
Linux clustering with MOSIX

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2

2. Introducing MOSIX... 3

3. The technology behind MOSIX 5

4. Installing MOSIX.. 7

5. Final configuration steps .. 10

6. MOSIX in action .. 12

7. Exploring MOSIX ... 13

8. Resources and feedback ... 17

Linux clustering with MOSIX Page 1 of 17

Section 1. About this tutorial

Should I take this tutorial?
Clustering is a term that is rapidly gaining popularity in the Linux world. But what exactly is
clustering, how does one go about cluster-enabling a Linux system, and how can one benefit
from setting up a cluster? In this tutorial, Daniel Robbins helps to answer these questions by
stepping you through the process of setting up your own MOSIX cluster. MOSIX is a special
transparent form of clustering that is very easy to set up and can produce positive results
with only a minimal investment of time and energy.

About the author
For technical questions about the content of this tutorial, contact the author, Daniel Robbins,
at drobbins@gentoo.org.

Residing in Albuquerque, New Mexico, Daniel Robbins is the President/CEO of Gentoo
Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for the PC, and the
Portage system, a next-generation ports system for Linux. He has also served as a
contributing author for the Macmillan books Caldera OpenLinux Unleashed, SuSE Linux
Unleashed, and Samba Unleashed. Daniel has been involved with computers in some
fashion since the second grade, when he was first exposed to the Logo programming
language as well as a potentially dangerous dose of Pac Man. This probably explains why he
has since served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis.
Daniel enjoys spending time with his wife, Mary, and his new baby daughter, Hadassah.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 2 of 17

mailto:drobbins@gentoo.org
http://www.gentoo.org
http://www.gentoo.org
http://www.gentoo.org

Section 2. Introducing MOSIX

Introduction
Welcome to the IBM developerWorks MOSIX clustering tutorial! In this tutorial, I will give you
a very gentle introduction to clustering technologies available for Linux, and even step you
through the process of setting up your own Linux cluster using MOSIX. Clustering
technologies allow two or more Linux systems to combine their computing resources so that
they can work cooperatively rather than in isolation.

If you're interested in learning more about clustering, then this tutorial is for you. You are
likely to find it of great benefit even if you just want to familiarize yourself with Linux
clustering technology, but not actually set up a cluster yourself. But if you would like to start
playing with clustering technology, this tutorial will provide you with a really easy and
painless way to do so. So sit back, click away, and enjoy!

Prerequisites
In this tutorial, we're going to set up our own MOSIX cluster. This cluster will consist of two or
more Linux systems which we will call "nodes". To set up your own test cluster, you will need
at least two Linux systems ready to run or already running kernel 2.4. These systems must
be connected to a local area network.

Recommendations
For maximum cluster performance, you may want to consider building a cluster using the
following components. These items are not absolutely required; some are completely
optional (only for performance freaks), and others are recommended. I indicate which are
which below:

At least 100Mbit (fast) ethernet is recommended. Standard (10Mbit) ethernet won't give you
very good cluster performance, but should be fine if you just want to play around with
MOSIX.

Recommendations, part 2
A good amount of swap space is recommended. This will allow nodes to be removed from
your cluster without causing the existing nodes from running out of virtual memory. Again,
this is recommended and will only make a difference in extreme situations where you are
pushing your cluster very hard.

Gigabit ethernet is optional but beneficial. Gigabit ethernet cards are also dropping in price;
reliable ones can be found for $130 to $180 USD. However, don't feel that you absolutely
need Gigabit ethernet; MOSIX can do just fine with fast ethernet.

Recommendations, part 3

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 3 of 17

Hooking your machines' ethernet cards up to a dedicated high-speed switch is beneficial. By
doing so, your systems will be able to communicate over ethernet in "full duplex" mode,
effectively doubling bandwidth.

If you have a limited number of machines, you may want to consider using a specially-wired
ethernet cable to directly connect the systems to one another. By doing so, you can benefit
from "switch-like" full-duplex performance at a potentially lower price. This trick is very helpful
when used for 2 or 3-node clusters, since these configurations only require one or two NICs
per machine respectively.

Don't get scared
Again, these suggestions are completely optional, and it is entirely possible to set up a
cluster using two Pentium-class machines over a standard ethernet network. Generally, the
faster your network, the better MOSIX will be able to migrate processes between nodes in
your cluster, and the more fun and exciting MOSIX will be when you play with it. :)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 4 of 17

Section 3. The technology behind MOSIX

What is clustering?
Now that I've explained the prerequisites for setting up a MOSIX cluster, let's get a better
understanding of what "clustering" is all about. In general, when people speak of "clustering"
technologies for Linux, they are referring to technologies that allow multiple computers to
work together to solve common computing problems. The computing problems in question
can be anything from complex CPU-intensive scientific computations to a simple horde of
miscellaneous processes with no overall similarity.

What are Beowulf clusters?
While clustering is a generic term, there are several different clustering technologies
available under Linux, and they operate in very different ways.

Probably the best-known type of Linux-based cluster is the Beowulf cluster. A Beowulf cluster
consists of multiple machines on a local area network that pool resources to solve computing
tasks. In order for this cooperation to take place, special cluster-enabled applications must be
written using clustering libraries. The most popular clustering libraries are PVM and MPI, and
they are both very mature and work very well. By using PVM or MPI, programmers can
create cluster-enabled applications that are able to take advantage of an entire cluster's
computing resources, rather than being bound to a single machine.

Drawbacks of Beowulf
While Beowulf clusters are extremely powerful, they aren't for everyone. The primary
drawback these types of clusters is that they require specially-designed software (written to
hook into PVM or MPI) in order to take advantage of the cluster. This is generally not a
problem for those in the scientific and research communities who have the resources to write
their own PVM or MPI code. But those of us who simply want to set up a cluster and gain
some kind of immediate benefit have a very real problem -- even if we do set up a Beowulf
cluster, we won't have any software that can take advantage of it!

The MOSIX solution
So far, clustering may sound like a big disappointment. However, don't get discouraged.
Thankfully, there's another kind of clustering technology that's easy to set up and can provide
an immediate benefit, and this clustering technology is called -- you guessed it -- MOSIX.

MOSIX works in a fundamentally different way that PVM or MPI, extending the kernel so that
any standard Linux process can take advantage of a cluster's resources. By using special
adaptive load-balancing techniques, processes running on one node in the cluster can be
transparently "migrated" to another node where they may execute faster. Because MOSIX is
transparent, the process that's migrated doesn't even "know" (or need to know) that it is
running on a remote system. As far as that remote process and other processes running on
the original node (called the "home node") are concerned, the process is running locally.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 5 of 17

The MOSIX solution, continued
Because MOSIX is completely transparent, no special programming is required to take
advantage of MOSIX's load-balancing technology. In fact, a default MOSIX installation will
automatically migrate processes to the "best" node without any user intervention, making
MOSIX an ideal turn-key clustering solution that can be of great benefit to very many people.

Mosix vs. SMP
The really great thing about MOSIX is that it can turn a bunch of Linux machines into
something like a large virtual SMP system. However, there are a few things that you should
keep in mind. First, on a "real" SMP system, two or more CPUs can exchange data very
quickly; but with MOSIX, the speed by which nodes can communicate is determined by the
speed and type of your local area network.

The "plus" side of MOSIX is that you can create clusters consisting of tens or even hundreds
of nodes, while SMP systems generally only go up to two or perhaps four processors. And
larger SMP systems can be prohibitively expensive for many people. With MOSIX, you can
build a "virtual" SMP system using inexpensive commodity PC hardware.

Mosix limitations -- processes
In addition, MOSIX, like an SMP system, cannot cause a single process to run on multiple
CPUs at the same time. So, MOSIX won't be able to speed up a single process such as
Netscape, except to migrate it to a node where it can execute most efficiently. In addition,
MOSIX can't currently allow multiple threads to execute on separate systems.

The strength of MOSIX
Despite these limitations, MOSIX can have a very immediate and dramatic performance
impact. For example, if an application is designed to fork() many child processes which
perform work, then MOSIX will be able to migrate each one these processes as needed. So,
if you wanted to compress 13 digital audio tracks simultaneously (as separate processes),
then MOSIX will allow you to immediately benefit from the power of your cluster. If, However,
you were to run the 13 encoding processes linearly (one after another), then you wouldn't
see any speedup at all. In fact, we'll take a look at a CD-encoding MOSIX test a bit later in
this tutorial. But first, let's get MOSIX up and running.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 6 of 17

Section 4. Installing MOSIX

Installation overview
MOSIX installation is relatively painless. To get MOSIX up and running, we must first install a
MOSIX-enabled kernel on all the Linux systems that will be joined together into a single
cluster. Then, we need to install the MOSIX user tools. Finally, we must make the necessary
changes to each nodes' system configuration files in /etc, and then reboot. When the
systems come back up, MOSIX process migration will be active and your cluster will be
ready for use.

Downloading MOSIX sources
To start the MOSIX installation, first head over to mosix.org, and click on the download and
install the latest release of MOSIX link. On this page, you'll be able to see the various
versions of MOSIX available. We'll be using MOSIX for the 2.4 kernel, although there is a
version of MOSIX available for the 2.2 kernel as well.

Under "The latest distribution" section, you should see a link to download MOSIX 1.x for
kernel 2.4.y; x and y will vary as new kernel and MOSIX releases are made available. Go
ahead and download the MOSIX tarball; at the time this article was written, the most recent
MOSIX source tarball was MOSIX-1.5.2.tar.gz.

MOSIX and the kernel
Now, make a note of the Linux kernel version with which this particular version of MOSIX
was designed to operate. You always want to pair MOSIX with the correct Linus kernel to
ensure stable operation. In addition, it's highly recommended that you do not apply any
additional non-trivial patches to your Linux kernel besides the MOSIX patches themselves.
Once you've downloaded the correct MOSIX tarball, go ahead and download the appropriate
2.4 kernel from http://www.kernel.org/pub/linux/kernel/v2.4/. The version of MOSIX that I'm
using over here (1.5.2) was designed to work with Linux 2.4.13, so I went ahead and
downloaded linux-2.4.13.tar.bz2.

Patching the kernel
After you've downloaded the correct kernel for your version of MOSIX, it's time to extract your
kernel sources and apply the MOSIX patch. Here's how.

cd /root # tar xzvf /path/to/MOSIX-1.5.2.tar.gz # cd /usr/src # mv
linux linux.old (if linux is a directory) # rm linux (if linux is a
symlink) # cat /path/to/linux-2.4.13.tar.bz2 | bzip2 -dc | tar xvf -
Now, we apply the MOSIX patch:

cd /usr/src/linux # patch -p0 < /root/MOSIX-1.5.2/patches.2.4.13
Voila! Now that the patch is applied is applied to the kernel sources, we're ready to configure,
compile and install a new MOSIX-enabled Linux kernel.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 7 of 17

http://www.mosix.org
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.mosix.org/txt_distribution.html
http://www.kernel.org/pub/linux/kernel/v2.4/

Kernel configuration overview
Now, it's time to configure the kernel:

cd /usr/src/linux (if you aren't there already) # make menuconfig
You'll be greeted with the blue Linux kernel configuration screen. Go ahead and configure
your kernel with the options it needs to run on your underlying hardware. When you're done,
head over to the new "MOSIX" configuration section, which should be the first configuration
category listed. In the following panels, I'll explain all the important MOSIX options:

[*] MOSIX process migration support
This option enables MOSIX proper. It's required.

Complex network option
[] Support clusters with a complex network topology
Enable this option if the nodes on your cluster are not on a simple LAN, or if the network
cards you are using in your nodes vary widely in their performance characteristics. If you are
using similar or identically-performing NICs throughout your cluster, and all machines are an
equal "distance" away (from a network perspective), then you should leave this option
disabled for increased performance.

Kernel diagnostics option
[*] MOSIX Kernel Diagnostics
The MOSIX kernel diagnostics option tells the MOSIX code to perform some additional
internal checks. You can enable it for additional safety or disable it for a performance
increase.

Security and MFS options
[*] Stricter security on MOSIX ports
This option will guard MOSIX's TCP/UDP ports against being abused by people on hosts
outside the cluster. This is highly recommended if your systems are addressable by systems
that are not part of your cluster.

[*] MOSIX File-System
This enables the MOSIX filesystem, a handy cluster filesystem that can be used to share and
copy files throughout your cluster. MFS is very highly recommended and is a very handy
addition to MOSIX.

DFSA option
[*] Direct File-System Access
Enabling this option can allow increased performance for processes migrated away from
their "home" node. It's a nice extension, but is still considered experimental. You can choose

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 8 of 17

to enable it for improved performance in certain situations, or leave it disabled.

Finishing up config
Now, go ahead and save your kernel configuration options. An important note: make sure
that your MOSIX configuration options are identical throughout your entire cluster. Other
kernel options may vary due to hardware differences, but MOSIX will expect all nodes to
have identical MOSIX functionality. In addition, all nodes of your cluster must use the same
version of MOSIX and the Linux kernel. Besides this requirement, feel free to mix different
Linux distributions.

Kernel installation tricks
Now, compile and install the kernel you just configured. Repeat this process on all remaining
nodes in your cluster. You may want to copy your /usr/src/linux directory over to the other
systems to speed things up. Otherwise, copy the /usr/src/linux/.config file from your current
node to any new nodes before typing "make menuconfig". That way, you'll start with your
previous node's kernel configuration, ensuring that all your MOSIX kernel configuration
options are consistent throughout the entire cluster.

Installing man pages
Now that all the kernels are installed, it's time to install the MOSIX man pages and user tools
on every node in the cluster. First, let's tackle the man pages, since they're easier. To install
the MOSIX man pages, untar the manuals.tar file included in the MOSIX-1.5.2 directory into
your preferred man page directory, typically /usr/man or /usr/share/man:

cd /usr/share/man # tar xvf /root/MOSIX-1.5.2/manuals.tar

Installing user tools
Now we're ready to install the MOSIX user tools. First, extract the user.tar tarball into its own
directory:

cd /root/MOSIX-1.5.2 # mkdir tools # cd tools # tar xvf
../user.tar
Before following these next steps, make sure that /usr/src/linux contains a MOSIX-enabled
kernel source tree, or is a symlink that points to a MOSIX-enabled source tree. Then, use the
following script to compile and install the MOSIX user tools:

#!/bin/sh for x in lib/moslib sbin/setpe sbin/tune bin/mosrun \
usr.bin/mon usr.bin/migrate usr.bin/mosctl do cd $x make && make
install cd ../.. done
Once you've installed the MOSIX user tools and man pages on every node in your cluster, all
we need to do is get the MOSIX configuration files set up and then reboot.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 9 of 17

Section 5. Final configuration steps

/etc/mosix.map
Let's get the configuration files set up now. First, we'll need to create a file called
"/etc/mosix.map" that will describe all the nodes in our new cluster. When you're done editing
this file, it should be copied verbatim to every node. All /etc/mosix.map files should be
identical throughout the entire cluster.

The format of the mosix.map file is simple. Each line should contain a node number, the IP
address or hostname of the node, and a "span", normally one. For example, this mosix.map
file defines a three-node cluster:

1 192.168.1.1 1 2 192.168.1.2 1 3 192.168.1.3 1

/etc/mosix.map, continued
If you have a series of consecutive IP addresses like the example above, you can take
advantage of the span argument and save some typing:

1 192.168.1.1 3
This mosix.map file, like the one above it, defines a three-node cluster consisting of IPs
196.168.1.1, 192.168.1.2, and 192.168.1.3. Since you're probably setting up a small cluster
(at least initially), it's best to avoid using the span argument for the time being. Simply specify
a span of "1" for each node, as in the first example.

MFS
Next, we need to create a mount point and /etc/fstab entry for MFS, the mosix filesystem.
First, create a /mfs directory on each node:

mkdir /mfs
Then, add an mfs entry to your /etc/fstab file:

mymfs /mfs mfs defaults 0 0
If you'd like to take advantage of DFSA and you've compiled DFSA support into your kernels,
use this line in your fstab instead:

mymfs /mfs mfs dfsa=1 0 0

Understanding MFS
So, what does MFS do? Well, when we reboot and MOSIX is enabled, you'll be able to
access filesystems throughout your cluster by perusing directories inside /mfs. For example,
you can access the /etc/hosts file on node 2 by editing /mfs/2/etc/hosts, etc. MFS is
extremely handy, and MOSIX also takes advantage of MFS to improve performance.

System startup

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 10 of 17

OK, we're almost done. Before we restart all the nodes in our new cluster, we need to add a
couple of lines to each node's system startup scripts. First, add the following lines to your
/etc/rc.d/init.d/local (or equivalent) startup file, so that the following commands are run at
startup:

/sbin/setpe -W -f /etc/mosix.map touch /var/lock/subsys/mosix
These commands initialize the MOSIX node for use, and should execute after the local MFS
filesystem has been mounted and after the network has been set up. Typically, if they are
added to a "local" startup script, they'll execute at the right time.

Shutdown
Next, we need to ensure that the following lines are executed on shutdown, before the
network is brought down:

echo 0 > /proc/mosix/admin/mospe rm -f /var/lock/subsys/mosix umount
/mfs
These commands remove the node from the cluster and also take care of unmounting the
MFS filesystem. It's a good idea to unmount /fs manually, since some distributions' shutdown
scripts will not recognize that /mfs is a networked filesystem and will try to unmount it at the
wrong time.

One of the nice things about MOSIX is that it's perfectly safe to reboot a node while your
cluster is in use. Any remote processes will simply migrate away before your system reboots.
In the next section, we'll reboot and see MOSIX in action!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 11 of 17

Section 6. MOSIX in action

We're ready!
Our cluster is now configured and ready for use. Now, go ahead and reboot all your systems,
and when your systems come back up, MOSIX should be enabled and your cluster will be
active. Once all the systems are rebooted, log in to one of the nodes and type:

mon
You should be greeted with a console-based load meter. The active nodes in your cluster will
be listed across the bottom of the graph by node number, and each node's load will be
represented by a vertical bar.

Testing the cluster
Since you just rebooted all the machines, there probably isn't much happening on the nodes
at the moment. So, let's do a little MOSIX test so that we can see process migration in action.
To do this, we're going to create several very CPU-intensive processes on the local system,
and then watch as MOSIX migrates these processes to the most efficient node. While
keeping the "mon" program running, open at least two new shells, and run the following
command in each of these shells:

awk 'BEGIN {for(i=0;i<10000;i++)for(j=0;j<10000;j++);}'

Understanding migration
With at least two of these commands running, head back to "mon". You should see the
system load on your current node shoot up to 2 or more. But, after a few seconds, you
should see the load on your current node drop and the load on another one or two of your
MOSIX nodes increase. Congratulations; you've just witnessed MOSIX process migration in
action! MOSIX detected that the new processes you created could run faster if some of them
were migrated to other nodes in your cluster, and MOSIX did just that.

As far as the migrated processes are concerned, they're running on your local node, also
called the process's "home" node. They have no idea that they are actually running on a
remote CPU. In fact, the processes will still be listed in their home node's "ps" list, and they
won't even show up in the remote node's "ps" list.

Cleaning up
Now that you've experienced your first taste of the power of MOSIX, you can go ahead and
kill those CPU-hungry awk processes. In the next section, we're going run MOSIX through its
paces and explore different ways that we can use MOSIX to increase performance and
manage processes.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 12 of 17

Section 7. Exploring MOSIX

Compiling, part 1
Since I do a lot of compiling on my machine, I was of course very curious how MOSIX could
help compile times. So, almost immediately after getting MOSIX up and running, I tried to do
a few test builds of some sources to see if I could see any performance improvement. In my
tests, I used the "-j" option with make to tell make that it should run several gcc processes in
parallel. For example, the "make -j 7" command will tell make that it should have 7 concurrent
gcc processes (each compiling a separate source file) running at all times.

Compiling, part 2
Initially, my results were disappointing. Using "mon" to view the load on my my nodes, I saw
that the load on node 1 remained consistently high, while the load on node 2 was 0.0 most of
the time. MOSIX would only occasionally migrate a process from node 1 to node 2, and there
was no significant compilation performance improvement.

After asking around a bit, I learned why my results were not that impressive. You see, gcc
processes in general only exist for a few seconds; they're typically not around for long
enough to make it worth MOSIX's while to migrate them to remote systems. Because the
initial migration adds a decent amount of overhead, MOSIX was actually making the best
choice by keeping most of the gcc processes running locally. So, while it looked like MOSIX
wasn't doing its job, it was in fact being very smart by choosing not to migrate processes.
Obviously, MOSIX's decision, while smart, wasn't very exciting, so I decided to look at
another potential MOSIX application -- CD audio encoding.

A new test -- audio encoding!
For my next series of tests, I decided to see how MOSIX would fare with a completely
different type of application. In my desire to learn more about how MOSIX worked, I created
a little test. I extracted 13 tracks of digital audio from a music CD, and decided that I would
compress these tracks using FLAC, a very good and free lossless audio encoder. By using
FLAC, I can compress without compromising audio fidelity in any way.

Audio encoding, continued
This test is very different from the compilation test in a number of ways. For one, the audio
compression processes have a relatively long lifetime, typically several minutes. Also, their
execution speed is dependent primarily on CPU performance rather than IO. Due to these
two factors, MOSIX should be better able to take advantage of the cluster's computing
resources.

Introducing my cluster
But before we look at the results of my audio encoding tests, let me tell you you a bit about
my cluster. My cluster consists of two nodes; node 1 is a 900Mhz AMD Athlon Thunderbird

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 13 of 17

http://flac.sourceforge.net

system with 512Mb of RAM, and node 2 is a 650Mhz AMD Duron system with 384Mb of
RAM. They are connected to one another using two 100Mbit fast ethernet cards running in
full-duplex mode, thanks to a specially-wired CAT5 cable. While my cluster has the bare
minimum number of nodes, I can use it to learn how to use MOSIX in an effective way. And
as we'll see in a bit, even a 2-node cluster can do some amazing things.

The "baseline" test
To begin my test, I tried encoding all 13 tracks, one at a time . To do this, I logged into node
1, entered my CD track directory (which resides at /root/musictest on node 1's local
filesystem) and typed the following mini-script at the command-line:

for x in track*.wav do flac -8 $x done
And the result? The system load on node 1 continually hovered at around 1.0 as the CD
audio tracks were encoded one after another. The encoding completed in 11 minutes and 11
seconds. Throughout the entire process, the load on node 2 stayed at zero. Obviously,
MOSIX didn't have a chance to kick in and migrate processes around, since I was only
running one CPU-hungry process at a time, and node 1 had a more powerful CPU than node
2. This test provides us with a good baseline. This is the kind of performance we could
expect from node 1 working alone, without MOSIX's, and thus node 2's, help.

MOSIX comes alive
For my next test, I decided to see what would happen if I ran all 13 encoding processes
simultaneously. To do this, I used the following script:

for x in track*.wav do flac -8 $x & done
The addition of the trailing & caused 13 encoding processes to be launched immediately,
rather than one after another. The result? Well, looking in my "mon" window, the system load
on node 1 shot up to 12.0 almost immediately. But after a few seconds, the load on node 2
started rising, just as node 1's load started to fall. After about 15 seconds, the load on node 1
stabilized at 7, while node 2's load stabilized at 6. MOSIX had successfully (and
automatically) migrated some processes to node 2!

This time, the encoding process completed in 6 minutes and 53 seconds, nearly half the time
of the original 11 minutes and 11 seconds. This time is especially good considering that my
650Mhz node 2 isn't nearly as zippy as my 900Mhz node 1. In fact, if I had two
equally-specced machines, it's possible that I would have seen an almost literal halving in
CD audio encoding time. Impressive!

Analysis of MOSIX performance
By running all 13 tracks in concert, we allowed MOSIX to do what it does best. After MOSIX
noticed that the load on node 1 was unusually high, it determined that migrating some
processes would be the most efficient course of action. Because the processes had a
relatively long lifetime, MOSIX had the opportunity to migrate them, and because the
processes were CPU bound, their migration resulted in a dramatic improvement in encoding
performance.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 14 of 17

Example application -- University server
This particular test is a good example of MOSIX's suitability for handling a large number of
resource-hungry processes. Consider a heavily-used University server that may have one
hundred or more simultaneous login sessions and have an extremely high load. MOSIX is a
truly ideal for these types of situations, since the high load and large number of processes
means that MOSIX will have many opportunities to distribute the load among nodes in the
cluster.

In a multi-user MOSIX server application, the server's performance can be improved by
adding another node to the cluster. This is an entirely different paradigm than the typical
approach, which involves scrapping the existing server and replacing it with a faster and
pricier model. By using MOSIX, departments to continue to make use of their existing
investments, resulting in huge cost savings.

The "runhome" test
Now, back to the CD encoding tests. In my next test, I decided to run all 13 encoding
processes in parallel but use MOSIX's "runhome" command to prevent any processes from
migrating from node 1 to any other node in the cluster. Here's the script that I used:

for x in track*.wav do runhome flac -8 $x & done
The results were as you might expect; encoding all the tracks in parallel really didn't help,
since they all the processes had to fight for access to node 1's limited CPU timeslices.
Encoding completed in 11 minutes and 13 seconds, just two seconds worse our linear
baseline. The system load on node 1 stayed at a consistent 12.0, while node 2's load
remained zero.

The "remote" test
Next, I wondered what would happen if I used MOSIX's "runon" command to force all
encoding processes to execute remotely on node 2, forcing MOSIX to funnel data to and
from node 1's filesystem and node 2's remote encoding processes. For this test, I used the
"runon" command in the following script:

for x in track*.wav do runon 2 flac -8 $x & done
The results of this test were very interesting; system load on node 2 jumped to 17.0, which is
something you probably expected. However, the system load on node 1 stayed at 0.0
throughout the entire encoding process. Node 1's load of 0.0 was quite impressive
considering that node 1 needed to pump data to and from node 2 in order to allow all our
encoding processes to run remotely. This would seem to indicate that at least for our
CPU-bound processes, MOSIX has very little overhead. Encoding completed in 15 minutes
and 57 seconds, significantly slower than our baseline but in line with node 1 and node 2's
processor speed (900Mhz Thunderbird vs. 650Mhz Duron) differences.

Performance analysis of "remote" test
I found MOSIX's performance under the "remote" test to be an incredibly pleasant surprise.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 15 of 17

Consider that while node 2 was chugging away running all those encoding processes, I had
node 1 completely free to tackle other computing tasks. This was incredibly handy for me,
since node 1 happens to be my desktop system; node 2 is my test box. This particular test
clearly demonstrates how MOSIX can be used to offload CPU-intensive work to other
machines, thus maximizing the interactive performance of your local workstation. And if my
remote box(es) had combined processing power greater than that of my workstation, I could
actually expect the audio encoding to be completed faster than if the processes ran locally,
and all with a local workstation load of 0. Wow!

The "baseline remote" test, part 1
For my final CD encoding test, I decided to copy all of my CD tracks over to node 2 first, and
then run the encoding processes on node 2 directly, using the "runhome" command to
prevent them from migrating to node 1. By doing this, I hoped to determine exactly how much
of the previous 15:57 result was due to MOSIX overhead, and how much was due to the
relative difference in node 1 and node 2's processor speeds. To perform this test, I first took
used MFS to copy the CD tracks from node 1 to node 2. On node 1, I typed:

cd /root/musictest # mkdir /mfs/2/root/musictest # cp track*.wav
/mfs/2/root/musictest
MFS made it incredibly easy to copy my CD tracks from node 1's /root/musictest directory to
node 2's /root/musictest directory. This is also a very good example of how you can use MFS
to shuffle data from one node to another.

The "baseline remote" test, part 2
Once the CD tracks were on node 2, I ssh'd in and used the following script to encode the
audio tracks:

for x in track*.wav do runhome flac -8 $x & done
Since the flac processes were started on node 2 with the "runhome" command, no processes
were allowed to migrate to node 1. However, because the processes were running on node
2, and the data itself resided on node 2, MOSIX didn't need to do any work shuffling data
back and forth.

Analyzing the results of "remote" tests
Now, what happened? System load on node 2 jumped to 16.9, and the encoding process
completed in 15 minutes and 13 seconds. This helps us put the results in our previous test in
perspective; in our previous example, we added only 4.8% overhead by running our
processes on a remote node and relying on MOSIX to transparently shuffle data back and
forth! In my opinion, that kind of overhead is incredibly reasonable.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 16 of 17

Section 8. Resources and feedback

Resources
You've reached the end of my MOSIX tutorial; I hope you've had a fun time and have a good
grasp of Linux clustering technologies and MOSIX in particular. Please take a look at the
following resources to learn more about MOSIX:

To learn more about MOSIX installation, be sure to read the README included in the
MOSIX source directory. In our test cluster installation, we only set up the bare minimum
configuration to run MOSIX; further extensions to the MOSIX configuration are possible,
allowing better fine-tuning of migration as well as better-tuned MOSIX system performance.

We're fortunate that the MOSIX team has assembled a wonderful set of MOSIX man pages.
Be sure to type "man mosix"; in addition, take some time to read the man pages for setpe,
mon, mosctl, migrate, mosrun, mosix.map, DFSA and MFS.

To learn more about MOSIX, visit the MOSIX site at http://www.mosix.org. At the MOSIX
site, you'll find a FAQ as well as the mosix-user mailing list archives and subscription
information. You'll also find links to various MOSIX papers and related research.

Your feedback
Thanks for reading my tutorial, and I hope that you continue to enjoy and benefit from
MOSIX. We are truly fortunate that such a powerful and free technology is available for Linux
systems.

I look forward to getting your feedback on this tutorial. Additionally, you are welcome to
contact me directly at drobbins@gentoo.org.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Linux clustering with MOSIX Page 17 of 17

http://www.mosix.org
mailto:drobbins@gentoo.org
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	About the author

	Introducing MOSIX
	Introduction
	Prerequisites
	Recommendations
	Recommendations, part 2
	Recommendations, part 3
	Don't get scared

	The technology behind MOSIX
	What is clustering?
	What are Beowulf clusters?
	Drawbacks of Beowulf
	The MOSIX solution
	The MOSIX solution, continued
	Mosix vs. SMP
	Mosix limitations -- processes
	The strength of MOSIX

	Installing MOSIX
	Installation overview
	Downloading MOSIX sources
	MOSIX and the kernel
	Patching the kernel
	Kernel configuration overview
	Complex network option
	Kernel diagnostics option
	Security and MFS options
	DFSA option
	Finishing up config
	Kernel installation tricks
	Installing man pages
	Installing user tools

	Final configuration steps
	/etc/mosix.map
	/etc/mosix.map, continued
	MFS
	Understanding MFS
	System startup
	Shutdown

	MOSIX in action
	We're ready!
	Testing the cluster
	Understanding migration
	Cleaning up

	Exploring MOSIX
	Compiling, part 1
	Compiling, part 2
	A new test -- audio encoding!
	Audio encoding, continued
	Introducing my cluster
	The "baseline" test
	MOSIX comes alive
	Analysis of MOSIX performance
	Example application -- University server
	The "runhome" test
	The "remote" test
	Performance analysis of "remote" test
	The "baseline remote" test, part 1
	The "baseline remote" test, part 2
	Analyzing the results of "remote" tests

	Resources and feedback
	Resources
	Your feedback

