
Hadoop Security Design

Owen O’Malley, Kan Zhang, Sanjay Radia, Ram Marti, and Christopher Harrell
Yahoo!

{owen,kan,sradia,rmari,cnh}@yahoo-inc.com

October 2009

Contents

1 Overview 2
1.1 Security risks . 2
1.2 Requirements . 2
1.3 Design considerations . 3

2 Use Cases 3
2.1 Assumptions . 3
2.2 High Level Use Cases . 4
2.3 Unsupported Use Cases . 6
2.4 Detailed Use Cases . 6

3 RPC 8

4 HDFS 8
4.1 Delegation Token . 10

4.1.1 Overview . 10
4.1.2 Design . 10

4.2 Block Access Token . 12
4.2.1 Requirements . 12
4.2.2 Design . 12

5 MapReduce 14
5.1 Job Submission . 14
5.2 Task . 15

5.2.1 Job Token . 15
5.3 Shuffle . 15
5.4 Web UI . 16

6 Higher Level Services 16
6.1 Oozie . 16

1

1 OVERVIEW

7 Token Secrets Summary 17
7.1 Delegation Token . 17
7.2 Job Token . 17
7.3 Block Access Token . 17

8 API and Environment Changes 18

1 Overview

1.1 Security risks

We have identified the following security risks, among others, to be addressed
first.

1. Hadoop services do not authenticate users or other services. As a result,
Hadoop is subject to the following security risks.

(a) A user can access an HDFS or MapReduce cluster as any other user.
This makes it impossible to enforce access control in an uncooperative
environment. For example, file permission checking on HDFS can be
easily circumvented.

(b) An attacker can masquerade as Hadoop services. For example, user
code running on a MapReduce cluster can register itself as a new
TaskTracker.

2. DataNodes do not enforce any access control on accesses to its data blocks.
This makes it possible for an unauthorized client to read a data block as
long as she can supply its block ID. It’s also possible for anyone to write
arbitrary data blocks to DataNodes.

1.2 Requirements

1. Users are only allowed to access HDFS files that they have permission to
access.

2. Users are only allowed to access or modify their own MapReduce jobs.

3. User to service mutual authentication to prevent unauthorized NameN-
odes, DataNodes, JobTrackers, or TaskTrackers.

4. Service to service mutual authentication to prevent unauthorized services
from joining a cluster’s HDFS or MapReduce service.

5. The acquisition and use of Kerberos credentials will be transparent to
the user and applications, provided that the operating system acquired a
Kerberos Ticket Granting Tickets (TGT) for the user at login.

6. The degradation of GridMix performance should be no more than 3%.

2

1.3 Design considerations 2 USE CASES

1.3 Design considerations

We choose to use Kerberos for authentication (we also complement it with a
second mechanism as explained later). Another widely used mechanism is SSL.
We choose Kerberos over SSL for the following reasons.

1. Better performance Kerberos uses symmetric key operations, which are
orders of magnitude faster than public key operations used by SSL.

2. Simpler user management For example, revoking a user can be done
by simply deleting the user from the centrally managed Kerberos KDC
(key distribution center). Whereas in SSL, a new certificate revocation
list has to be generated and propagated to all servers.

2 Use Cases

2.1 Assumptions

1. For backwards compatibility and single-user clusters, it will be possible to
configure the cluster with the current style of security.

2. Hadoop itself does not issue user credentials or create accounts for users.
Hadoop depends on external user credentials (e.g. OS login, Kerberos cre-
dentials, etc). Users are expected to acquire those credentials from Ker-
beros at operating system login. Hadoop services should also be configured
with suitable credentials depending on the cluster setup to authenticate
with each other.

3. Each cluster is set up and configured independently. To access multiple
clusters, a client needs to authenticate to each cluster separately. However,
a single sign on that acquires a Kerberos ticket will work on all appropriate
clusters.

4. Users will not have access to root accounts on the cluster or on the ma-
chines that are used to launch jobs.

5. HDFS and MapReduce communication will not travel on untrusted net-
works.

6. A Hadoop job will run no longer than 7 days (configurable) on a MapRe-
duce cluster or accessing HDFS from the job will fail.

7. Kerberos tickets will not be stored in MapReduce jobs and will not be
available to the job’s tasks. Access to HDFS will be authorized via dele-
gation tokens as explained in section 4.1.

3

http://gost.isi.edu/publications/kerberos-neuman-tso.html
http://en.wikipedia.org/wiki/Secure_Sockets_Layer

2.2 High Level Use Cases 2 USE CASES

2.2 High Level Use Cases

1. Applications accessing files on HDFS clusters Non-MapReduce ap-
plications, including hadoop fs, access files stored on one or more HDFS
clusters. The application should only be able to access files and services
they are authorized to access. See figure 1. Variations:

(a) Access HDFS directly using HDFS protocol.

(b) Access HDFS indirectly though HDFS proxy servers via the HFTP
FileSystem or HTTP get.

Name
Node

Data
Node

kerb(joe)

kerb(hdfs)
block token

Application MapReduce
Task

block token

delg(joe)

Figure 1: HDFS High-level Dataflow

2. Applications accessing third-party (non-Hadoop) services Non-
MapReduce applications and MapReduce tasks accessing files or opera-
tions supported by third party services. An application should only be
able to access services they are authorized to access. Examples of third-
party services:

(a) Access NFS files

(b) Access ZooKeeper

3. User submitting jobs to MapReduce clusters A user submits jobs to
one or more MapReduce clusters. Jobs can only be submitted to queues
the user is authorized to use. The user can disconnect after job submission
and may re-connect to get job status. Jobs may need to access files stored
on HDFS clusters as the user as described in case 1). The user needs
to specify the list of HDFS clusters for a job at job submission. Jobs
should only be able to access only those HDFS files or third-party services
authorized for the submitting user. See figure 2. Variations:

(a) Job is submitted via JobClient protocol

(b) Job is submitted via Web Services protocol (Phase 2)

4

2.2 High Level Use Cases 2 USE CASES

Job
Tracker

Task
Tracker

kerb(joe)

kerb(mapreduce)

Task Other
Service

HDFSHDFSHDFS

NFS

job token delg(joe)

trust

Application

other
credential

Figure 2: MapReduce High-level Dataflow

4. User submitting workflows to Oozie A user submits a workflow to
Oozie. The user is authenticated via a pluggable mechanism. Oozie uses
Kerberos-based RPC to access the JobTracker and NameNode by authen-
ticating as the Oozie service. The JobTracker and NameNode are con-
figured to allow the Oozie principal to act as a super-user and work on
behalf of other users as in figure 3.

Oozieoozie(joe)Application

HDFSHDFSMap
Reduce

HDFSHDFSHDFS

kerb(oozie) for joe

kerb(oozie) for joe

Figure 3: Oozie High-level Dataflow

5. Headless account doing use cases 1, 2, 3, and 4. The only differ-
ence between a headless account and other accounts is that the headless
accounts will have their keys accessible via a keytab instead of using the
user’s password.

5

2.3 Unsupported Use Cases 2 USE CASES

User
Process

Oozie Job
Tracker

Task
Tracker

Task

Name
Node

Data
Node

NFS

ZooKeeper

Browser

HTTP plug auth
HTTP HMAC

RPC Kerberos
RPC DIGEST
Block Access
Third Party

Figure 4: Authentication Dataflow

2.3 Unsupported Use Cases

The following use cases will not be supported by the first security release of
Hadoop.

1. Using HFTP/HSFTP protocol to access HDFS clusters without a HDFS
delegation token.

2. Accessing the Hadoop services securely across the untrusted internet.

2.4 Detailed Use Cases

1. User principal setup.

(a) User principals are tied to the operating system login account.

(b) Headless accounts are created for production jobs.

2. Cluster setup Admin creates and configures a Hadoop cluster in the
Grid

(a) Configures cluster for Kerberos authentication.

(b) Admin adds/changes specific users and groups to a cluster’s service
authorization list

i. Only these users/groups will have access to the cluster regardless
of whether file or job queue permission allows access.

ii. Admin adds himself and a group to the superuser and super-
group.

6

2.4 Detailed Use Cases 2 USE CASES

(c) Admin creates job queues and their ACLs.

3. User runs application which accesses HDFS files and third-party
services. user runs non-MapReduce applications; these applications can
access

(a) HDFS Files in the local cluster.
(b) HDFS files in remote HDFS clusters.
(c) Third party services using sensitive third-party credentials. Users

should be able to securely store those third-party credentials on the
submitting machines.

i. ZooKeeper

4. User submits a workflow job to a workflow engine and the work-
flow job needs to access the Grid User submits a workflow job to a
workflow engine. The workflow job can be long-lived and when it’s run,
the workflow engine may a) access files on the Grid, and b) submit Hadoop
jobs. Authorization on the Grid is checked against the user’s account (not
that of the workflow engine).

5. Admin submits a workflow job to a workflow engine using a
headless account and the workflow job needs to access the Grid
Same as above, except that authorization on the Grid is checked against
the headless account.

6. User configures a cron job that accesses the Grid User configures
a cron job on a machine that accesses HDFS files or submits MapReduce
jobs periodically. In general, the user should use Oozie instead of cron,
but if they must use cron, they will have a headless Kerberos principal
such as “joe/cron” and its associated keytab file. This headless principal
will have the full privileges of the user’s account, but without requiring
an interactive login.

7. Using HDFS proxy Admin configures a bank of HDFS proxy servers
for a group of Grid clusters located in the same data center. HDFS proxy
supports HSFTP protocol and is used for server-to-server bulk data trans-
fer using dedicated headless accounts. The authentication/authorization
mechanism for HDFS proxy is IP address and a database of roles stored
in LDAP. A role is configured for an approved IP address, with each IP
address having at most one role. Information about a role includes its
allowed IP addresses, allowed clusters and allowed file directories. Upon
access, proxy sever looks up a role in LDAP based on the client IP and
verifies the request is permitted by the role.

8. Queue Admin (phase 2)

(a) Job queue ACL setup An administrator changes a job queue ACL
to allow a specific user or group (called the queue owner) to be able
to manage the ACL on the queue.

7

4 HDFS

(b) Managing job queue ACL Queue owner changes a job queue ACL.
per user/group for the cluster

3 RPC

Hadoop clients access services via Hadoop’s RPC library. Currently the user’s
login name is sent across as part of the connection setup and is not authenti-
cated. For authenticated clusters, all RPC’s will connect using Simple Authen-
tication and Security Layer (SASL). SASL negotiates a sub-protocol to use and
Hadoop will support either using Kerberos (via GSSAPI) or DIGEST-MD5.
Most Hadoop services, other than the NameNode, will only support Kerberos
authentication, which will be the standard authentication mechanism.

The mechanisms are:

1. Kerberos The user gets a service ticket for the service and authenticates
using SASL/GSSAPI. This is the standard Kerberos usage and mutually
authenticates the client and the server.

2. DIGEST-MD5 When the client and server share a secret, they can use
SASL/DIGEST-MD5 to authenticate to each other. This is much cheaper
than using Kerberos and doesn’t require a third party such as the Kerberos
KDC. The two uses of DIGEST-MD5 will be the HDFS delegation tokens
in section 4.1 and the MapReduce job tokens in section 5.2.1.

The client will load any Kerberos tickets that are in the user’s ticket cache.
MapReduce will also create a token cache that will be loaded by the task. When
the application creates an RPC connection, it will use a token, if an appropriate
one is available. Otherwise, it will use the Kerberos credentials.

4 HDFS

Communication between the client and the HDFS service is composed of two
halves:

• RPC connection from the client to the NameNode

• Block transfer from the client to DataNodes

The RPC connection can be authenticated via Kerberos or via a delegation to-
ken, which is described in detail in section 4.1. Delegation tokens are shared
secrets between the NameNode and the client that allow subsequent authenti-
cated access without utilizing the Kerberos Key Servers. In order to obtain a
delegation token, the client must use a Kerberos authenticated connection. The
block transfer is authenticated using a block access token, which is described
in detail in section 4.2. Each block access token is specific to a block and is
generated by the NameNode.

Although we could solely use Kerberos authentication for the NameNode
RPC, the delegation tokens have some critical advantages:

8

http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2831.txt

4 HDFS

1. Performance On a MapReduce cluster, there can be thousands of Tasks
running at the same time. If they use Kerberos to authenticate to a
NameNode, they need either a delegated TGT (ticket granting ticket)
or a delegated service ticket. If using delegated TGT, the Kerberos KDC
could become a bottleneck, since each task needs to get a Kerberos service
ticket from the KDC using the delegated TGT. Using delegation tokens
will save those network traffic to the KDC. Another option is to use a
delegated service ticket. Delegated service tickets can be used in a similar
fashion as delegation tokens, i.e., without the need to contact an online
third party like the KDC. However, Java GSS-API doesn’t support service
ticket delegation. We may need to use a 3rd party (native) Kerberos
library, which requires significantly more development efforts and makes
code less portable.

2. Credential renewal For Tasks to use Kerberos, the Task owner’s Ker-
beros TGT or service ticket needs to be delegated and made available to
the Tasks. Both TGT and service ticket can be renewed for long-running
jobs (up to max lifetime set at initial issuing). However, during Kerberos
renewal, a new TGT or service ticket will be issued, which needs to be
distributed to all running Tasks. If using delegation tokens, the renewal
mechanism can be designed in such a way that only the validity period
of a token is extended on the NameNode, but the token itself stays the
same. Hence, no new tokens need to be issued and pushed to running
Tasks. Moreover, renewing Kerberos tickets has to be done before current
validity period expires, which puts a timing constraint on the renewal op-
eration. Our delegation tokens can be renewed (or revived) after current
validity period expires (but within the max lifetime) by the designated re-
newer. Being able to renew an expired delegation token is not considered
a security weakness since (unlike Kerberos) only the designated renewer
can renew a token. A stolen token can’t be renewed by the attacker.

3. Less damage when credential is compromised A user’s Kerberos
TGT may be used to access services other than HDFS. If a delegated TGT
is used and compromised, the damage is greater than using an HDFS-only
credential (delegation token). On the other hand, using a delegated service
ticket is equivalent to using a delegation token.

4. Compatible with non-Kerberos authentication schemes An addi-
tional benefit of using Hadoop proprietary delegation tokens for delega-
tion, as opposed to using Kerberos TGT/Service tickets, is that Kerberos
is only used at the ”edge” of Hadoop. Delegation tokens don’t depend on
Kerberos and can be coupled with non-Kerberos authentication mecha-
nisms (such as SSL) used at the edge.

Another consideration is that on a HDFS cluster, file permissions are stored
on NameNode, but not on DataNodes. This means only the NameNode is
able to authorize accesses to files. During a file access, a client first contacts

9

4.1 Delegation Token 4 HDFS

the NameNode to find out which DataNodes have the data blocks of the file
and then connects to those DataNodes directly to access the data blocks. To
enforce file permissions set on the NameNode, DataNodes need to know from the
NameNode if the client is authorized to access those blocks. We plan to use an
block access token mechanism for this purpose. When the client accesses the
NameNode for files, authorization is checked on the NameNode and per block
access tokens are generated based on file permissions. These block access tokens
are returned to the client along with locations of their respective blocks. When
the client accesses DataNodes for those data blocks, block access tokens are
passed to DataNodes for verification. Only the NameNode issues block access
tokens, which are verifiable by DataNodes.

4.1 Delegation Token

4.1.1 Overview

After initial authentication to NameNode using Kerberos credentials, a user
may obtain a delegation token, which can be given to user jobs for subsequent
authentication to NameNode as the user. The token is in fact a secret key shared
between the user and NameNode and should be protected when passed over
insecure channels. Anyone who gets it can impersonate the user on NameNode.
Note that a user can only obtain new delegation tokens by authenticating using
Kerberos.

When a user obtains a delegation token from NameNode, the user should
tell NameNode who is the designated token renewer. The designated renewer
should authenticate to NameNode as itself when renewing the token for the
user. Renewing a token means extending the validity period of that token on
NameNode. No new token is issued. The old token continues to work. To let a
MapReduce job use a delegation token, the user needs to designate JobTracker as
the token renewer. All the Tasks of the same job use the same token. JobTracker
is responsible for keeping the token valid till the job is finished. After that,
JobTracker may optionally cancel the token.

4.1.2 Design

Here is the format of delegation token.

TokenID = {ownerID, renewerID, issueDate, maxDate, sequenceNumber}
TokenAuthenticator = HMAC-SHA1(masterKey, TokenID)
Delegation Token = {TokenID, TokenAuthenticator}

NameNode chooses masterKey randomly and uses it to generate and verify
delegation tokens. NameNode keeps all active tokens in memory and associates
each token with an expiryDate. If currentT ime > expiryDate, the token is
considered expired and any client authentication request using the token will
be rejected. Expired tokens will be deleted from memory. A token is also
deleted from memory when the owner or the renewer cancels the token. The

10

4.1 Delegation Token 4 HDFS

sequenceNumber is a global counter in the NameNode that is incremented as
each delegation token is created to ensure that each delegation token is unique.

Using Delegation Token When a client (e.g., a Task) uses a delegation
token to authenticate, it first sends TokenID to NameNode (but never sends
the associated TokenAuthenticator to NameNode). TokenID identifies the
token the client intends to use. Using TokenID and masterKey, NameNode
can re-compute TokenAuthenticator and the token. NameNode checks if the
token is valid. A token is valid if and only if the token exists in memory and
currentT ime < expiryDate associated with the token. If the token is valid,
the client and NameNode will try to authenticate each other using their own
TokenAuthenticator as the secret key and DIGEST-MD5 as the protocol. Note
that during authentication, one party never reveals its own TokenAuthenticator
to the other party. If authentication fails (which means the client and NameNode
do not share the same TokenAuthenticator), they don’t get to know each other’s
TokenAuthenticator.

Token Renewal Delegation tokens need to be renewed periodically to keep
them valid. Suppose JobTracker is the designated renewer for a token. During
renewal, JobTracker authenticates to NameNode as JobTracker. After success-
ful authentication, JobTracker sends the token to be renewed to NameNode.
NameNode verifies that:

1. JobTracker is the renewer specified in TokenID,

2. TokenAuthenticator is correct, and

3. currentT ime < maxDate

specified in TokenID. Upon successful verification, if the token exists in mem-
ory, which means the token is currently valid, NameNode sets its new expiryDate
to min(currentT ime + renewPeriod, maxDate). If the token doesn’t exist in
memory, which indicates NameNode has restarted and therefore lost memory of
all previously stored tokens, NameNode adds the token to memory and sets its
expiryDate similarly. The latter case allows jobs to survive NameNode restarts.
All JobTracker has to do is to renew all tokens with NameNode after NameNode
restarts and before relaunching failed Tasks.

Note that the designated renewer can revive an expired (or canceled) token
by simply renewing it, if currentT ime < maxDate specified in the token. This
is because NameNode can’t tell the difference between a token that has expired
(or has been canceled) and a token that is not in the memory because NameNode
restarted. Since only the designated renewer can revive an expired (or canceled)
token, this doesn’t seem to be a security problem. An attacker who steals the
token can’t renew or revive it.

The masterKey needs to be updated periodically. NameNode only needs to
persist the masterKey on disk, not the tokens.

11

http://www.ietf.org/rfc/rfc2831.txt

4.2 Block Access Token 4 HDFS

4.2 Block Access Token

4.2.1 Requirements

Originally in Hadoop, DataNodes did not enforce any access control on accesses
to its data blocks. This made it possible for an unauthorized client to read a
data block as long as she can supply its block ID. It’s also possible for anyone
to write arbitrary data blocks to DataNodes.

When users request file accesses on NameNode, file permission checking takes
place. Authorization decisions are made with regard to whether the requested
accesses to those files (and implicitly, to their corresponding data blocks) are
permitted. However, when it comes to subsequent data block accesses on DataN-
odes, those authorization decisions are not made available to DataNodes and
consequently, such accesses are not verified. DataNodes are not capable of mak-
ing those decisions independently since they don’t have concepts of files, let
alone file permissions.

In order to implement data access policies consistently across HDFS ser-
vices, there is a need for a mechanism by which authorization decisions made
on NameNode can be enforced on DataNodes and any unauthorized access is
declined.

4.2.2 Design

We use block access tokens to pass data access authorization information from
NameNode to DataNode. One can think of block access tokens as capabilities;
a block access token enables its owner to access certain data block. It is issued
by NameNode and used on DataNode. block access tokens should be generated
in such a way that their authenticity can be verified by DataNode.

Block access tokens are generated using a symmetric-key scheme where the
NameNode and all of the DataNodes share a secret key. For each token, Na-
meNode computes a keyed hash (also known as message authentication code or
MAC) using the key. Hereinafter, the hash value is referred to as the token au-
thenticator. Token authenticator becomes an integral part of the token. When
DataNode receives a token, it uses its own copy of the secret key to re-compute
the token authenticator and compares it with the one included in the token.
If they match, the token is verified as authentic. Since only NameNode and
DataNodes know the key, no third party can forge tokens.

We considered the possibility of using a public-key scheme to generate the
tokens, but it is more computationally expensive. It would have the advantage
that a compromised DataNode would not have a secret that an attacker could
use to forge valid tokens. However, in HDFS deployments where all DataNodes
are protected uniformly (e.g., inside the same data center and protected by the
same firewall policy), it may not make a fundamental difference. In other words,
if an attacker is able to compromise one DataNode, they can compromise all
DataNodes in the same way, without determining the secret key.

Block access tokens are ideally non-transferable, i.e., only the owner can use
it. This means we don’t have to worry if a token gets stolen, for example during

12

4.2 Block Access Token 4 HDFS

transit. One way to make it non-transferable is to include the owner’s ID in the
token and require whoever uses the token to authenticate as the owner specified
in the token. In the current implementation, we include the owner’s ID in the
token, but DataNode doesn’t verify it. Authentication and verification of owner
ID can be added later if needed.

Block access tokens are meant to be lightweight and short-lived. No need
to renew or revoke an block access token. When a cached block access token
expires, simply get a new one. Block access tokens should be cached only in
memory and never written to disk. A typical use case is as follows. An HDFS
client asks NameNode for block ids/locations for a file. NameNode verifies that
the client is authorized to access the file and sends back block ids/locations
along with a block access token for each block. Whenever the HDFS client
needs to access a block, it sends the block id along with its associated block
access token to a DataNode. DataNode verifies the block access token before
allowing access to the block. The HDFS client may cache block access tokens
received from NameNode in memory and only get new tokens from NameNode
when the cached ones expire or accessing non-cached blocks.

A block access token has the following format, where keyID identifies the se-
cret key used to generate the token, and accessModes can be any combination
of READ, WRITE, COPY, REPLACE.

TokenID = {expirationDate, keyID, ownerID, blockID, accessModes}
TokenAuthenticator = HMAC-SHA1(key, TokenID)
Block Access Token = {TokenID, TokenAuthenticator}

A block access token is valid on all DataNodes regardless where the data
block is actually stored. The secret key used to compute token authenticator is
randomly chosen by NameNode and sent to DataNodes when they first register
with NameNode. There is a key rolling mechanism that updates this key on
NameNode and pushes the new key to DataNodes at regular intervals. The key
rolling mechanism works as follows.

1. NameNode randomly chooses one key to use at start-up. Let’s call it the
current key. At regular intervals, NameNode randomly chooses a new key
to be used as the current key and retires the old one. The retired keys
have to be kept around for as long as the tokens generated by them are
valid. Each key is associated with an expiry date accordingly. NameNode
keeps the set of all currently unexpired keys in memory. Among them,
only the current key is used for token generation (and token validation).
The others are used for token validation only.

2. When DataNode starts up, it gets the set of all currently unexpired keys
from NameNode during registration. In case a DataNode re-starts, it’s
ready to validate all unexpired tokens and there is no need to persist any
keys on disk.

3. When NameNode updates its current key, it first removes any expired ones
from the set and then adds the new current key to the set. The new current

13

5 MAPREDUCE

key will be used for token generation from now on. Each DataNode will
get the new set of keys on their next heartbeats with NameNode.

4. When DataNode receives a new set of keys, it first removes expired keys
from its cache and then adds the received ones to its cache. In case of
duplicate copies, the new copy will replace the old one.

5. When NameNode restarts, it will lose all its old keys (since they only
existed in memory). It will generate new ones to use. However, since
DataNode still keeps old keys in its cache till they expire, old tokens can
continue to be used. Only when both NameNode and DataNode restart,
does a client have to re-fetch tokens from NameNode.

There are two additional cases where the DataNode and Balancer generate
block access tokens without the NameNode. The first case is the NameNode
asking a DataNode to replicate some blocks to another DataNode. In this case,
DataNode generates a token before sending requests to the other DataNode.
In the first case, Balancer may ask a DataNode to replicate blocks to other
DataNodes, and the Balancer generates the appropriate tokens.

5 MapReduce

MapReduce security is both much simpler and more complicated than HDFS
security. All of the authentication from the client to the JobTracker when
submitting or tracking jobs is done using Kerberos via RPC. However, the
tasks of the submitted job must run with the user’s identity and permissions.
MapReduce stores the information about the pending and executing jobs in
HDFS, and therefore depends on HDFS remaining secure.

Unlike HDFS, currently MapReduce has no authorization model other than
Service Level Authorization (SLA) and the ability to restrict users to submit to
certain queues. As part of increasing security, only the user will be able to kill
their own jobs or tasks.

5.1 Job Submission

For job submission, the client will write the job configuration, the input splits,
and the meta information about the input splits into a directory in their home
directory. This directory will be protected as read, write, and execute solely by
the user. The client will then use RPC to pass the location of the directory and
the security credentials to the JobTracker. Because the job directory is under
the user’s home directory, the usage counts against their quota instead of the
generic pool.

Jobs may access several different HDFS and other services. Therefore, the
security credentials for the job will be stored in a Map with string keys and
binary values. The job’s delegation tokens will be keyed by the NameNode’s
URL. The security credentials will be stored in the JobTracker’s system direc-
tory in HDFS, which is only readable by the “mapreduce” service principal.

14

5.2 Task 5 MAPREDUCE

To ensure that the delegation tokens do not expire, the JobTracker will renew
them periodically. When the job is finished, all of the delegation tokens will be
invalidated.

In order to read the job configuration, the JobTracker will use the user’s
delegation token for HDFS. It will read the parts of the job configuration that
it needs and store it in RAM. The JobTracker will also generate a random
sequence of bytes to use as the job token, which is described in section 5.2.1.

5.2 Task

The task runs as the user who submitted the job. Since the ability to change
user ids is limited to root there is a relatively small setuid program written in
C that launches the task’s JVM as the correct user. It also moves the local files
and handles killing the JVM if the task is killed. Running with the user’s user
id ensures that one user’s job can not send operating system signals to either
the TaskTracker or other user’s tasks. It also ensures that local file permissions
are sufficient to keep information private.

5.2.1 Job Token

When the job is submitted, the JobTracker will create a secret key that is only
used by the tasks of the job when identifying themselves to the framework. This
token will be stored as part of the job in the JobTracker’s system directory on
HDFS and distributed to the TaskTrackers via RPC. The TaskTrackers will
write the job token onto the local disk in the job directory, which is only visible
to the job’s user. This token will be used for the RPC via DIGEST-MD5 when
the Task communicates with the TaskTracker to requests tasks or report status.

Additionally, this token can be used by Pipes tasks, which run as sub-
processes of the MapReduce tasks. Using this shared secret, the child and
parent can ensure that they both have the secret.

5.3 Shuffle

When a map task finishes, its output is given to the TaskTracker that managed
the map task. Each reduce in that job will contact the TaskTracker and fetch its
section of the output via HTTP. The framework needs to ensure that other users
may not obtain the map outputs. The reduce task will compute the HMAC-
SHA1 of the requested URL and the current timestamp and using the job token
as the secret. This HMAC-SHA1 will be sent along with the request and the
TaskTracker will only serve the request if the HMAC-SHA1 is the correct one
for that URL and the timestamp is within the last N minutes.

To ensure that the TaskTracker hasn’t been replaced with a trojan, the
response header will include a HMAC-SHA1 generated from the requesting
HMAC-SHA1 and secured using the job token. The shuffle in the reduce can
verify that the response came from job itself.

15

http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/HMAC

5.4 Web UI 6 HIGHER LEVEL SERVICES

The advantage of using HMAC-SHA1 over DIGEST-MD5 for the authenti-
cation of the shuffle is that it avoids a roundtrip between the server and client.
This is an important consideration since there are many shuffle connections,
each of which is transferring a small amount of data.

5.4 Web UI

A critical part of MapReduce’s user interface is via the JobTracker’s web UI.
Since the majority of users use this interface, it must also be secured. We will
implement a pluggable HTTP user authentication mechanism. This will allow
each deploying organization to configure their own browser based authentication
in the Hadoop configuration files.

We considered using SPNEGO, which is the standard approach to using
Kerberos authenticated web browser access. However, there is no support for
SPNEGO in Jetty 6 and the standard browsers have support turned off by
default. Therefore, it seems better to let each organization do its own browser
based authentication.

Once the user is authenticated, the servlets will need to check the user name
against the owner of the job to determine and enforce the allowable operations.
Most of the servlets will remain open to everyone, but the ability view the
stdout and stderr of the tasks and to kill jobs and tasks will be limited to the
job owner.

6 Higher Level Services

There are several higher level services that act as proxies for user requests of the
Hadoop services. Because all access to HDFS and MapReduce is via Kerberos,
the proxy services will need to have Kerberos service principals. The HDFS
and MapReduce services will be configured with a list of Kerberos principals
that are super-users, which are trusted to act as other users. The proxy will
authenticate as itself, but then access functionality as if it was the other user.
Each super-user principal will be configured with a group that it may act on
behalf of and a set of IP addresses that will be trusted for that principal. When
the super-user makes an RPC connection, the first method will be doAs to set
the user for the connection. The server must reject calls to doAs that:

1. request a user that is not a valid user for that service

2. request a user that is not in the user group that is blessed for that super-
user.

3. originate from an IP address other than the blessed set for that super-user

6.1 Oozie

Oozie is a workflow manager that accepts workflows from users and submits the
steps in those workflows to HDFS, MapReduce, and SSH. Oozie accepts work-

16

7 TOKEN SECRETS SUMMARY

flows over a HTTP interface that uses pluggable authentication. Oozie will run
with the Kerberos service principal “oozie” and use that principal to authenti-
cate to the HDFS and MapReduce services. Both the HDFS and MapReduce
services will provide new methods that allow a super-user to act on behalf of
others.

We considered the possibility of storing keytab files with headless principals
for each user that intends to use Oozie. The headless principals would be named
“X/oozie” for each principal “X” and have the same privileges as the normal
principal. This was rejected because it introduce a large operational burden to
maintain the set of headless principals.

7 Token Secrets Summary

Although the tokens have been discussed independently, they share common
pieces. All tokens consist of two parts, the identifier, which contains the infor-
mation specific to that kind of token, and a password. The password is generated
using HMAC-SHA1 on the token identifier and a secret key. The secret keys
are 20 bytes and are generated using Java’s SecureRandom class.

7.1 Delegation Token

The secret is kept in the NameNode and is stored persistently in the NameNode’s
state files (fs image and edits log). The persistent copy of the secret is used in
case the NameNode needs to restart. A new secret is rolled every 24 hours and
the last 7 days worth of secrets are kept so that previously generated delegation
tokens will be accepted. The generated token is created by the NameNode and
passed to the client.

7.2 Job Token

The secret is kept in the JobTracker and is not stored persistently. In the case
of JobTracker restart, the JobTracker will generate a new secret. The job token
is generated by the JobTracker when the job is submitted and is stored with
the job and will be usable even after a JobTracker restart.

7.3 Block Access Token

The secrets are generated by the NameNode and distributed to all of the DataN-
odes, SecondaryNameNode, and Balancer as part of their heart beats. The
secrets are not persistent and a new one is generated every 10 hours. The gen-
erated token is sent from the NameNode to the client when they open or create
a file. The client sends the entire token to the DataNode as part of the request.

17

8 API AND ENVIRONMENT CHANGES

8 API and Environment Changes

For the most part, security will not involve making incompatible changes to the
API’s of Hadoop. However, there are some changes that can not be avoided.
The identified changes are:

1. All applications that access HDFS or MapReduce will need to have a
Kerberos ticket in the ticket cache. The user is responsible for calling
kinit before starting the application.

2. A configuration variable will be added to the MapReduce job configura-
tions “mapreduce.job.hdfs-servers” that contains a comma separated list
of the NameNodes that will be accessed by the job. As part of job submis-
sion the framework will request a new delegation token for each NameN-
ode. This variable will be updated automatically by FileInputFormats,
FileOutputFormats, DistCp, and the distributed cache.

3. getOwner in FileStatus will be fully qualified. Thus, instead of “omalley”,
the owner will be “omalley@APACHE.ORG”.

4. hadoop fs -ls will show fully qualified user names, except for users in the
default realm. The default realm is configured on the client side.

5. All of the web UI pages, except for the MapReduce front page and the
cluster status pages (HDFS and MapReduce) will require authentication.

6. Applications will no longer be able to work around the pseudo security.

7. MapReduce jobs will have owner, group, other permissions to limit who
can kill, reprioritize, or view a job.

8. The directory structure for tasks will change so that the only the user and
the TaskTracker have permission to see the work directory.

9. The downloaded copy of the distributed cache files are protected from
other users, unless the source file is publically visible.

10. HFTP and HSFTP will only be supported if the application has a del-
egation token from the NameNode. There will not be an HTTP-based
mechanism to acquire a delegation token.

11. The UserGroupInformation API will change to reflect the new usage. The
JAAS Subject object will have different Principal classes.

12. For users to use Oozie, they will need to be added to the “oozie” group.
The same is true of other higher level services.

For servers that access Hadoop, there will be additional changes. Those
changes include:

18

8 API AND ENVIRONMENT CHANGES

1. The NameNode and JobTracker will need to be configured to treat the
server’s principal name as a superuser, which is trusted to act as other
users.

2. The server will need to acquire Kerberos tickets by calling a new login
method in UserGroupInformation that takes a filename that references a
Kerberos keytab and the Kerberos principal name to choose out of that
keytab file. Keytab files store passwords for headless applications.

3. To work as another user, the server will need to UserGroupInformation.doAs
to execute a given method and the invoked RPC calls as another user.

19

	Overview
	Security risks
	Requirements
	Design considerations

	Use Cases
	Assumptions
	High Level Use Cases
	Unsupported Use Cases
	Detailed Use Cases

	RPC
	HDFS
	Delegation Token
	Overview
	Design

	Block Access Token
	Requirements
	Design

	MapReduce
	Job Submission
	Task
	Job Token

	Shuffle
	Web UI

	Higher Level Services
	Oozie

	Token Secrets Summary
	Delegation Token
	Job Token
	Block Access Token

	API and Environment Changes

