threads to service tasks
with an arrival rate of A from an incoming task queue; each
task experiences a service latency of L seconds. If the num-
ber of tasks received by the hybrid server exceeds the size
of the thread pool, the excess tasks are buffered by the in-
coming task queue.

2.4 The Case for a New Design Framework

There are many parameters to consider in the de-
sign space of highly concurrent systems. One must not
only strike the right balance between event-driven and
threads-based concurrency; issues such as fault isola-
tion, data sharing, and ease of programming are im-
portant concerns as well. The number of choices in
this design makes it difficult for application designers
to construct new applications easily and reason about

how they will perform.
This initial investigation into the spectrum of con-

currency models indicates the need for systematic tech-
niques for mapping an application design onto an im-
plementation that provides efficiency and robustness
despite the inherent limits of the underlying operating
system. We feel that the design space that represents
the full spectrum between threads and events has not
yet been adequately explored; this paper attempts to
understand its characteristics and the tradeoffs inher-
ent when building applications in this space.

Rather than continue to build new concurrency
models in an ad hoc manner for specific applications,
we propose a general-purpose design framework that
addresses the holistic requirements of highly concur-
rent systems. This framework provides a structure
within which one can build and reason about large-
scale server applications. By following a small set
of specific design principles, application designers can
make certain assertions about the performance and
fault-isolation properties of their system.

3 Design Framework

3.1 Framework Components

There are four general-purpose building blocks for
constructing applications under our framework: tasks,
thread pools, and queues.



3.1.1 Tasks

A task is the fundamental unit of work in our frame-
work. It is a typed message that contains a description
of some work to be done, along with the data required
to complete that task. An example of a task might be
“retrieve the contents of a web page” where the data
associated with that task is a URL.

Tasks are processed in a series of stages by individ-
ual components of the application. For example, for a
web server to retrieve a static HTML page, the task’s
URL must be first parsed, the page looked up in a
local cache, and finally (if necessary) read from disk.
Stages of a task can either be executed in sequence or
in parallel, or a combination of the two.

By decomposing the task into a series of stages, it is
possible to distribute those stages over multiple physi-
cal resources, and reason about the flow of those tasks
for load-balancing and fault-isolation purposes.

3.1.2 Thread pools

A thread pool is a collection of threads on the same
machine that operate by continually processing tasks.
Logically, a thread pool is associated with a set of task
types, and each thread in the pool executes a piece of
code that consumes a task, processes it, and dispatches
one or more outgoing tasks to a thread pool. A thread
pool must have at least one thread within it.

Thread pools are the only source of execution con-
texts within our framework. Modularity is accom-
plished by structuring applications as a set of thread
pools each processing a particular set of task types.
Parallelism can be exploited since each thread can run
on a separate CPU in a multiprocessor system.

3.1.3 Queues

Queues are the means of communication between
thread pools. A queue logically consists of a list of
tasks; thread pools pull tasks from their incoming task
queue, and dispatch tasks by pushing them onto the
incoming queues of thread pools. The operation of two
thread pools can be composed by inserting a queue be-
tween them, thereby allowing tasks to pass from one
to the another. We call a thread pool coupled with its
incoming task queue a task handler.

Queues act as the separation mechanism between
thread pools, by introducing an explicit control bound-
ary. Because a thread cannot cross over this boundary
(it can only pass data across the boundary by enqueu-
ing a task), it is possible to constrain the execution
of threads to a given task handler. This is desirable

(a) Wrap (b) Pipeline (d) Replicate(c) Combine

Before

After

Figure 8: The four design patterns. This figure depicts each
of the four design patterns used to construct applications
within our framework.

for two reasons. First, it makes applications easier to
debug, as the thread pool’s internal state is not visible
to other thread pools. Second, it can eliminate cases
where threads “escape” into a piece of code where they
may never return — for example, into a library that
performs blocking I/O operations.

In addition, queues provide a mechanism for over-
flow absorption, backpressure, and fairness. Queues
act to buffer incoming tasks when their number out-
weighs the number of threads available to process
them. Backpressure can be implemented by having a
queue reject new entries (e.g., by raising an error con-
dition) when it becomes full. This is important as it
allows excess load to be rejected by the system, rather
than buffering an arbitrary amount of work. Fairness
can be accomplished by scheduling thread pools based
on their incoming queue length.

3.2 Design Patterns

We turn now to the question of how to map an appli-
cation onto an implementation using the components
presented above. The decision of where thread pools
and queues are used has an important impact on the
performance and fault-tolerance properties of the re-
sulting application.

We propose four design patterns that can be ap-
plied to construct an application using our framework.
These patterns encapsulate fundamental properties of
our framework components and describe how to build
up an application using them.

3.2.1 Wrap

The Wrap pattern involves “wrapping” a set of threads
with a queue interface, as illustrated in Figure 8(a).
Each thread processes a single task through some num-
ber of stages and may block one or more times. Ap-
plying Wrap places a single input queue in front of the
set of threads, effectively creating a task handler out of
them. This operation makes the processing within the
task handler robust to load, as the number of threads



inside of the task handler can now be fixed at a value
that prevents thread overhead from degrading perfor-
mance, and additional tasks that cannot be serviced
by these threads will accumulate in the queue.

The Wrap pattern was used in our example
thread/event hybrid system in Section 2.3. In that
example, each thread in the pool processed a single
task and made one blocking call (a sleep operation).
By fixing the number of threads within the pool to
some value T < T ′ and placing a queue in front of
them, peak throughput was be maintained despite the
threads sleeping within the task handler.

3.2.2 Pipeline

The Pipeline pattern takes a single-threaded piece of
code and splits it into multiple pipeline stages by intro-
ducing a queue and thread pool boundary at various
points. This is illustrated in Figure 8(b). For example,
if queues are introduced for each blocking I/O call, this
operation makes each call appear to be non-blocking,
as separate threads are responsible for processing the
task on either side of the call.

The Pipeline pattern has two uses. The first is to
limit the number of threads allocated for handling low-
concurrency operations. If a pipeline stage has a task
arrival rate of A tasks/second and a per-task latency of
L seconds, the number of threads needed to maintain
a completion rate of A for that stage is A × L, as in
Section 2.3. Now consider a pipeline stage which is
limited in the number of concurrent tasks that it can
handle. For example, UNIX filesystems can generally
handle a fixed number (between 40 and 50) concurrent
read/write requests before becoming saturated. We
call this limit the width of the pipeline stage and denote
it by the value W .

The width of a pipeline stage places an upper bound
on the number of threads that yield concurrency ben-
efit to that stage. That is, if W < (A× L) there is no
need to supply the stage with more than W threads;
additional threads within that stage would only re-
main idle. The completion rate S of the stage will be
S = W/L; if W < (A×L) then S < A. Limited width
therefore limits the completion rate of a task handler;
width can only be increased through replication (dis-
cussed below).

Pipeline provides a way of limiting the threads
needed for a particular pipeline stage to that stage’s
width, rather than “wasting” threads that would oth-
erwise remain idle. Breaking the processing for a task
into separate pipeline stages allows the size of the
thread pool to be tailored for that stage, and allows

that stage to be replicated across separate physical re-
sources (as we will see below) to achieve greater paral-
lelism.

The second use of the Pipeline pattern is to increase
locality. Cache locality is an increasingly important
concern for building high-throughput systems as the
performance gap between cache and main memory in-
creases. In addition, the use of multiple processors
taxes the available memory bandwidth and can lead
to lengthy stall times if a cache miss must be taken.

In a thread-per-task system, the instruction cache
tends to take many misses as the thread’s control
passes through many unrelated code modules to pro-
cess the task. In addition, whenever a context switch
occurs (due to thread preemption or a blocking I/O
call, say), other threads will invariably flush the wait-
ing thread’s state out of the cache. When the original
thread resumes execution, it will need to take many
cache misses in order to bring its code and state back
into the cache. In this situation, all of the threads in
the system are competing for limited cache space.

Applying the Pipeline pattern can increase data and
instruction cache locality to avoid this performance hit.
Each pipeline stage can process a “convoy” of tasks all
at once, keeping the instruction cache warm with its
own code, and the data cache warm with any shared
data used to process the convoy. In addition, each
pipeline stage has the opportunity to service incoming
tasks in an order that optimizes for data cache locality.
For example, if queues are serviced in last in, first out
order, then the tasks that arrived most recently may
still be in the data cache.

Although Pipeline increases task processing latency,
recall that the goal of our framework is to optimize
for aggregate throughput, not the time to process an
individual task.

3.2.3 Combine

The Combine pattern (Figure 8(c)) combines two sep-
arate task handlers into a single task handler with a
shared thread pool. As we have seen, if the number of
threads in the system is too high then performance will
degrade. Combine is used to allow multiple task han-
dlers to share a thread pool for the purposes of thread
conservation.

Consider a set of three sequential pipeline stages re-
sulting from the use of Pipeline to isolate a blocking
operation into its own thread pool. If the first and
third stages are both CPU bound, their width W is
the number of CPUs in the system. Rather than have
two thread pools of size W , a single thread pool can



be shared between them by applying Combine. In this
sense, Combine is the inverse of Pipeline.

3.2.4 Replicate

The Replicate pattern (Figure 8(d)) makes a “copy”
of an existing task handler. Additionally, it either in-
stantiates that task handler on a new set of physical
resources, places a failure boundary between the two
copies, or both. Replicate is used to achieve both par-
allelism and fault isolation.

By replicating a task handler across physical re-
sources, the combined width W of the replicas is in-
creased. This can be used to eliminate a bottleneck in
a pipeline of task processing stages. A failure bound-
ary can be introduced between two replicas by run-
ning them in separate address spaces or on separate
machines. This is done to make the replicas highly
available; if one fails, the other can continue process-
ing tasks.

Replication raises concerns about distributed state
management. The failure of a network link within the
cluster can lead to partitioning, which is troublesome if
task handlers residing on different cluster nodes need
to maintain consistent state. There are several ways
to avoid this problem. One is to employ one of vari-
ous distributed consistency or group membership pro-
tocols [20, 27]. Another is to engineer the cluster inter-
connect to eliminate partitioning. This is the approach
taken by DDS [10] (see Section 4.1) and the Inktomi
search engine [6].

3.3 Applying the Design Patterns

In this section we provide a set of heuristics that
can be used to determine how the above design pat-
terns should be applied to a given application. Each
of the patterns has an effect on the performance or
fault-isolation properties of the application. In ad-
dition, there are a number of constraints that must
be met to keep the application within its operational
range. Obtaining the desired application properties,
therefore, can be viewed as solving a multivariate con-
straint problem. The goal is to maximize the service
task completion rate and minimize the probability of
application failure. The various constraints include:

Physical resource limits: The number of cluster
nodes available to the application is assumed to be
fixed at some value. Likewise, the CPU speed, amount
of memory, disk and network bandwidth, and other pa-
rameters are assumed fixed for a given configuration.

Thread limits: As we have seen, thread implementa-
tions generally impose a limit on the number of threads
that the system can support before performance degra-
dation occurs, which we call T ′. To what extent this
limit applies depends on the thread implementation.
A user-level threads package may allow T ′ threads per
process, while kernel-level threads may be limited to
T ′ per machine.

Latency and width: The values for L and W for a
given task processing stage drive much of the decision
to apply the design patterns above.

Starting with a thread-per-task implementation, the
following design rules can be used to transform that
implementation into one that obtains the benefits of
our framework.

Apply Wrap to introduce load conditioning:
Placing the application threads within a task handler
structure allows the number of threads to be limited
to some optimum value (less than T ′), with additional
tasks absorbed by the queue. This was the transforma-
tion used to produce the hybrid system in Section 2.3.

Apply Pipeline to avoid wasting threads: Af-
ter the above transformation, it is possible to increase
throughput by isolating code with a low width W into
its own task hander, and limit the number of threads
within that task handler to W . For example, one
can apply Pipeline at the point where filesystem calls
are made, and limit the number of threads within the
filesystem task handler to the number of concurrent
accesses that the filesystem can handle. This effec-
tively “frees” additional threads which can be placed
into other task handlers that can make use of them.

Apply Pipeline for cache performance: As dis-
cussed above, Pipeline can also be used to increase
cache locality by isolating the code for related task
processing stages within its own task handler. The
cache locality benefit of structuring applications in this
way depends on two major factors. The first is the
amount of code and shared data used internally by a
task handler when processing a convoy of tasks. This
determines the potential cache locality benefit that can
be achieved internally to a task handler. The second
is the amount of data carried between task handlers
when a task is pushed onto a queue. This determines
the potential data cache locality benefit of processing
tasks out of order. The performance effect of pipelin-
ing task processing can be measured directly, and used
to determine whether a particular application should
use this structure.

Apply Replicate for fault tolerance: Replica-
tion of task handlers across multiple resources increases
the reliability of the application as a whole, by intro-



ducing redundancy for task processing stages. If we
replicate a task handler n times, and the probability
of a failure for each task handler during a given time
interval is F0, then the probability that all replicas will
fail during this time is F = Fn0 . As we can see, replica-
tion has an exponential effect on the reliability of the
set of task handlers.

The benefit of replication depends on several factors.
One is whether enough physical resources are available
to support replication. If we wish to replicate across
cluster nodes n times to achieve a particular failure
probability F , then clearly n cluster nodes must be
available. Another is whether the task handlers to be
replicated will rely on shared state, which raises several
design concerns, as discussed above.

Apply Replicate to scale concurrency: Repli-
cate can also be used to effectively increase the concur-
rency width W of a particular task handler by running
multiple instances on separate resources. In general
replicating a task handler n times increases the width
of the collective replicas to W × n. For a task han-
dler with latency L, this increases the task comple-
tion rate of the combined replicas from S = W/L to
S = (W × n)/L, which can eliminate the throughput
bottleneck.

Apply Combine to limit the number of
threads per node: After pipelining and replicating
the thread-per-task application, we may end up with a
large number of task handlers each with their own pri-
vate thread pool. If the latency of some of these task
handlers is low, then it makes sense to “share” thread
pools between them, thereby reducing the overall num-
ber of threads. As discussed above it is important to
limit the number of threads per node to some value T ′,
which can be measured for a given system. Combine
merges the thread pools for disparate task handlers on
the same node, allowing threads to be conserved.

These heuristics assumes that the application de-
signer is also keeping in mind the inherent resource
limits of the underlying platform. For example, a task
handler should not be placed onto a node if that would
increase the total number of threads on that node be-
yond T ′. While these heuristics can help to structure
an application using our framework, they are by no
means exhaustive.

The structure of an application constructed using
our framework is illustrated in Figure 9. Here we see 6
thread pools, each with their own incoming task queue,
running on 5 separate machines. The communication
arrows are only intended as an example of how tasks
might flow between application components; a real ap-
plication would involve many more components and

Replicate CombineWrap Pipeline

Figure 9: An application resulting from the use of the de-
sign patterns. Data flows from left to right, with tasks
entering the application at the leftmost queue. Dashed
boxes represent machine boundaries. Each design pat-
tern is labelled below its use.

communication paths between them.

3.4 Principles

Apart from the design patterns presented above, our
framework reveals several other principles should be
followed when engineering a system.

First, task handlers should be stateless whenever
possible. This allows a task handler to be lock-free as
no state is shared between its threads. In addition this
allows task handlers to be easily created or restarted
on demand, for example, in response to a load spike or
failure.

Second, data associated with tasks should be passed
by value, rather than by reference, whenever possi-
ble. Data sharing between two task handlers raises
a number of concerns. Consistency of shared data
must be maintained using locks or a similar mecha-
nism; locks can lead to race conditions and long ac-
quisition wait-times when contended for, which in turn
reduces concurrency. Also, passing data by reference is
problematic when two task handlers are located in dif-
ferent addresses spaces or machines. While Distributed
Shared Memory (DSM) [18] can be used to make cross-
address-space sharing transparent, DSM mechanisms
are complex and raise concurrency concerns of their
own. Data sharing requires task handlers to agree
upon who is responsible for deallocating data once it
is no longer used. In a garbage-collected environment
(within a single address space) this is straightforward;
without garbage collection, more explicit coordination
is required. Perhaps most importantly, data sharing re-
duces fault isolation. If a task handler fails and leaves
shared data in an inconsistent state, any other task
handlers sharing that data must be able to recover from
this situation or risk failure themselves.



An alternative to passing by value is to pass by refer-
ence with the originator relinquishing access. Another
means of reducing data sharing is to space-partition
application state, in which multiple pipeline stages or
replicas of a task handler process their own private
partition of the application state, rather than sharing
state and using locks to maintain consistency.

The third principle is that fate sharing should be
avoided. If two task handlers share physical resources,
they also share their fate: that is, if the physical re-
sources fail (e.g., the node crashes), both task handlers
will also fail. Clearly, replicas of the same task handler
should be kept on separate physical nodes, or at least
in separate address spaces, to avoid this fate sharing.

Note that task handlers can be linked in terms of
load, not just in terms of failures. For example, if
one replica of a task handler fails, other replicas will
be required to take on its load in order to maintain
throughput.

The fourth principle is that admission control should
be done at the “front door” of the application, that is,
at its interface to the outside world. By denying or
delaying task entry at the application’s topmost layer,
task handlers are able to stay within their operational
range in terms of resource demand. This approach re-
quires that all task handlers implement backpressure
by rejecting new tasks when queue lengths become too
long. Without an external admission control mecha-
nism, a slow task handler can become overloaded and
many tasks can queue up within the application. This
increases latency as well as resource demand within the
system.

4 Analysis of the Framework

To demonstrate its utility, we analyze a number of
existing systems in terms of our design framework.
These systems predate this paper, and so were not
built with our framework explicitly spelled out, al-
though they were designed with the framework’s key
features in mind.

4.1 Distributed Data Structures

In [10], we present a scalable, available cluster-based
storage layer for Internet services. The system exposes
conventional data structure APIs (such as hash tables
and trees) to service authors, but replicates the state
of the data structures throughout the cluster for the
sake of scalability and availability. All persistent state
is managed by software components called bricks; ap-
plications run in the same cluster as the bricks, but
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Figure 10: Distributed hash tables: (a) illustrates the struc-
ture of the distributed hash table “brick” process; the thick
arrows represent request tasks, and the thin arrows repre-
sent completion tasks. (b) shows the ideal operating system
and I/O core implementation, in which the OS exports a
non-blocking interface. (c) shows our current implementa-
tion, in which blocking the I/O interfaces exposed by the
Java class libraries force us to dispatch threads to handle
I/O requests from a fixed-sized thread pool. There are also
dedicated threads that block listening on incoming sockets.

communicate with them using distributed data struc-
ture (DDS) libraries. These libraries handle the distri-
bution, replication, and recovery of the data, shielding
services from this complexity. The DDS bricks were de-
signed using a hybrid thread/event framework tailored
for the high concurrency and throughput required by
Internet services. Figure 10(a) illustrates the bricks’
design. The DDS layer is implemented in Java using
Linux as the cluster operating system.

A brick is a single process composed of many lay-
ers, each of which is separated by a thread boundary.
References to tasks are placed on queues that bridge
these boundaries. The bottom layer of a brick is an
abstraction library called the I/O core. The library
provides non-blocking interfaces to both disk and net-
work I/O, as well as implementations of queues, events,
and thread pools. A buffer cache layer sits on top of
the disk interface, which is used to implement a single-
node hash table layer. We expose the single-node hash
table to the rest of the cluster with an asynchronous
RPC layer using the networking interfaces of the I/O
core.

The buffer cache, the single-node hash table, and the



asynchronous RPC layer each have a single, dedicated
thread that waits for tasks on that layer’s task queue.
When a task arrives in a given layer, the task’s state
is retrieved and the task is passed to an event handler
within that layer. No data locks are necessary due to
the single-threaded design of these layers, although one
implication is that event handlers can never block.

The state for each distributed data structure is hor-
izontally partitioned. For the sake of availability, par-
titions are replicated across at least two cluster nodes.
Replicas are kept consistent with two-phase commits,
yielding one-copy equivalence.

An ideal implementation of the I/O core layer is
shown in Figure 10(b). Here, the operating system ex-
poses non-blocking interfaces to the disk and network,
allowing the I/O core to be implemented using a single-
threaded state machine. Unfortunately, Java’s class li-
braries do not expose non-blocking I/O interfaces, and
the version of Linux used in our cluster does not pro-
vide non-blocking file system interfaces. Therefore, the
I/O core uses a thread pool (as shown in Figure 10(c))
to provide non-blocking interfaces to the high layers.
For each task placed in the I/O core’s queue, a thread is
dispatched from the pool to issue the blocking I/O re-
quest. The thread pool is made large enough to handle
the width of the disk and of the inter-cluster network
I/O. In this case the disk width is approximately 30
threads, and the network width is 2 times the number
of cluster nodes (two threads are dedicated per network
connection: one for reading and one for writing). Note
that as the number of cluster nodes grows, the number
of threads required by the network layer increases.

The DDS is an example of a complex, hybrid thread
and event system that fits into our framework. Each
layer of the DDS brick is an event-driven task handler
with a single thread. The lowest layer of the DDS
uses a thread pool to gain concurrency from blocking
I/O interfaces; this is an example of the Wrap pattern.
The Pipeline pattern is used to separate the higher
layers of the DDS, and the Replicate pattern is used to
replicate bricks across multiple cluster nodes. The fact
that there is a single thread pool serving both disk and
network I/O exemplifies the Combine pattern.

4.2 vSpace

vSpace is a platform for scalable, flexible Internet
services.1 vSpace uses workstation clusters and the
Java programming language to provide a high-level
programming model which hides most of the details

1vSpace is still in the early stages of development, and as of
yet no concrete performance results are available.

of Internet service construction from application devel-
opers. vSpace borrows many of the ideas embodied in
MultiSpace [11] and TACC [7], but goes a step further
by providing data persistence (through a Distributed
Data Structure layer) and an event-driven execution
model for high concurrency.

In vSpace, applications are constructed as a set of
workers which run across the nodes of a workstation
cluster. Workers operate by processing tasks, each of
which generally consists of a small amount of data.
Each task has an associated task type which specifies its
contents; workers register with the system their ability
to handle one or more task types. For example, an
HTTP protocol worker might handle tasks of type In-
comingHttpRequest while a disk-storage worker might
handle types DiskWriteRequest and DiskReadRequest.
In addition, workers can dispatch outgoing tasks for
other workers to handle.

The vSpace model maps very neatly onto our de-
sign framework. vSpace workers correspond directly
to task handlers, and queues are implemented through
the task dispatch operation in vSpace, which can cause
tasks to flow either to workers on the same node or
across the cluster network to other nodes. Each vS-
pace worker has a thread pool of size one; running
multiple workers on a single node is used to achieve
high concurrency.

In vSpace, the Pipeline pattern is used to decom-
pose applications into workers, and Replicate to achieve
scalability and fault tolerance across nodes. Wrap is
used to introduce a single logical task queue for the
workers each node. Because all vSpace workers use
soft state, except that managed by the Distributed
Data Structure layer, the failure of a cluster node does
not affect other nodes, and the workers on that node
can be restarted elsewhere. Load balancing is accom-
plished by interposing on the task dispatch operation:
vSpace determines the most suitable cluster node, and
worker on that node, to handle each new task. This de-
termination is based on load information periodically
gathered from cluster nodes.

4.3 Flash and Harvest

Our framework can be used to analyze other suc-
cessful concurrent system designs. The Flash web
server [23] and the Harvest web cache [4] are based on
an asynchronous, event-driven model very much like
that proposed here. Although each was conceived for
a specific application, they can be mapped onto our
design framework. In Flash, each component of the
web server responds to particular types of events, such



as socket connections or filesystem accesses. The main
server process is responsible for continually dispatch-
ing events to each of these components, which are im-
plemented as library calls. Because certain I/O op-
erations (in this case, filesystem access) do not have
asynchronous interfaces, the main server process han-
dles these events by dispatching them to helper pro-
cesses via IPC. Helper processes issue (blocking) I/O
requests and return an event to the main process upon
completion. Harvest’s structure is very similar: it is
single-threaded and event-driven, with the exception
of the FTP protocol, which is implemented by a sepa-
rate process.2

Flash and Harvest’s main thread and helper pro-
cesses can be considered task handlers in our frame-
work as would be produced by applying the Pipeline
pattern. Queues are implemented using UNIX IPC
mechanisms (e.g., a pipe). Each of the task handlers
has a thread pool of size one, and multiple helper pro-
cesses are created (using the Replicate pattern) to in-
crease throughput. Our framework suggests improve-
ments on the Flash and Harvest designs: Pipeline could
be used to further decompose event processing stages
to increase bandwidth, and Replicate could be applied
to produce a clustered version of each application.

5 Related Work

Several other programming models have been pro-
posed for building scalable, highly concurrent systems.
None of these systems, however, attempt to cover the
wide range of requirements addressed by our frame-
work.

Application servers, including BEA WebLogic [3],
ObjectSpace Voyager [22], and IBM WebSphere [15]
aim to support scalable, concurrent applications using
industry-standard programming interfaces, such as En-
terprise Java Beans [25] and Java Servlets [16]. Gen-
erally, application servers are used as a “middleware”
component between a presentation system (such as a
web server) and a back-end database or mainframe.
While these systems provide a variety of application
programming interfaces, their internal structure is gen-
erally thread-based. Threads, network connections,

2Interestingly, Harvest’s asynchronous disk read mechanism
relied on the use of the select() call in UNIX, which under most
implementations (including Solaris, Linux, and FreeBSD) re-
turns immediately regardless of whether or not the requested
data is in fact in memory. Therefore, the application thread
could block waiting for data to be read from disk even when
non-blocking file descriptors are used. Squid [21] corrected this
bug by using a separate thread pool to issue disk I/O requests.

and database connections are usually pooled to limit
resource consumption on the server; replication is used
across several servers to provide scalability and fault
isolation. Because these systems tend to be imple-
mented on standard Java Virtual Machines and op-
erating systems, they have little control over low-level
I/O and concurrency mechanisms. As such, these sys-
tems require overprovisioning of resources to handle
load bursts.

The structure of our framework was influenced
greatly by TACC [7] and SNS [5], which propose scal-
able service models based on collections of workers
replicated across a cluster. Although the structural
components of task handlers and queues are evident in
these systems, they did not adopt an event-driven ap-
proach to achieving robust high concurrency. Rather,
they rely upon threads, and obtain scalability by grow-
ing the number of cluster nodes.

The JAWS web server [13] combines an event-driven
concurrency mechanism with a high-level program-
ming construct, the Proactor pattern [14], which is in-
tended to simplify the development of highly concur-
rent, event-driven applications. While JAWS does not
directly address fault isolation or clustering, the use of
the Proactor pattern to describe the event-driven pro-
gramming model is a useful tool which could be applied
to the task handlers in our framework.

Kaashoek et al. [17] propose specializing operating
system architectures for server applications, using In-
ternet services as a specific example. While this work
focuses on low-level aspects of O/S performance for
servers (such as disk and network access overhead), it
also realizes the benefit of an event-driven concurrency
model. Application-Specific Handlers [29] are used to
install application-level event handlers in the kernel for
added performance. This approach complements our
design framework by providing novel kernel-level func-
tionality to improve I/O performance.

Other work has looked at improving threaded and
event-driven programming models. Banga et al. [2]
suggest changes to the UNIX system call interface to
better support event-driven applications, and sched-
uler activations [1] can be used to reduce the cost of
kernel-based thread implementations.

The Click modular packet router [19] uses a soft-
ware architecture which is similar to our framework;
packet processing stages are implemented by separate
code modules with their own private state. Click mod-
ules communicate using either queues or function calls,
so threads can cross module boundaries. Click is a
domain-specific system for obtaining high concurrency
in a packet router, and as such is less general and lower-



level than the framework presented here.
Click uses both push and pull semantics for flow con-

trol; that is, packet processing modules can send data
downstream or request that data be pushed upstream
to it. The rationale for pull processing is that push se-
mantics require packets to be queued up before stages
which are not ready to process a packet (for exam-
ple, when a network port is busy). The push/pull dis-
tinction is important when threads can cross module
boundaries, as is the case in Click. Our framework
always imposes a queue between modules, so threads
push data downstream (to other queues) and pull data
upstream (from their incoming queue). Click could
be implemented using our framework, by creating a
thread pool boundary (using the Wrap pattern) where
a queue exists between two Click modules. Click mod-
ules that communicate through function calls would
operate within a single task handler using our frame-
work.

6 Future Work and Conclusions

We believe that our design framework will enable
the construction of a new class of highly concurrent
applications. We are in the process of building several
systems based upon this design. These include novel
Internet services [30, 8], a new segment-based database
storage manager [12], and a secure, consistent, highly
available global filesystem [26]. All of these applica-
tions share the concurrency and availability require-
ments targeted by our framework.

In addition, we continue to explore the design trade-
offs within this framework. Many approaches to load-
balancing and resource management within a cluster
have yet to be investigated in depth. In particular,
we are interested in using economic models to manage
arbitration for “competing” applications sharing the
same physical resources [24, 28].

Building event-driven systems could be supported
by better high-level language features for managing
state, consistency, and scheduling. While much of our
current work is based in Java [9], new language abstrac-
tions supporting our framework reveal several avenues
for future research.

Our goal has been to map out the design space of
highly concurrent systems, and to present a framework
which provides a way to reason about their perfor-
mance, fault isolation, and software engineering char-
acteristics. Our framework is based on three simple
components — tasks, queues, and thread pools — which
capture the benefits of both threaded and event-driven

concurrency models. We have presented a set of im-
plementation guidelines, expressed as a small number
of design patterns, which allow application designers
to directly obtain the benefit of these framework com-
ponents.

The demands of highly concurrent systems, such as
Internet services, present new challenges for operat-
ing system and language designers. High concurrency,
high throughput, burstiness, and fault-tolerance are
all required for these applications, yet existing sys-
tems generally fail to provide all of these features in
a form which is “ready to use” by application develop-
ers. Our design framework presents a straightforward
programming model which allows these applications
to be constructed using existing techniques (such as
threads, non-blocking I/O, and clustering); we suggest
that future O/S and language designs should support
our framework as a first-class programming schema.
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