
Programming for Pervasive Computing
Environments

ROBERT GRIMM, JANET DAVIS, ERIC LEMAR, ADAM MACBETH,

STEVEN SWANSON, TOM ANDERSON, BRIAN BERSHAD,

GAETANO BORRIELLO, STEVEN GRIBBLE, and DAVID WETHERALL

University of Washington

Pervasive computing provides an attractive vision for the future of computing. Computational

power will be available everywhere. Mobile and stationary devices will dynamically connect and
coordinate to seamlessly help people in accomplishing their tasks. However, for this vision to

become a reality, developers must build applications that constantly adapt to a highly dynamic

computing environment. To make the developers’ task feasible, we introduce a system archi-
tecture for pervasive computing, called one.world . Our architecture provides an integrated and

comprehensive framework for building pervasive applications. It includes a set of services, such

as service discovery, checkpointing, and migration, that help to build applications and directly
simplify the task of coping with constant change. We describe the design and implementation

of our architecture and present the results of building applications within it. Our evaluation

demonstrates that by using one.world programming for highly dynamic computing environments
becomes tractable and that measured programmer productivity does not decrease when compared

to more conventional programming styles.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; D.4.1 [Operating Systems]: Process Management; D.4.2 [Operating Sys-
tems]: Storage Management; D.4.4 [Operating Systems]: Communications Management—Net-
work communication; D.2.11 [Software Engineering]: Software Architectures—Domain-specific
architectures, Patterns

General Terms: Design, Performance

Additional Key Words and Phrases: asynchronous events, checkpointing, discovery, logic/operation

pattern, migration, one.world , pervasive computing, tuples, ubiquitous computing

1. INTRODUCTION

In this paper, we explore how to build applications for pervasive computing en-
vironments. Pervasive, or ubiquitous, computing [Esler et al. 1999; Weiser 1991]
calls for the deployment of a wide variety of smart devices throughout our working
and living spaces. These devices are intended to react to their environment and
coordinate with each other and with network services. Furthermore, many devices
will be mobile. They are expected to dynamically discover other devices at a given
location and continue to function even if they are disconnected. The overall goal is
to provide users with universal and immediate access to information and to trans-

Authors’ address: Department of Computer Science and Engineering, University of Washington,

Box 352350, Seattle, WA 98195, USA.
This work was funded in part under DARPA contracts F30602-98-1-0205 and N66001-99-2-892401.
Davis and Swanson were partially supported by NSF graduate fellowships. Davis, Grimm, and

Lemar were partially supported by Intel Corporation internships. Grimm was also supported by
IBM Corporation and Intel Foundation graduate fellowships.



2 · Robert Grimm et al.

parently support them in their tasks. The pervasive computing space can thus be
envisioned as a combination of mobile and stationary devices that draw on power-
ful services embedded in the network to achieve users’ tasks [Dertouzos 1999]. The
result will be a giant, ad-hoc distributed system, with tens of thousands of people,
devices, and services coming and going.

The key challenge for developers is to build applications that adapt to such a
highly dynamic environment and continue to function even if people and devices
are roaming across the infrastructure and if the network provides only limited ser-
vices. However, existing approaches to building distributed applications, including
client/server or multitier computing, are ill-suited to meet this challenge. They are
targeted at less dynamic computing environments and lack sufficient facilities for
managing constant change. As a result, developers of pervasive applications have to
expend considerable effort towards building necessary systems infrastructure rather
than focusing on actual applications.

To mitigate this situation, we introduce a system architecture for pervasive com-
puting, called one.world . Our architecture is based on a simple programming model
and provides a set of services that have been specifically designed for large and dy-
namic computing networks. Our architecture does not introduce fundamentally
new operating system technologies or services; rather, the goal is to provide an
integrated and comprehensive framework for building pervasive applications. By
using one.world , application developers can focus on application logic and on making
applications adaptable. We have validated our approach by building and evaluating
two applications, Emcee and Chat. Emcee manages users and their applications,
including the ability to move or copy applications between users and to move all of
a user’s applications between machines, while Chat provides text and audio mes-
saging.

Together, Emcee and Chat provide the applications for a simple pervasive com-
puting scenario in which members of a group, such as a research group, access their
applications and communicate with each other, independent of their current loca-
tion. Group members have their own offices, but frequently move throughout their
organization’s space and spend significant amounts of time in shared areas, such as
laboratories or meeting rooms. They use mobile devices to run their applications,
but they also use the computers in their work environment. As they move through
the organization’s space, they exchange text messages, listen to music, or talk with
each other.

In contrast to existing networked application support, such as X Windows [Nye
1995] or roaming profiles in Windows [Tulloch 2001], our scenario requires that
setup and maintenance be minimal and that application access be seamless and
ubiquitous. In particular, our scenario does not rely on all-powerful administrators
and well-maintained servers, locked up in a machine room. In fact, our group may
be an ad-hoc working group formed at a conference. Furthermore, users do not need
to manually restart their applications when moving between machines; rather, they
simply resume where they left off. Finally, visitors can easily join the group by
starting their own applications or by copying another user’s applications.

The contributions of this paper are threefold. First, we discuss the shortcomings
of existing distributed systems technologies when applied to pervasive computing.



Programming for Pervasive Computing Environments · 3

These technologies typically extend single-node programming methodologies and
hide distribution, making them unsuitable for highly dynamic computing environ-
ments. As an alternative, we present a principled approach that cleanly exposes
distribution and is more appropriate for this space. Second, we provide a detailed
description of a system architecture that embodies our approach. We describe its
design and highlight interesting aspects of its implementation. Third, we demon-
strate that by using one.world programming for change becomes tractable and that
measured programmer productivity does not decrease when compared to more con-
ventional programming styles. We also relay lessons learned and identify opportu-
nities for future research.

This paper is structured as follows. In Section 2 we motivate our work and
introduce our approach to building pervasive applications. Section 3 provides an
overview of our architecture. We describe its design in Section 4 and our Java-
based implementation in Section 5. Section 6 presents the two applications we
have built and explores the impact of writing adaptable applications. We present
an evaluation of our architecture in Section 7, quantifying both developer effort and
application performance. In Section 8, we reflect on our experiences with building
and using one.world . Section 9 reviews related work. Finally, Section 10 concludes
this paper.

2. MOTIVATION AND APPROACH

From a systems viewpoint, the pervasive computing space presents the unique chal-
lenge of a large and highly dynamic distributed computing environment. This sug-
gests that pervasive applications really are distributed applications. Yet, existing
approaches to building distributed systems do not provide adequate support for
pervasive applications and fall short along three main axes.

First, many existing distributed systems seek to hide distribution and, by build-
ing on distributed file systems [Levy and Silberschatz 1990] or remote procedure
call (RPC) packages [Birrell et al. 1982], mask remote resources as local resources.
This transparency simplifies application development, since accessing a remote re-
source is just like performing a local operation. However, this transparency also
comes at a cost in service quality and failure resilience. By presenting the same
interface to local and remote resources, transparency encourages a programming
style that ignores the differences between local and remote access, such as network
bandwidth [Muthitacharoen et al. 2001], and treats the unavailability of a resource
or a failure as an extreme case. But in an environment where tens of thousands of
devices and services come and go, change is inherent and the unavailability of some
resource is a frequent occurrence.

Second, RPC packages and distributed object systems, such as Legion [Lewis
and Grimshaw 1996] or Globe [van Steen et al. 1999], compose distributed appli-
cations through programmatic interfaces. Just like transparent access to remote
resources, composition at the interface level simplifies application development.
However, composition through programmatic interfaces also leads to a tight cou-
pling between major application components because they directly reference and
invoke each other. As a result, it is unnecessarily hard to add new behaviors to
an application. Extending a component requires interposing on the interfaces it



4 · Robert Grimm et al.

uses, which requires extensive operating system support [Jones 1993; Pardyak and
Bershad 1996; Tamches and Miller 1999] and is unwieldy for large or complex in-
terfaces. Furthermore, extensions are limited by the degree to which extensibility
has been designed into the application’s interfaces.

Third, distributed object systems encapsulate both data and functionality within
a single abstraction, namely objects. Yet again, encapsulation of data and func-
tionality extends a convenient programming paradigm for single-node applications
to distributed systems. However, by encapsulating data behind an object’s inter-
face, objects limit how data can be used and complicate the sharing, searching, and
filtering of data. In contrast, relational databases define a common data model that
is separate from behaviors and thus make it easy to use the same data for differ-
ent and new applications. Furthermore, objects as an encapsulation mechanism are
based on the assumption that data layout changes more frequently than an object’s
interface, an assumption that may be less valid for a global distributed comput-
ing environment. Increasingly, many different applications manipulate the same
data formats, such as XML [Bray et al. 1998]. These data formats are specified by
industry groups and standard bodies, such as the World Wide Web Consortium,
and evolve at a relatively slow pace. In contrast, application vendors compete
on functionality, leading to considerable differences in application interfaces and
implementations and a much faster pace of innovation.

Not all distributed systems are based on extensions of single-node programming
methodologies. Notably, the World Wide Web does not rely on programmatic
interfaces and does not encapsulate data and functionality. It is built on only two
basic operations, GET and POST, and the exchange of passive, semi-structured
data. In part due to the simplicity of its operations and data model, the World
Wide Web has successfully scaled across the globe. Furthermore, the narrowness
of its operations and the uniformity of its data model have made it practical to
support the World Wide Web across a huge variety of devices and to add new
services, such as caching [Chankhunthod et al. 1996; Tewari et al. 1999], content
transformation [Fox et al. 1997], and content distribution [Johnson et al. 2000].

However, from a pervasive computing perspective the World Wide Web also
suffers from three significant limitations. First, it requires connected operation for
any use other than reading static pages. Second, it places the burden of adapting
to change on users, for example, by making them reload a page when a server is
unavailable. Finally, it does not seem to accommodate emerging technologies that
are clearly useful for building adaptable applications, such as mobile code [Thorn
1997] (beyond its use for enlivening pages) and service discovery [Adjie-Winoto
et al. 1999; Arnold et al. 1999; Czerwinski et al. 1999].

This raises the question of how to structure systems support for pervasive ap-
plications. On one side, extending single-node programming models to distributed
systems leads to the shortcomings discussed above. On the other side, the World
Wide Web avoids several of the shortcomings but is too limited for pervasive com-
puting. To provide a better alternative, we identify three principles that should
guide the design of a systems framework for pervasive computing.

Principle 1. Expose change.

Systems should expose change, including failures, rather than hide distribution, so



Programming for Pervasive Computing Environments · 5

Separate
data and

functionality

Adaptable
applications

Compose
dynamically

Expose
change

Programming for change

Fig. 1. Overview of our approach. The three principles guide the design of our system architecture

and make it feasible for application developers to program for change, resulting in adaptable
applications.

that applications can implement their own strategies for handling changes. Event-
based notification or callbacks are examples of suitable mechanisms. At the same
time, systems need to provide primitives that simplify the task of adequately re-
acting to change. Examples for such primitives include “checkpoint” and “restore”
to simplify failure recovery, “move to a remote node” to follow a user as he or
she moves through the physical world, and “find matching resource” to discover
suitable resources on the network, such as other users to exchange messages with.

Principle 2. Compose dynamically.

Systems should make it easy to compose and expand applications and services
at runtime. In particular, interposing on a component’s interactions with other
components or the outside world must be simple. Such features make it possible to
dynamically change the behavior of an application or add new behaviors without
changing the application itself. This is particularly useful for complex and reusable
behaviors, such as replicating an application’s data or deciding when to migrate an
application.

Principle 3. Separate data and functionality.

Systems need to provide a clean separation between data and functionality, so that
they can be managed separately and so that they can evolve independently. The
separation is especially important for services that search, filter, or translate large
amounts of data. At the same time, data and functionality depend on each other,
for example, when migrating our Chat application and the music it is currently
broadcasting. Systems thus need to include the ability to group data and function-
ality but must make them accessible independently.

Common to all three principles is the realization, similar to that behind extensible
operating systems [Bershad et al. 1995; Engler et al. 1995; Kaashoek et al. 1997],
that systems cannot automatically decide how to react to change, because there are
too many alternatives. Where needed, the applications themselves should be able
to determine and implement their own policies [Saltzer et al. 1984]. As a result, we
are advocating a structure different from more traditional distributed systems.



6 · Robert Grimm et al.

At the same time, the three principles do not preclude the use of established
programming methodologies. Exposing change does not prevent us from providing
reasonable default behaviors. But it does emphasize that applications must be
notified of change. Similarly, composing dynamically does not preclude the use of
strong typing, for example, in the form of strongly typed events. However, it does
emphasize the need for simplifying interposition. Separating data and functionality
does not preclude the use of object-oriented programming. The ability to abstract
data or functionality is clearly useful for structuring and implementing applications.
Rather, separating data and functionality emphasizes that application data and
functionality should build on distinct abstractions.

More importantly, a system architecture whose design follows the three principles
provides considerable support for dealing with change. Exposing change helps with
identifying and reacting to changes in devices and the network. Dynamic composi-
tion helps with changes in application features and behaviors. Finally, separating
data and functionality helps with changes in data formats and application function-
ality. Given a system that follows these principles, application developers can focus
on making applications adaptable instead of creating necessary systems support.
This approach to building pervasive applications is illustrated in Figure 1.

With the principles in place, we now provide an overview of our architecture and
introduce the basic abstractions as well as the core services.

3. ARCHITECTURE

In our architecture, each device typically runs a single instance of one.world . Each
such node is independent of other nodes and need not be connected with other
nodes. Furthermore, each node may be administered separately. Applications run
within one.world , and all applications running on the same node share the same
instance of our architecture. Our architecture provides the same basic abstractions
and core services across all nodes and uses mobile code to provide a uniform and
safe execution platform.

3.1 Basic Abstractions

Our architecture relies on separate abstractions for application data and function-
ality. Applications store and communicate data in the form of tuples and are
composed from components. Tuples define a common data model, including a type
system, for all applications and thus make it easy to store and exchange data.
They are records with named fields and are self-describing in that an application
can dynamically determine a tuple’s fields and their types. Components implement
functionality and interact by exchanging asynchronous events through imported
and exported event handlers. All event handlers implement the same, uniform in-
terface, making it easy to compose them. Imported and exported event handlers are
dynamically added to and removed from a component and are dynamically linked
and unlinked.

Environments provide structure and control. They serve as containers for tuples,
components, and other environments and form a hierarchy with a single root per
node. Each application has at least one environment, in which it stores tuples and
in which its components are instantiated. However, applications are not limited to
a single environment and may span several, nested environments. Each application



Programming for Pervasive Computing Environments · 7

robert

Clock

User

<;><;>

Chat

<;>

<;>

<;>Environment Tuple Components

Fig. 2. An example environment hierarchy. The “User” environment hosts the Emcee application
and has one child, named “robert”, which stores tuples. The robert environment in turn has two
children, named “Clock” and “Chat”. The Clock environment only contains active components,

while the Chat environment, in addition to hosting the Chat application, also stores tuples.

runs within its own protection domain, isolating applications from each other and
from one.world ’s kernel, which is hosted by each node’s root environment. Appli-
cations are notified of important events by their environments, including that the
environment has been activated, restored from a checkpoint, or migrated. Environ-
ments are also an important mechanism for dynamic composition: an environment
controls all nested environments and can interpose on their interactions with the
kernel and the outside world. Environments thus represent a combination of the
roles served by file system directories and nested processes [Brinch Hansen 1970;
Ford et al. 1996; Tullmann and Lepreau 1998] in other operating systems, while
still preserving independent access to data and functionality. Figure 2 shows an
example environment hierarchy.

3.2 Services

In addition to the basic abstractions, one.world provides a set of services that
serve as common building blocks and help developers in making their applications
adaptable. Operations help manage asynchronous interactions. They are based on
what we call the logic/operation pattern. This pattern structures applications into
logic—computations that do not fail, such as creating and filling in a message—and
operations—interactions that may fail, such as sending the message to its intended
recipients. Operations simplify such interactions by keeping the state associated
with event exchanges and by providing automatic timeouts and retries.

Migration provides the ability to move or copy an environment and its contents,
including tuples, components, and nested environments, either locally or to another
node. It is especially useful for applications that follow a user from shared device
to shared device as he or she moves through the physical world. Checkpointing
captures the execution state of an environment tree and saves it as a tuple, making
it possible to later revert the environment tree’s execution state. Checkpointing
simplifies the task of gracefully resuming an application after it has been dormant



8 · Robert Grimm et al.

Table I. Overview of one.world ’s features. Issue specifies the distributed systems concern. Fea-

ture describes the corresponding one.world abstraction or service. Section lists the design or

implementation section discussing that feature.

Issue Feature Section

Application

model

Applications are composed from components that ex-

change events.

4.2

Operations manage event exchanges, notably those
with event handlers outside an application.

4.2.1

Process Environments contain application components. 4.3

management Checkpointing captures an application’s execution

state and migration moves or copies an application.

4.3, 5.3

Addressability / Protection domains limit access to direct references. 5.1
Naming The environment hierarchy limits access to nested en-

vironments.

4.3

Remote event passing and discovery provide access to
arbitrary event handlers through symbolic handlers.

4.2.2, 5.2

Storage Structured I/O persistently stores tuples in environ-
ments.

4.1

Communications Remote event passing and discovery send events to re-

mote receivers.

4.2.2, 5.2

Security Protection domains isolate applications. 5.1

The request/monitor mechanism can be used to imple-
ment reference monitors and auditing.

4.3

Resource
allocation

The request/monitor mechanism can be used to inter-
pose on requests for system services.

4.3

Extensibility The request/monitor mechanism can be used to add

new services.

4.3

or after a failure, such as a device’s batteries running out.
Remote event passing (REP) provides the ability to send events to remote services

and is one.world ’s basic mechanism for communication across the network. To use
REP, services export event handlers under symbolic descriptors, that is, tuples, and
clients send events by specifying the symbolic receiver. Finally, discovery routes
events to services with unknown location. It supports a rich set of options, including
early and late binding [Adjie-Winoto et al. 1999] as well as multicast, and is fully
integrated with REP, resulting in a simple, yet powerful API. Discovery is especially
useful for applications that migrate or run on mobile devices and need to discover
local resources, such as a wall display or printer.

As a distributed systems architecture, one.world must address several distributed
systems issues. Table I lists the most important issues and relates them to the cor-
responding features in our architecture. It also lists the specific sections that discuss
these features in detail, thus serving as an index into the design and implementation
sections of this paper.

4. DESIGN

We now describe the design of one.world in detail, explaining our design decisions
and illustrating the use of our architecture through code examples. In contrast
to the previous section, which distinguishes between basic abstractions and core



Programming for Pervasive Computing Environments · 9

public abstract class Tuple {

// The ID and metadata fields.

public Guid id;

public DynamicTuple metaData;

// Programmatic access to a tuple’s fields.

public final Object get(String name) {...}

public final void set(String name, Object value) {...}

public final List fields() {...}

public final Class getType(String name) {...}

// Validation of a tuple’s constraints.

public void validate() throws TupleException {...}

// A tuple’s human-readable representation.

public String toString() {...}

}

Fig. 3. Definition of a tuple. All tuples inherit this base class and have an ID field to support

symbolic references and a metadata field to support application-specific annotations. They also
have a set of methods to programmatically access a tuple’s fields, to validate a tuple’s semantic
constraints, and to convert the tuple into a human-readable representation. A Guid is a globally

unique identifier. A DynamicTuple is a special tuple; its fields can be of any type and, unlike those
of other tuples, can be dynamically added and removed. The accessor methods are final and are
implemented using reflection. In contrast, individual tuple classes can override the validate() and

toString() methods to define their own semantic constraints and human-readable representation,
respectively.

services, this section is structured according to our principle of separating data and
functionality. We first present our architecture’s facilities for data management
in Section 4.1, followed by event processing in Section 4.2 and the environment
hierarchy in Section 4.3. one.world ’s core services are discussed in the appropri-
ate subsections: operations, remote event passing, and discovery in Section 4.2;
checkpointing and migration in Section 4.3.

4.1 Data Management

Data management in one.world is based on tuples. Tuples define the common data
model for all applications running in our architecture, thus simplifying the sharing
of data. They are self-describing, mutable records with named and optionally typed
fields. Valid field types include numbers, strings, and arrays of basic types, as well
as tuples, thus allowing tuples to be nested within each other. Arbitrary objects
can be stored in a tuple in form of a box, which contains a serialized representation
of the object. All tuples share the same base class and have an ID field specifying
a globally unique identifier [Leach and Salz 1998] (GUID) to support symbolic
references, as well as a metadata field to support application-specific annotations.
Each tuple also has a set of methods to programmatically reflect its structure, access
its data, validate its semantic constraints (for example, to determine whether a
tuple’s field values are consistent with each other), and produce a human-readable
representation. The base class for all tuples is shown in Figure 3.



10 · Robert Grimm et al.

Table II. The structured I/O operations. Operation specifies the structured I/O operation. Ar-

gument specifies how tuples are selected for that operation. Explanation describes the operation.

Operation Argument Explanation

put Tuple Write the specified tuple.

read Query Read a single tuple matching the specified query.

query Query Read all tuples matching the specified query.

listen Query Observe all tuples that match the specified query

as they are written.

delete ID Delete the tuple with the specified ID.

Our data model also defines a common query language for tuples, which is used for
both storage and service discovery. Queries support comparison of a constant to the
value of a field, including the fields of nested tuples, comparison to the declared or
actual type of a tuple or field, and negation, disjunction, and conjunction. Queries
are expressed as tuples; an example query is shown in Figure 8.

Structured I/O lets applications store tuples in environments. Each environ-
ment’s tuple storage is separate from that of other environments. Comparable to
the primary key in a relational database table, a tuple’s ID uniquely identifies the
tuple stored within an environment. In other words, at most one tuple with a given
ID can be stored in a given environment. The structured I/O operations support
the writing, reading, and deleting of tuples and are summarized in Table II. They
are atomic so that their effects are predictable and can optionally use transactions
to group several operations into one atomic unit. To use structured I/O, applica-
tions bind to tuple storage and then perform operations on the bound resource. All
bindings are controlled by leases [Gray and Cheriton 1989].

We chose tuples instead of byte strings for I/O because tuples preserve the struc-
ture of application data. Tuples obviate the need for explicit marshaling and un-
marshaling of data and enable system-level query processing. Since they provide
well-defined data units, they also make it easier to share data between multiple
writers. We chose tuples instead of XML [Bray et al. 1998] because tuples are
simpler and easier to use. The structure of XML-based data is less constrained
and also more complicated, including tags, attributes, and name spaces. Further-
more, interfaces to access XML-based data, such as DOM [Le Hors et al. 2000], are
relatively complex.

We chose a storage mechanism that is separate from communications, provided
by remote event passing, instead of a unified tuple space abstraction [Carriero and
Gelernter 1986; Davies et al. 1998; Freeman et al. 1999; Murphy et al. 2001; Wyck-
off et al. 1998] because such a separation exposes distribution and change in the
environment. Furthermore, it better reflects how pervasive applications store and
communicate data. On one side, many applications need to modify stored data.
For example, a personal information manager needs to be able to update stored
contacts and appointments. Structured I/O lets applications overwrite stored tu-
ples by simply writing a tuple with the same ID as the stored tuple. In contrast,
tuple spaces only support the addition of new tuples, but existing tuples cannot be
changed. On the other side, some applications, such as streaming audio and video,
need to directly communicate data in a timely fashion. Remote event passing pro-



Programming for Pervasive Computing Environments · 11

Chat

exportedimported

AudioSink

Fig. 4. Illustration of the relationship between imported and exported event handlers. Boxes

represent components, indentations represent imported event handlers, and protrusions represent
exported event handlers. The dotted arrow indicates the direction of event flow. In this example,

the component named “Chat” imports an event handler named “imported”, and the component

named “AudioSink” exports an event handler named “exported”. The two event handlers are
linked. When an event is sent to the imported event handler, that is, when that event handler is

invoked on an event, the event is forwarded to the exported event handler, which then processes

it. In the case of Chat and AudioSink, Chat sends received audio messages to the AudioSink,
which then plays back the audio contained in the messages.

vides that functionality. In contrast, tuple spaces store all tuples before delivering
them and consequently retain them in storage. This is especially problematic for
streaming audio and video, since data tends to be very large. As a result, tuple
spaces represent a semantic mismatch for many pervasive applications, providing
too little and too much functionality at the same time.

4.2 Event Processing

Control flow in one.world is expressed through asynchronous events that are pro-
cessed by event handlers. Events are represented by tuples. In addition to the ID
and metadata fields common to all tuples, events have a source field referencing an
event handler. This event handler receives notification of failure conditions during
event delivery and processing, as well as the response for request/response interac-
tions. Furthermore, all events have a closure field, which can be of any allowable
tuple field type including a tuple. For request/response interactions, the closure of
the request is returned with the response. Closures are useful for storing additional
state needed for processing responses and thus can simplify the implementation
of event handlers. Event handlers implement a uniform interface with a single
method that takes the event to be processed as its only argument. Event delivery
has at-most-once semantics, both for local and remote event handling.

Components implement application functionality. They import and export event
handlers, exposing the event handlers for linking, and are instantiated within spe-
cific environments. Although imported and exported event handlers can be added
and removed after component creation, they are typically declared in a compo-
nent’s constructor. Components can be linked and unlinked at any time. After
linking an imported event handler to an exported event handler, events sent to the
imported event handler are processed by the exported event handler. Unlinking
breaks this connection again. An application’s main component has a static initial-
ization method that instantiates its components and performs the initial linking.
While the application is running, it can instantiate additional components, add
and remove imported and exported event handlers, and relink and unlink compo-
nents as needed. The relationship between imported and exported event handlers is



12 · Robert Grimm et al.

public static void init(Environment env, Object closure) {

// Create Emcee’s component.

Emcee comp = new Emcee(env);

// Link the component with its environment.

env.link("main", "main", comp);

comp.link("request", "request", env);

}

Fig. 5. Code example for initializing an application. An initialization method takes as its argu-
ments the environment for the application and a closure, which can be used to pass additional

arguments, for example, from a command line shell. The method shown in this figure first in-

stantiates the Emcee component and then links that component with its environment. It links
the main event handler imported by the environment env with the main event handler exported
by the component comp, and the request event handler imported by the component comp with

the request event handler exported by the environment env. The role of the main and request

event handlers is explained in Section 4.3. Note that linked event handlers need not have the same
name, although they do in this example.

illustrated in Figure 4, and an example initialization method is shown in Figure 5.
To implement asynchronous event handling, each environment provides a queue

of pending 〈event handler, event〉 invocations as well as a pool of one or more threads
to perform such invocations. When an event is sent between components in dif-
ferent environments, the corresponding event handler invocation is automatically
enqueued in the 〈event handler, event〉 queue of the target environment. If the en-
vironments are in different protection domains, the event is also copied before it is
enqueued. When an event is sent between components in the same environment,
the event handler invocation is a direct method call, so that the event is delivered
reliably and efficiently. This default can be overridden at link-time, so that event
handlers in the same environment use the 〈event handler, event〉 queue instead of
direct invocations.

We chose to use asynchronous events instead of synchronous invocations for three
reasons. First and foremost, asynchronous events provide a natural fit for pervasive
computing, as applications often need to raise or react to events, such as sending
or receiving a text message. Second, where threads implicitly store execution state
in registers and on stacks, events make the execution state explicit. Systems can
thus directly access execution state, which is useful for implementing features such
as event prioritization or checkpointing and migration. Finally, taking a cue from
other research projects [Chou et al. 1999; Gribble et al. 2000; Hill et al. 2000; Pai
et al. 1999; Welsh et al. 2001] that have successfully used asynchronous events at
very different points of the device space, we believe that asynchronous events scale
better across different classes of devices than threads.

We chose a uniform event handling interface because it greatly simplifies compo-
sition and interposition. Event handlers need to implement only a single method
that takes as its sole argument the event to be processed. Events, in turn, have a
well-defined structure and are self-describing, making dynamic inspection feasible.
As a result, event handlers can easily be composed with each other. For instance,



Programming for Pervasive Computing Environments · 13

operation =

new Operation(0, Constants.OPERATION_TIMEOUT, timer, request, continuation);

Fig. 6. Code example for creating an operation. The newly created operation does not perform
any retries, times out after the default timeout, and uses the timer timer. Requests are sent to

the request event handler and responses are forwarded to the continuation event handler. This

code example is taken from Emcee’s source code.

the uniform event handling interface enables a flexible component model, which
supports the linking of any imported event handler to any exported event handler.
At the same time, the uniform event handling interface does not prevent the ex-
pression of typing constraints. When components declare the event handlers they
import and export, they can optionally specify the types of events sent to imported
event handlers and processed by exported event handlers.

4.2.1 Operations. While asynchronous events provide a good fit for pervasive
computing, they also raise the question of how to structure applications, especially
when compared to the more familiar thread-based programming model. Of particu-
lar concern are how to maintain the state associated with pending request/response
interactions and how to detect failures, notably lost events. In our experience with
writing event-based code, established styles of event-based programming, such as
state machines, are only manageable for very simple applications.

After some experimentation, we found the following approach, which we call the
logic/operation pattern, particularly successful. Under this pattern, an application
is partitioned into logic and operations, which are implemented by separate sets
of event handlers. Logic are computations that do not fail, barring catastrophic
failures, such as creating or displaying a text message. Operations are interactions
that may fail, such as sending a text or audio message to its intended recipients.
Operations include all necessary failure detection and recovery code. The failure
condition is reflected to the appropriate logic only if recovery fails repeatedly or
the failure condition cannot be recovered from in a general way.

The Operation service reifies the logic/operation pattern. It is an event handler
that connects an event handler accepting requests with an event handler expecting
responses. For every request sent to an operation, the operation keeps the state
of the pending interaction, including the request’s closure, and sends exactly one
response to the event handler expecting responses. The operation automatically
detects timeouts and performs retries. If all retries fail, it notifies the event handler
expecting responses of the failure. Operations can be nested and can also be used
on both sides of multi-round interactions, such as those found in many network
protocols. As a result, operations provide an effective way to express complex
interactions and structure event-based applications. Example code for creating
an operation is shown in Figure 6. That operation is then used to manage the
request/response interactions shown in Figures 8 and 9.

4.2.2 Remote Event Passing and Discovery. Besides obviously needing to com-
municate with each other, mobile devices and migrating applications need to be



14 · Robert Grimm et al.

Binding time

Late

Early

Selectivity

Anycast

Multicast

Descriptor
Event

Query
target

Fig. 7. A classification of discovery options. The binding time determines whether the discovery
query is performed early (before sending an event) or late (while routing an event). The query
target determines whether the query is performed on the service descriptor or the event itself

(which represents a form of reverse lookup). The selectivity determines whether an event is sent
to a single matching resource or to all matching resources. Note that not all combinations are
meaningful; notably, early binding cannot be combined with the event as a query target because

queries on the event itself can only be performed while routing the event.

able to locate each other and nearby resources. As a result, discovery is an impor-
tant service for dynamically composing pervasive applications and needs to support
a rich set of options. We classify the major discovery options along three axes. The
first axis represents the binding time, which determines when to perform a dis-
covery query. Early binding first resolves the query and then uses point-to-point
communications with the resolved resource. It is useful when an application needs
to repeatedly send events to the same resource or when services can be expected
to remain in the same location. Late binding [Adjie-Winoto et al. 1999] resolves
the query only while routing the event. While it introduces a performance over-
head for every sent event, late binding also is the most responsive and thus most
reliable form of communication in a highly dynamic environment. The second axis
represents the query target, which determines the entity on which to perform a
discovery query. While the query is typically performed on service descriptors, it
can also be performed on the events themselves. The latter constitutes a form of
reverse lookup and is useful for such tasks as logging and debugging remote com-
munications. Finally, the third axis represents the specificity, which determines
the number of resources receiving an event. Anycast sends the event to a single
matching resource, while multicast sends the event to all matching resources. Our
classification of discovery options is illustrated in Figure 7.

Remote event passing (REP) provides the ability to send events to remote re-
ceivers. It supports both point-to-point communications and service discovery, in-
cluding all options described above, through only three simple operations: export,
send, and resolve. The export operation makes an event handler accessible from
remote nodes through a symbolic descriptor, that is, a tuple. The descriptor’s type
determines how the event handler is exported. If the descriptor is a Name, the event
handler is exported for point-to-point communications. If it is a Query, the event
handler is exported for reverse lookups on the events sent through late binding



Programming for Pervasive Computing Environments · 15

SymbolicHandler destination;

if (null == fetchLocation) {

// Location is unknown; use discovery.

destination = new DiscoveredResource(new

Query(new Query("", Query.COMPARE_HAS_SUBTYPE, UserDescriptor.class),

Query.BINARY_AND,

new Query("user", Query.COMPARE_EQUAL, fetchUser)));

} else {

// Location is known; use point-to-point communications.

destination = new NamedResource(fetchLocation, "/User/" + fetchUser);

}

operation.handle(new RemoteEvent(this, closure, destination, msg));

Fig. 8. Code example for sending a remote event. This example sends the event msg for user

fetchUser, whose location fetchLocation may or may not be known. If the location is known,
the event is sent through point-to-point communications. If the location is not known, the event is
sent through late binding discovery. The discovery query matches tuples of type UserDescriptor

whose user field equals fetchUser. The operation forwards the RemoteEvent to one.world ’s kernel,
which then performs the actual send operation. This code example is taken from Emcee’s source
code.

discovery. For all other tuples, the event handler is exported for regular discovery
lookups. The resulting binding between the event handler and descriptor is leased.
The send operation sends an event to previously exported event handlers using
either a node address and name for point-to-point communications or a discovery
query for late binding. For late binding, a flag determines whether to use anycast
or multicast. Finally, the resolve operation looks up event handlers in the discovery
service so that they can be used for point-to-point communications. Example code
for sending an event through REP is shown in Figure 8.

Discovery relies on a centralized server to provide its functionality. The discov-
ery server is automatically elected from all nodes running one.world on the local
network, with elections favoring nodes with ample resources and long uptimes. Dis-
covery server election eliminates the need for manual configuration and administra-
tion and thus makes it possible to use discovery outside well-managed computing
environments, such as a conference site. Each node automatically forwards ex-
ported 〈event handler, descriptor〉 bindings to the current discovery server, routes
late binding sends through the server, and performs event handler resolutions on
the server.

4.3 The Environment Hierarchy

Environments are containers for stored tuples, components, and other environments
and provide structure and control in one.world . They provide structure by grouping
data and functionality, and they provide control by nesting environments within
each other. At the same time, environments always maintain a clear separation
between data and functionality, which can be accessed independently and are not
hidden behind a unifying interface. The environment abstraction was inspired by
the ambient calculus [Cardelli 1999]. Similar to environments, ambients serve as
containers for data, functionality, and other ambients. The difference between the



16 · Robert Grimm et al.

operation.handle(new

EnvironmentEvent(null, this, EnvironmentEvent.CHECK_POINT, env.getId()));

operation.handle(new RestoreRequest(null, this, env.getId(), -1));

operation.handle(new

MoveRequest(null, user, user.env.getId(), "sio://"+location+"/User", false));

Fig. 9. Code examples for checkpointing, restoring, and moving an environment. The first code

snippet checkpoints a user’s environment env. The second code snippet restores the latest check-
point for a user’s environment env. The third code snippet moves a user’s environment user.env

to the node named location. For all snippets, the operation forwards the event to one.world ’s

kernel, which then performs the requested environment operation. Note that the first argument to
each event’s constructor is the source for that event and is automatically filled in by the operation.
The code snippets are taken from Emcee’s source code.

two abstractions is a difference of focus: ambients are used to reason about mobile
computations, while environments are used to implement applications.

The grouping of data and functionality is relevant for loading code, checkpointing,
and migration. In one.world , application code is stored as tuples and loaded from
environments. Checkpointing captures the execution state of an environment tree,
including application components and pending 〈event handler, event〉 invocations,
in the form of a tuple that is stored in the root of the checkpointed environment
tree. The environment tree can later be reverted by reading the tuple and restoring
the execution state. Finally, migration provides the ability to move or copy an
environment tree, including all execution state and all stored tuples, to a remote
node. Migration is eager in the sense that it moves or copies the environment tree
in a single operation, leaving no implicit back-references to the originating node.
Example code for checkpointing, restoring, and moving an environment is shown
in Figure 9.

Checkpointing and migration need to capture and restore the execution state of
an environment tree. When capturing execution state, our architecture first qui-
esces all environments in the tree, that is, waits for all threads to return to their
thread pools. It then serializes the affected application state, notably all compo-
nents in the environment tree, and the corresponding environment state, notably
the 〈event handler, event〉 queues. When restoring execution state, one.world first
deserializes all application and environment state, then reactivates all threads, and
finally notifies applications that they have been restored or migrated. Upon re-
ceiving this notification, applications restore access to outside resources, such as
bindings for tuple storage or REP.

During serialization, all non-symbolic references to event handlers outside the af-
fected environment tree are nulled out. This includes links to components outside
the tree or event handlers providing access to kernel resources, such as structured
I/O. Applications need to restore nulled out handlers themselves by relinking or



Programming for Pervasive Computing Environments · 17

app

monitor

request

main

monitor

request

main

debugger

Fig. 10. Illustration of the request/monitor mechanism. Boxes on the left represent application
components and boxes on the right represent environments. The app environment is nested
within the debugger environment. The debugger environment’s monitor handler is linked and

thus intercepts all events sent to the app environment’s request handler. The use of the main
handler is explained in the text.

rebinding after restoration or migration. While an environment tree is being mi-
grated, components in the tree cannot receive events from outside the tree. An
attempt to send an event to a component currently being migrated results in a
failure notification, thus exposing the change in component location. The compo-
nent can accept events only after migration has completed and the application has
restored access to outside resources again.

The nesting of environments is relevant for the following two features. First, logic
to control checkpointing and migration can be separated into an outer environment,
because checkpointing and migration affect an entire environment tree. For exam-
ple, a migration agent that knows how to follow a user as he or she moves through
the physical world can migrate any application, simply by dynamically embedding
the application in its environment. Second, interposition gives an outer environ-
ment complete control over an inner environment’s interactions with environments
higher up the hierarchy, including one.world ’s kernel.

To an application, an environment appears to be a regular component, even
though the environment’s event handlers belong to the root environment’s protec-
tion domain. Each environment imports an event handler called “main”, which
must be linked to an application’s main component before the application can run
in the environment. It is used by one.world to notify the application of important
events, such as activation, restoration, migration, or termination of the environ-
ment.

Each environment also exports an event handler called “request” and imports an
event handler called “monitor”. Events sent to an environment’s request handler are
delivered to the first ancestral environment whose monitor handler is linked. The
root environment’s monitor handler is always linked to one.world ’s kernel, which



18 · Robert Grimm et al.

processes requests for structured I/O, REP, and environment operations. Conse-
quently, applications use the request handler for interacting with the kernel. For
example, the operation created in Figure 6 and used in Figures 8 and 9 forwards
events to the request handler of Emcee’s environment. Furthermore, by linking
to the monitor handler, an application can interpose on all events sent to a de-
scendant’s request handler. For example, a debugger can monitor any application
simply by nesting the application in its environment and by linking to its monitor
handler. This use of the request/monitor mechanism is illustrated in Figure 10.

To enforce the nesting of environments, one.world restricts access to tuple storage
and environment operations, such as creating or deleting an environment, to the
requesting environment and its descendants. When an application sends an event
to its request handler, the event’s metadata is tagged with the identity of the
requesting environment. Before granting access to tuple storage or performing an
operation on an environment, the kernel verifies that the requesting environment is
an ancestor of the environment being operated on.

We chose a hierarchical arrangement for environments because, while concep-
tually simple, it offers considerable flexibility and power. In particular, the re-
quest/monitor mechanism—by building on our component model—makes inter-
position trivial and greatly simplifies dynamic composition as illustrated above.
Furthermore, because of the uniform event handler interface, the request/monitor
mechanism is extensible; it can handle new event types without requiring any
changes. Applications can inspect events using the tuple accessor methods shown
in Figure 3, or pass them unexamined up the environment hierarchy. Finally, the
same mechanism can be used to provide security by interposing a reference moni-
tor [Anderson 1972] and auditing by logging an application’s request stream. It thus
obviates the need for fixing a particular security mechanism or policy in one.world ’s
kernel.

We chose to null out references to outside event handlers during serialization
because doing so exposes change in environments. For migration, an alternative
approach might redirect such event handlers to the original node. However, trans-
parently redirecting event handlers creates residual dependencies [Powell and Miller
1983] and thus increases an application’s exposure to failures, while also hiding the
cause of failures from the application. Furthermore, nulling out event handlers
typically does not place an additional burden on developers, because applications
already need to explicitly acquire resources at other points in their life cycles, such
as when they are activated.

5. IMPLEMENTATION

In this section, we present one.world ’s implementation. After a short overview of
our implementation, we explore the more interesting aspects in detail. We present
how environments are separated from each other and how events are passed be-
tween them in Section 5.1. We then discuss the implementation of remote event
passing and discovery in Section 5.2. Finally, we describe the implementation of
checkpointing and migration in Section 5.3.

The implementation of one.world currently runs on Windows and Linux PCs. It
is largely written in Java, which provides us with a safe and portable execution



Programming for Pervasive Computing Environments · 19

platform. We use a small, native library to generate GUIDs, as they cannot be
correctly generated in pure Java. Furthermore, we use the Berkeley DB [Olson
et al. 1999] to implement reliable tuple storage. The implementation currently lacks
support for structured I/O transactions and for loading code from environments,
although their implementation should be straightforward. It does, however, include
support for building GUI-based applications, for a command line shell, and for
converting between files and stored tuples.

The implementation of one.world has approximately 19,000 non-commenting
source statements (NCSS). Our entire source tree, including regression tests, bench-
marks, and applications, has approximately 46,000 NCSS. A Java archive file with
the binaries for one.world itself is 514 KB. The GUID generation library requires
28 KB on Windows and 14 KB on Linux systems, while the Berkeley DB libraries
require another 500 KB on Windows and 791 KB on Linux systems.

Our implementation does not rely on features that are unique to Java. It requires
a type-safe execution environment, support for reflection and object serialization,
and the ability to customize the code loading process. As a result, one.world could
also be implemented on other platforms that provide these features, such as Mi-
crosoft’s .NET [Thai and Lam 2001].

5.1 Environment Separation

In one.world , each environment processes events independently from other envi-
ronments by using its own queue of pending 〈event handler, event〉 invocations and
thread pool, and each application has its own protection domain. Events sent across
environments are automatically placed into the appropriate 〈event handler, event〉
queue and are also copied if they are sent across protection domain boundaries.
Our implementation uses two related mechanisms, class loaders and event handler
wrapping, to provide this separation of environments.

Class loaders are used to separate the code of applications in different protection
domains. They are arranged in a simple hierarchy [Liang and Bracha 1998], with
one root class loader having a child class loader for every application’s protection
domain. The root class loader is responsible for loading core classes, including
one.world ’s kernel, and is created on startup. Child class loaders load an appli-
cation’s code, but defer to the root class loader for Java’s platform classes and
one.world ’s core classes. They are created when an application is created or when
it migrates to a node and are destroyed when the application is destroyed or when
it moves to another node. As a result, core classes are shared between protection
domains and loaded once, and application code only needs to be in memory while
an application is running.

Event handler wrapping ensures that events are automatically placed into the
appropriate 〈event handler, event〉 queue and that arbitrary object references can-
not be leaked between protection domains. The basic idea behind event handler
wrapping is that an application cannot directly reference an event handler origi-
nating from another environment, but only a wrapped version [Shapiro 1986]. An
application initially accesses event handlers in other environments by linking with
event handlers exported by components in other environments, such as its environ-
ment’s request handler which is implemented by the root environment. The linker
performs the event handler wrapping as part of the linking process. Any additional



20 · Robert Grimm et al.

wrapping is then performed by the wrapped event handlers themselves.
A wrapped event handler keeps internal references to the original, unwrapped

event handler, the unwrapped event handler’s environment (which we call the tar-
get environment because it receives events), and the environment using the wrapped
handler (which we call the source environment because it sends events). When an
event is sent to a wrapped event handler, the wrapped event handler first ensures
that all event handlers referenced by the event are correctly wrapped. By using the
tuple accessor methods shown in Figure 3, it traverses all fields of the event, includ-
ing the fields of nested tuples, and modifies event handlers in place as necessary. If
the protection domains of the source and target environments differ, the wrapped
event handler then copies the event. Events whose classes were loaded by the root
class loader are simply copied. Events whose classes were loaded by a child class
loader are recreated using the child class loader of the target environment’s pro-
tection domain. After wrapping and, if necessary, copying the event, the wrapped
event handler enqueues the unwrapped event handler and the resulting event in the
target environment’s 〈event handler, event〉 queue.

Taken together, class loaders and event handler wrapping separate environments
from each other and provide a well-defined method for communicating between
them. Copying events and wrapping event handlers is sufficient to prevent protec-
tion domain leaks because tuples and event handlers are the only entities applica-
tions can define themselves. All other types that can be used in tuples are defined
by our architecture and cannot reference arbitrary objects. Note that wrapping
event handlers in place before copying events does not represent a security hole:
While an application might be able to replace an already wrapped event handler
with an unwrapped one, the event copy code only copies references to wrapped
event handlers, but never unwrapped event handlers.

5.2 Remote Event Passing and Discovery

Remote event passing provides the ability to symbolically name event handlers and
is the only way to remotely reference event handlers in one.world , as our architecture
does not support direct references to remote event handlers. The event handler
descriptors used by REP, such as the NamedResource and DiscoveredResource
shown in Figure 8, provide a layer of indirection to actual event handlers. They
nominally implement the event handler interface, so that they can be used instead
of actual event handler references. However, sending an event to such a symbolic
handler always results in a failure condition. Furthermore, in keeping with a design
that makes remote communications explicit, events that are sent remotely may only
reference symbolic handlers but not actual handlers. REP does not automatically
map event handlers to symbolic handlers, and applications have full control over
which event handlers they expose for remote communications.

To implement point-to-point communications, REP uses a table mapping the
names encapsulated by NamedResources to the actual event handlers. Mappings
are added through the export operation and removed when the corresponding leases
are canceled or expire. To send an event through point-to-point communications,
REP forwards the event to the node specified by the NamedResource, where the
name is resolved to an event handler by performing a table lookup and the event
is delivered to that event handler. The implementation uses a communications



Programming for Pervasive Computing Environments · 21

substrate that sends arbitrary tuples across UDP or TCP by using Java’s object
serialization. REP defaults to TCP, but senders can override this default when
sending an event. The choice of UDP or TCP affects the reliability and timeliness
of event delivery between nodes, but has no other application-visible effect. For
TCP-based communications, REP maintains a cache of connections to avoid re-
creating connections. Furthermore, sending events across the network is avoided
altogether if the sender and the receiver are on the same node.

Discovery is implemented on top of REP’s point-to-point communications and is
split into three components: a discovery client, a discovery server, and an election
manager. The discovery client and the election manager run on every node, while
the server usually runs on only one node for a local network. The discovery client
is responsible for maintaining the discovery bindings for all applications running on
a node and for forwarding discovery requests to the discovery server. To maintain
discovery bindings, the discovery client uses an internal table. Just as for point-
to-point communications, bindings are added through the export operation and
removed when the corresponding leases are canceled or expire. When a discovery
server becomes visible on the local network, the discovery client propagates all
bindings to the server. Server-side bindings are leased and the discovery client
maintains these internal leases. To forward discovery requests, the discovery client
simply sends the requests to one of the currently visible servers.

The discovery server is responsible for actually servicing discovery requests. It
accepts the bindings propagated by discovery clients and integrates them into a
single table for all applications on the local network. Descriptors that are identical,
ignoring tuple IDs and metadata, are collapsed into a single table entry to improve
the performance of query processing. When processing a resolve operation, the
discovery server looks up matching services and returns the result to the discovery
client that forwarded the operation. When processing a late binding send, the
discovery server first processes reverse lookups on the event (which do not count
as a match for anycast) and then forward lookups on the resource descriptors.
The event is then forwarded directly to the matching service for anycast and to
all matching services for multicast. If no service matches, a failure notification is
reflected back to the sending application.

The election manager is responsible for ensuring that a discovery server is present
on the local network. The current discovery server periodically announces its pres-
ence, every two seconds in our implementation. Announcements are sent as UDP
multicasts through the tuple-based communications substrate. The election man-
ager listens for discovery server announcements. If it does not receive any announce-
ments for two announcement periods, it calls an election. During an election, each
node broadcasts a score, computed from a node’s uptime and memory size. The
node with the highest score wins the election and starts the discovery server.

Also, the discovery client calls an election when it receives a malformed or unex-
pected event indicating that the current discovery server has failed. Furthermore,
the discovery server calls an election when its node is about to be shut down. If
two discovery servers run on the same network due to a changing network topology,
the server with the lower score shuts down when it sees an announcement from the
server with the higher score. Discovery still works with two servers, since bindings



22 · Robert Grimm et al.

are propagated to all visible servers and requests are forwarded to a single server.
Conversely, in case of a network partition, the partition without the discovery server
simply elects its own server.

Since one.world provides a discovery service, our server-based implementation
of discovery is largely transparent to applications. The exception occurs during a
transition between servers. In that case, there is a period when not all services
may be visible, because discovery bindings are still being propagated to the new
discovery server. This transitional period could usually be hidden by using more
than one discovery server, which could also improve the scalability of our discovery
service by load balancing requests across several servers.

5.3 Checkpointing and Migration

At the core of checkpointing and migration lies the ability to capture and restore the
execution state of an environment tree. Our implementation builds on Java’s object
serialization. When capturing the execution state of an environment tree, our imple-
mentation first quiesces all environments in the tree by waiting for the environments’
threads to complete event processing. It then serializes each environment’s main
and monitor handlers; all application components must be reachable from these two
event handlers. It also serializes each environment’s 〈event handler, event〉 queue.
During serialization, our implementation nulls out wrapped event handlers whose
target environment is not in the environment tree, with the exception of request
handlers belonging to environments in the tree, which are preserved. Furthermore,
Java classes are annotated with their protection domain. When deserializing a Java
class, the class can then be loaded by the appropriate class loader. A checkpoint is
represented as a CheckPoint tuple, which contains the resulting binary data, the
identifiers for the environments in the checkpoint, and a timestamp.

The implementation of checkpointing uses structured I/O to read and write
CheckPoint tuples. After creating a checkpoint, it writes the checkpoint to the
root of the checkpointed environment tree by using a structured I/O put operation.
When restoring a checkpoint, our implementation can either restore a checkpoint
with a specific timestamp or the latest checkpoint. A specific checkpoint is read
using a structured I/O read operation that queries for a CheckPoint tuple with
the specified timestamp. The latest checkpoint is read by using a structured I/O
query operation and then iterating over all CheckPoint tuples to determine the
latest checkpoint.

The implementation of migration uses a multi-round protocol on top of REP’s
point-to-point communications. Both sender and receiver use operations to man-
age sent events: the sender’s operation connects each request to its response, while
the receiver’s operation connects each response to the next request. The sending
node first seeks permission to migrate an environment tree to the new parent envi-
ronment on the receiving node. After receiving permission, it sends the metadata
for the environment tree, including each environment’s name and parent environ-
ment. Next, it sends all tuples stored in the environment tree, sending one tuple
per protocol round. Stored tuples are not deserialized and serialized during migra-
tion; rather, their binary representation is sent directly in the form of BinaryData
tuples. Finally, the sending node sends the CheckPoint tuple for the environment
tree. The acknowledgement for this last request completes the migration protocol.



Programming for Pervasive Computing Environments · 23

Fig. 11. Emcee’s user interface. The main window lists the users whose applications run on the
node. A popup menu for each user, shown for the user named “robert”, is used to perform most
operations, such as running a new application or checkpointing a user’s applications. The user

menu supports the creation of new users and the fetching of a user’s applications from another
node.

An error at any time on either the sender’s or the receiver’s side aborts the migra-
tion protocol, and a failure notification is sent to the application that initiated the
migration.

The initial migration protocol request is subject to the request/monitor mecha-
nism on the receiving node. Starting with the new parent environment, an Accept-
Request that describes the migrating environment tree and the sending node is
delivered to the first environment whose monitor handler is linked. The migra-
tion protocol continues only if the AcceptRequest reaches one.world ’s kernel. As
a result, applications running in environments that would contain the migrating
environment tree can redirect the migrating tree to a different parent environment
by modifying the AcceptRequest or reject the migrating tree by dropping the
AcceptRequest.

6. PROGRAMMING FOR CHANGE

To evaluate our architecture, we built two applications, Emcee and Chat. In this
section, we introduce the two applications, describing their functionality and their
implementation, and explore how programming for a highly dynamic environment
has affected their structure. We follow with the results of our experimental eval-
uation in Section 7, where we provide a break down of the time spent developing
these applications and quantify their performance.

Emcee, whose user interface is shown in Figure 11, manages users and their
applications. It includes support for creating new users, running applications for a
user, and checkpointing all of a user’s applications. Emcee also provides the ability
to move or copy applications between users, simply by dragging an application’s flag
icon, as shown in the upper right corner of Figure 12, and dropping it onto a user’s
name in the main window. Finally, it supports moving all of a user’s applications
between nodes. Applications can either be pushed from the current node to another
node, or they can be pulled from another node to the current node. Emcee can



24 · Robert Grimm et al.

Fig. 12. Chat’s user interface. The user interface is divided into four panels, which can be
independently expanded or collapsed by checking or unchecking the corresponding checkbox. The
listen panel shows received text messages and provides volume controls for audio playback. The

send message panel lets the user send text messages and the send audio panel lets the user send
audio, either from a microphone or from stored audio tuples. Finally, the subscribe panel lets the
user select the channels he or she is currently listening to.

manage any one.world application; an application does not need to implement any
features specific to Emcee. However, to support drag and drop through the flag
icon, an application’s developer needs to add three lines of code to the application.

The implementation of Emcee structures the environment hierarchy according to
the pattern /User/<user>/<application>. Emcee runs in the /User environment
and uses a child environment for each user and a grandchild for each application.
Each user’s root environment stores that user’s preferences, including his or her
password, and application checkpoints. The implementation of most operations
is straight-forward, since they directly utilize one.world ’s primitives (as illustrated
in Figure 9). The exception is fetching a user’s applications from a remote node.
It uses a two-round protocol to authenticate the user to the remote instance of
Emcee that is currently hosting the user’s applications. After the user has been
successfully authenticated, the remote Emcee initiates a migration of the user’s
environment tree to the requesting node. If the user’s location is not specified, the
initial remote event for the fetcher protocol is routed through late binding discovery.
Otherwise, it is sent directly to the remote node (see Figure 8).

Chat, whose user interface is shown in Figure 12, provides text and audio mes-
saging. It is based on a simple model in which users send text and audio messages
to a channel and subscribe to a channel to see and hear the messages sent to it.
The implementation sends all messages through late binding discovery, using TCP-



Programming for Pervasive Computing Environments · 25

based communications for text messages and UDP-based communications for audio
messages. For each subscribed channel, Chat exports an event handler to discov-
ery, which then receives the corresponding messages. Audio can either be streamed
from a microphone or from sound tuples stored in an environment. Since music files
tend to be large, they are converted into a sequence of audio tuples when they are
imported into one.world . Using the tuple IDs as symbolic references, the sequence
of audio tuples forms a doubly-linked list. As Chat is streaming audio messages, it
traverses this list and reads individual tuples on demand, buffering one second of
audio data in memory.

The general theme for developing pervasive applications is that “no application
is an island”. Applications need to assume that their runtime environment changes
quite frequently and that external resources are not static. Furthermore, they need
to assume that their runtime environment may be changed by other applications.
These assumptions have a subtle but noticeable effect on the implementations of
Emcee and Chat. Rather than asserting complete control over the environments
nested in the /User environment, Emcee dynamically scans its children every second
and updates the list of users in its main window accordingly. Similarly, it scans
a user’s environments before displaying the corresponding popup menu (which is
displayed by selecting the “Environments” menu entry shown in Figure 11).

For Chat, these assumptions show up throughout the implementation, with Chat
verifying that its internal configuration state is consistent with its runtime environ-
ment. Most importantly, Chat verifies that the user, that is, the parent environ-
ment’s name, is still the same after activation, restoration from a checkpoint, and
migration. If the user has changed, it updates the user name displayed in its title
bar, adjusts default channel subscriptions, and clears its history of text messages.
Furthermore, it runs without audio if it cannot initialize the audio subsystem, but
retains the corresponding configuration data so that it can resume playback when
migrating to a different node. It also silences a channel if the audio tuples have been
deleted from their environment. Finally, before processing any event, including text
and audio messages, it checks for concurrent termination.

In our experience with Chat and Emcee, programming for change has been
tractable. The implementation aspects presented above are important for Emcee’s
and Chat’s correct operation, but are not overly complex. Furthermore, program-
ming for change can also simplify an application’s implementation. For example,
when Emcee fetches a user’s applications, it needs some way to detect that the user’s
applications have arrived on the local node. But, because Emcee already scans its
children every second, the arrival will be automatically detected during a scan and
no additional mechanism is necessary. To put it differently, the initial effort in
implementing an adaptable mechanism—dynamically scanning environments—has
more than paid off by simplifying the implementation of an additional application
feature—fetching a user’s applications.

Emcee and Chat also illustrate the power of our architecture’s features, specifi-
cally migration and dynamic composition through discovery and environment nest-
ing. Discovery connects applications in the face of migration. Because Chat uses
late binding discovery to route text and audio messages, messages are correctly
delivered to all subscribed users even if the users roam across the network. At the



26 · Robert Grimm et al.

same time, environment nesting makes it possible to easily migrate applications,
such as Chat, that have no migration logic of their own. Emcee controls the loca-
tion of a user’s applications simply by nesting the applications in its environment.
Chat does not need its own migration logic and can automatically benefit from
future improvements in Emcee’s migration support, such as using smart badges to
identify a user’s location instead of requiring the user to explicitly move and fetch
applications.

In addition to our experiences with Emcee and Chat, we have limited evidence
that local storage can also help in building adaptable applications. Relatively early
in our implementation effort we conducted an experimental comparison of one.world
with other distributed systems technologies by teaching a senior-level undergradu-
ate project course. The nine students in the class split into two teams that each
implemented a distributed application. Each team, in turn, split into two sub-
teams, with one subteam using existing Java-based technologies and the other using
one.world . Since both subteams implemented the same application, this experiment
lets us compare our architecture with other approaches to building distributed sys-
tems. Results are based on weekly meetings with the teams, end-of-term interviews,
and the teams’ final presentations and reports.

One team developed a universal inbox, which integrates a home network of future
smart appliances, such as an intelligent fridge, with email access from outside the
network. The universal inbox lets users access human-readable email, routes con-
trol messages to and from appliances, and provides a common data repository for
email and appliance configuration state. The goal was to build a reliable application
that gracefully reacts to changes in the runtime environment, such as a computer
crash. The Java version uses Jini [Arnold et al. 1999] for service configuration and
T Spaces [Wyckoff et al. 1998] for storing repository data. The students found the
process of writing, debugging, and configuring Jini services to be a relatively ardu-
ous process. As a result, the completed implementation has relatively few services,
including a centralized data repository, and each of these services represents a single
point of failure. In contrast, the students using one.world found our architecture’s
support for local tuple storage and late binding discovery well matched to their
needs. Their implementation avoids a centralized data repository and separates
each user’s email management into an independently running service. As a result,
the implementation running on our architecture is more resilient to failures and
more adaptable.

7. EXPERIMENTAL EVALUATION

Our experimental evaluation of one.world is based on Emcee and Chat. We explore
whether programming for change is harder than more conventional programming
styles by determining the impact programming for change has on programmer pro-
ductivity. We also explore whether our implementation performs well enough to
support real applications by determining how migration and discovery scale under
increasing load and how applications react to a changing runtime environment. In
summary, our evaluation shows that programmer productivity is within the range
of results reported in the literature and is no worse than with more conventional
programming styles. Furthermore, our evaluation shows that our implementation



Programming for Pervasive Computing Environments · 27

Table III. Breakdown of development times in hours for Emcee and Chat. The reported times

are the result of three authors implementing the two applications over a three month period. The

activities are discussed in the text.

Activity Time

Learning Java APIs 21.0

User interface 47.5
Logic 123.5

Refactoring 6.0

Debugging and profiling 58.0

Total time 256.0

performs well enough for streaming audio between several users, and applications
react quickly enough to change that users perceive only short service interruptions,
if any.

To determine programmer productivity, we tracked the time spent implementing
Emcee and Chat. The two applications were implemented by three authors over a
three month period. During that time, we also added new features to one.world ’s
implementation and debugged and profiled the architecture. Overall, implementing
Emcee and Chat took 256 hours; a breakdown of this overall time is shown in
Table III. Learning Java APIs is the time spent for learning how to use Java
platform APIs, notably the JavaSound API utilized by Chat. User interface is the
time spent for implementing Emcee’s and Chat’s GUI. Logic is the time spent for
implementing the actual application functionality. Refactoring is the time spent
for transitioning both applications to newly added one.world support for building
GUI-based applications. It does not include the time spent for implementing that
support in our architecture, as that code is reusable (and has been reused) by other
applications. Finally, debugging and profiling is the time spent for finding and fixing
bugs in the two applications and for tuning their performance.

Since Emcee and Chat have 4,231 non-commenting source statements (NCSS),
our overall productivity is 16.5 NCSS/hour.1 As illustrated in Section 6, one.world
is effective at making programming for change tractable. In fact, adding audio
messaging, not reacting to changes in the runtime environment, represented the
biggest challenge during the implementation effort, in part because we first had to
learn how to use the JavaSound API. We spent 125 hours for approximately 1750
NCSS, resulting in an approximate productivity of 14 NCSS/hour. If we subtract
the time spent learning Java platform APIs (including the JavaSound API), work-
ing around bugs in the Java platform, and refactoring our implementation from
the total time, our overall productivity increases to 20.4 NCSS/hour, which repre-
sents an optimistic estimate of future productivity. Our actual productivity of 16.5
NCSS/hour lies at the lower end of the results reported for considerably smaller
projects [Prechelt 2000], but is almost twice as large as the results reported for a
commercial company [Ferguson et al. 1999]. We thus extrapolate that programming

1Productivity is traditionally measured in lines of code per hour or LOC/hour. NCSS/hour differs
from LOC/hour in that it is more exact and ignores, for example, a brace appearing on a line by

itself. As a result, NCSS/hour can be treated as a conservative approximation for LOC/hour.



28 · Robert Grimm et al.

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

S
ec

on
ds

 p
er

 m
ov

e

Number of Songs

Fig. 13. Migration latency in seconds. This graph shows the latency of migrating Chat with an
embedded environment containing songs. Each song has 4 MB of audio data, corresponding to 41
audio tuples. The reported numbers are the average of 60 moves, with error bars indicating the

standard deviation and the line representing a least squares fit.

for change does not decrease overall programmer productivity when compared to
more conventional programming styles.

To determine whether our implementation performs well enough for real appli-
cation usage, we measured the scalability of migration and late binding discovery,
which are the two services Emcee and Chat rely on the most, and explored how
Chat reacts to a changing runtime environment. All measurements were performed
using Dell Dimension 4100 PCs, with Pentium III 800 MHz processors, 256 MB of
RAM, and 45 or 60 GB 7,200 RPM Ultra ATA/100 disks. The PCs are connected
by a 100 Mb switched Ethernet. We use Sun’s HotSpot client virtual machine 1.3.1
running under Windows 2000 and Sleepycat’s Berkeley DB 3.2.9.

Figure 13 illustrates how migration scales under increasing load. It shows the
latency for moving Chat with an embedded environment containing songs. Each
song has 4 MB of audio data, corresponding to 40 stored audio tuples with 100 KB
of data and one audio tuple with 20 KB of data. To perform this experiment, we
used a small application that contains the Chat application and moves itself across
a set of nodes in a tight loop. The results shown are the average latency in seconds
for a single move, with the mover application circling 20 times around three nodes.
As illustrated, migration latency grows almost linearly with the number of songs,
with slight variations for 12 and 16 songs. Migration utilizes 9% of the theoretically
available bandwidth and is limited by how fast stored tuples can be moved from
one node to the other. Since moving a stored tuple requires reading the tuple from
disk, sending it across the network, writing it to disk, and confirming its arrival, a
better performing migration protocol should optimistically stream tuples and thus
overlap the individual steps instead of moving one tuple per protocol round.

Figures 14 and 15 illustrate how late binding discovery scales under increas-
ing load. They show discovery server throughput under an increasing number of



Programming for Pervasive Computing Environments · 29

0

100

200

300

400

500

600

0 5 10 15 20 25

T
up

le
s/

S
ec

on
d 

Le
av

in
g 

D
is

co
ve

ry
 S

er
ve

r

Number of Receivers

Expected

Fig. 14. Discovery server throughput under an increasing number of receivers. Throughput is

measured as the number of audio messages leaving the discovery server. The results shown are
the average of 30 measurements, with error bars indicating the standard deviation. Each audio

message carries 8 KB of audio data.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

T
up

le
s/

S
ec

on
d 

Le
av

in
g 

D
is

co
ve

ry
 S

er
ve

r

Number of Senders

Expected

Fig. 15. Discovery server throughput under an increasing number of senders. As in Figure 14,

throughput is measured as the number of audio messages leaving the discovery server. The results
shown are the average of 30 measurements, with error bars indicating the standard deviation.

Each audio message carries 8 KB of audio data.



30 · Robert Grimm et al.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

1 2 3 4 5

R
ec

ei
ve

r 
T

hr
ou

gh
pu

t (
tu

pl
es

/s
ec

on
d)

Time (seconds)

Fig. 16. Audio messages received by Chat in a changing runtime environment. Chat is subscribed
to an audio channel at point 1. It is then moved to a different node at point 2. The node hosting
the discovery server is shut down gracefully at point 3 and forcibly crashed at point 4. The audio

channel is unsubscribed at point 5.

receivers for a single sender and an increasing number of senders for a single re-
ceiver, respectively. Throughput is measured as audio messages leaving the discov-
ery server, and the results shown are the average of 30 measurements. Each audio
message carries 8 KB of uncompressed audio data at CD sampling rate, which cor-
responds to 10,118 bytes on the wire when forwarding from the sending node to the
discovery server and 9,829 bytes when forwarding from the discovery server to the
receiving node. The difference in on-the-wire sizes stems largely from the fact that
messages forwarded to the discovery server contain the late binding query, while
messages forwarded from the discovery server do not. The receivers and senders
respectively run on 4 nodes; we use Emcee’s support for copying applications via
drag and drop to spawn new ones. When increasing the number of receivers, dis-
covery server throughput increases almost linearly with the number of receivers.
However, when increasing the number of senders, discovery server throughput lev-
els off at about 10 senders and slightly degrades thereafter. At 10 senders, the node
running the discovery server becomes CPU bound. While the cost of processing
discovery queries remains low, the cost of processing UDP packets and serializing
and deserializing audio messages comes to dominate that node’s performance.

Figure 16 illustrates application availability by showing the audio messages re-
ceived by Chat as its runtime environment changes. As for the discovery server
throughput experiments, each audio message carries 8 KB of uncompressed au-
dio data at CD sampling rate. Unlike the migration latency experiment, Chat is
managed by Emcee and runs within its user’s environment. At point 1, Chat is
subscribed to an audio channel and starts receiving audio messages shortly there-
after. At point 2, Chat is moved to a different node and does not receive audio
messages for 3.7 seconds while it migrates, re-initializes audio, and re-registers with
discovery. After it has been migrated and its receiving event handler has been re-



Programming for Pervasive Computing Environments · 31

exported to discovery, it starts receiving audio messages again. The node running
the discovery server is gracefully shut down at point 3. Since that node proactively
calls a discovery server election, the stream of audio messages is not interrupted.
By contrast, at point 4, the node running the discovery server is forcibly crashed.
The stream of audio messages is interrupted for 2.3 seconds until a new discovery
server is elected and Chat’s receiving event handler is forwarded to the new dis-
covery server. This period is governed by detecting the crashed discovery server,
which requires two missed server announcements or 2 seconds. Finally, at point 5,
Chat is unsubscribed from the audio channel and stops receiving audio messages
shortly thereafter.

Overall, our performance evaluation shows that service interruptions due to mi-
gration or forced discovery server elections last only a few seconds. While migration
latency generally depends on the number and size of stored tuples, it takes only
7 seconds for an environment storing 8 MB of audio data, which is fast enough
when compared to a person moving through the physical world. Furthermore, our
architecture performs well enough to support several independent streams of un-
compressed audio data at CD sampling rate. However, our evaluation also suggests
that discovery server scalability is limited. Adding a secondary discovery server,
as already suggested in Section 5.2, could improve the scalability of our discovery
service and would also eliminate service interruption due to forced server elections.

8. DISCUSSION

As discussed in the previous two sections, Emcee and Chat have served as a basis for
exploring the impact of programming for change and for performing a quantitative
evaluation of our architecture. The process of developing these applications has
also helped us gain a better understanding of the strengths and limitations of our
design. We focus on the resulting insights in this section and identify lessons that
are applicable beyond our work as well as opportunities for future research into
pervasive computing.

Emcee and Chat make extensive use of one.world ’s core features and illustrate
the power of a design that follows the three principles presented in Section 2:

(1) Expose change. Event-based notification cleanly exposes change to applications.
It lets us, for example, automatically adjust Chat’s configuration when the user
who owns the application changes.

(2) Compose dynamically. Environment nesting and discovery make it easy to
dynamically compose functionality. We used environment nesting in Emcee
to control a user’s applications, notably to move or copy applications between
users and to move all of a user’s applications between nodes. We used discovery
in Emcee to locate a user’s applications and in Chat to route messages to
subscribed users.

(3) Separate data and functionality. The separation of data and functionality pro-
vides considerable flexibility when compared to systems that combine data and
functionality in objects. It lets us add music to a running Chat application,
simply by importing the corresponding files into Chat’s environment. It also
lets us improve existing audio capabilities or add support for new types of au-
dio sources, simply by instantiating the corresponding components in Chat’s



32 · Robert Grimm et al.

environment. Yet, while upgrading the application, we do not need to change
stored audio tuples.

Additionally, migration and REP provide powerful primitives that cover the spec-
trum between collocation and remote interaction. On one side, we rely on migration
to make a user’s applications available at a node close to the user. On the other
side, we rely on REP to let remote users communicate with each other.

The central role played by environments in our architecture implies, in our opin-
ion, a more general pattern, namely that nesting is a powerful paradigm for con-
trolling and composing applications. Nesting provides control over applications, as
illustrated by Emcee. Nesting can also be used to extend an application’s function-
ality. For example, we have used the request/monitor mechanism to implement a
replication layer that synchronizes the tuples stored in a local environment with
a master node [Grimm et al. 2001]. Furthermore, nesting is attractive because
it preserves relationships between nested environments. For instance, when audio
tuples are stored in a child environment of Chat’s environment, the environment
with audio tuples remains a child, even if Chat’s environment is nested in a user’s
environment and moved between nodes.

While Emcee and Chat serve as examples for illustrating the power of our ar-
chitecture, they have also helped in identifying several limitations. We discuss the
issues raised by our data model in Section 8.1, followed by event processing in Sec-
tion 8.2, and leases in Section 8.3. We then discuss user interfaces in Section 8.4
and the interaction between one.world and the outside world in Section 8.5.

8.1 Data Model

The biggest limitation of our architecture is that, to access a tuple, a component
also needs to have access to the tuple’s class. This does not typically pose a problem
for applications, which have access to their own classes. However, it does pose a
problem for services, such as discovery, that process many different types of data for
many different applications. One solution, which we have not yet implemented, uses
a generic tuple class, say StaticTuple, to provide access to the fields of different
classes of tuples by using the accessor methods shown in Figure 3. When passing a
tuple across protection domains or when sending it across the network, the system
tries to locate the tuple’s class. If the class can be accessed, the tuple is instantiated
in its native format. If the class cannot be accessed, the tuple is instantiated as
a StaticTuple. This solution works because services that process many different
types of data already use the accessor methods instead of accessing a tuple’s fields
directly.

A StaticTuple can provide access to a tuple’s fields even if the tuple’s class
cannot be accessed. At the same time, it cannot capture the semantic constraints
expressed by the tuple’s validate() method or the human-readable representation
expressed by the toString() method. As a result, it represents a workable yet
incomplete solution. The fundamental problem is that we have taken a single-node
programming methodology, namely a programmatic data model, which expresses
data schemas in the form of code, and applied it to a distributed system. This
suggests that we need to abandon the programmatic data model altogether and
instead use a declarative data model, which expresses schemas as data and not



Programming for Pervasive Computing Environments · 33

as code. With a declarative data model, applications still need to access a data
item’s schema in order to manipulate the data item. However, since the schemas
themselves are data and not code, they are easier to inspect programmatically and
not tied to a specific execution platform. As a result, we conclude that declarative
data models provide better interoperability than programmatic data models.

We believe that defining an appropriate declarative data model is the single most
important topic for future research into pervasive computing. The challenge is to
define a data model that meets conflicting requirements. On one side, the data
model must be general and supported by a wide range of platforms. One possible
starting point is XML Schema [Biron and Malhotra 2001; Thompson et al. 2001].
It already defines the data model for SOAP [Box et al. 2000], which is the emerging
standard for remote communications between Internet services and used, for exam-
ple, by Microsoft’s .NET platform [Thai and Lam 2001]. On the other side, the
data model must be easy to program and efficient to use. For an XML-based data
model, this means avoiding the complexities of a general data access interface, such
as DOM [Le Hors et al. 2000], and providing a more efficient encoding, perhaps by
using a binary encoding [Martin and Jano 1999] or by compressing the data [Liefke
and Suciu 2000]. Ideally, a declarative data model should be as easy to program
as field access for tuples in our architecture. Probably, such a data model will
specify a generic data container and a provision for automatically mapping data to
application-specific objects, comparable to our proposed use of StaticTuple.

8.2 Event Processing

Event-based programs, unlike thread-based programs, cannot store relevant state
on the stack. This raises the question of how to maintain the state associated with
event exchanges. In our experience, two techniques have proven effective. First, we
rely on state objects in event closures to establish relevant context. For example,
Emcee already needs to maintain an internal table of user records, listing, among
other things, a user’s name and root environment. Emcee includes this user record
as the closure for any request sent to an operation. The code processing responses
can then determine the appropriate context based on the closure returned with the
response. Second, when performing several related operations, we rely on a worklist
that is maintained by the event handler receiving responses, e.g., the continuation
event handler in Figure 6. Upon receiving a response, the continuation removes the
next item from the worklist and initiates the corresponding operation if the worklist
has more items, or it invokes the appropriate logic if the worklist is empty. For
instance, after activation, restoration, or migration, Chat uses such a worklist,
with each item on the worklist describing a channel, to export an event handler to
discovery for every subscribed channel.

Several event handlers in our applications need to process many different types
of events or perform different actions for the same type of event depending on the
event’s closure. Their implementation requires large if-then-else blocks that use
instanceof tests to dispatch on the type of event or more general tests to dispatch
on the value of the closure. The result is that these event handlers are not very
modular and are relatively hard to understand, modify, or extend. This suggests
the need for better programming language support to structure event handlers.
Alternatives include dynamic dispatch as provided by MultiJava [Clifton et al.



34 · Robert Grimm et al.

2000] or pattern matching as provided by Standard ML [Milner et al. 1997].
While we still believe that asynchronous events are an appropriate abstraction for

pervasive computing, our experience with event-based programming also suggests
that, contrary to [Ousterhout 1996], asynchronous events are as hard to program as
threads. Just like threads, asynchronous events can result in complex interactions
between components. For example, a better performing alternative to the migration
protocol described in Section 5.3 and measured in Section 7 might optimistically
stream tuples rather than waiting for an acknowledgement for each tuple. However,
providing flow control for streamed events can easily replicate the full complexity
of TCP’s flow control [Stevens 1994]. Furthermore, just as a system can run out of
space for new threads, event queues can run out of space for new events. Finally,
asynchronous events are not a panacea and some interactions must be synchronous.
For example, timers to detect lost events must be scheduled synchronously because
scheduling them asynchronously would use the same mechanism whose failure they
are meant to detect.

8.3 Leases

In our architecture, all resource access is leased, whether the resource is local or
remote. Leases provide an upper bound on the time resources can be accessed,
although leases can still be revoked by one.world ’s kernel before their expiration,
notably when an application is migrated. To make the use of leases practical, we
introduced a lease maintainer class early on in our implementation effort. The lease
maintainer automatically renews the lease it manages until it is explicitly canceled.
While lease maintainers work most of the time, they can still fail, allowing a lease to
expire prematurely. For example, when a node is overloaded, lease renewal events
may not be delivered in time. Furthermore, when a node, such as a laptop, is
hibernating, renewal events cannot be delivered at all. As a result, applications
need to be prepared to reacquire local resources, such as their environment’s tuple
storage, even though the resources are guaranteed to be available. We thus conclude
that leases do not work well for controlling local resources. Instead, we prefer a
simple bind/release protocol, optionally with callbacks for the forced reclamation
of resources, and use leases only for controlling remote resources.

8.4 User Interface

Emcee and Chat use Java’s Swing toolkit [Walrath and Campione 1999] to im-
plement their user interfaces. The integration between Swing’s event model and
one.world ’s event model has worked surprisingly well. When an application needs to
react to a Swing event, it generates the corresponding one.world event and sends it
to the appropriate event handler. Long-lasting operations, such as fetching a user’s
applications, are broken up into many different one.world events, which are pro-
cessed by our architecture’s thread pools. Swing’s event dispatching thread, which
executes an application’s user interface code, is only used while generating the first
one.world event in a sequence of one.world events. As a result, applications in our
architecture, unlike other applications using Swing, do not need to spawn separate
threads for processing long-lasting operations. In the opposite direction, when an
application needs to update the user interface in reaction to a one.world event,
it simply schedules the update through Swing’s SwingUtilities.invokeLater()



Programming for Pervasive Computing Environments · 35

facility.
An important limitation of Swing and other, comparable toolkits is that the user

interface does not scale across different devices. For example, we successfully used
Emcee and Chat on tablet computers but would be hard pressed to also run them
on, say, handheld computers. Consequently, we believe that an important topic
for future research into pervasive computing is how to implement scalable user
interfaces. One possible approach, which is suggested by UIML [Abrams 2000], is to
define a declarative specification of an application’s interface, which is automatically
rendered according to a device’s input and output capabilities.

An unexpected lesson relating to user interfaces is that GUI-based applications
help with the testing, debugging, and profiling of a system. Once we started using
Emcee and Chat, we quickly discovered several bugs in our architecture that we
had not encountered before. The two applications also helped us with identifying
several performance bottlenecks in our implementation. We believe that this ad-
vantage of GUI-based applications stems from the fact that GUIs encourage users
to “play” with applications. As a result, the system is exercised in different and
unexpected ways, especially when compared to highly structured regression tests
and interaction with a command line shell. Furthermore, it is easier to run many
GUI-based applications at the same time and, consequently, to push a system’s
limits.

8.5 Interacting with the Outside World

To provide its functionality, one.world prevents applications from using abstractions
not defined by our architecture. By default, applications cannot spawn their own
threads, access files, or bind to network sockets. These restrictions are implemented
through a Java security policy [Gong 1999]. As a result, specific applications can be
granted access to threads, files, and sockets by modifying a node’s security policy.
However, because these abstractions are not supported by our architecture, appli-
cations are fully responsible for their management, including their proper release
when an application is migrated or terminated.

Access to sockets is especially important for applications that need to interact
with the outside world, such as Internet services. For example, we have used a mod-
ified security policy to let a web server run in our architecture. The web server’s im-
plementation is split into a front end and a pluggable back end. The front end man-
ages TCP connections, translates incoming HTTP requests into one.world events,
and translates the resulting responses back to HTTP responses. It also translates
between MIME data and tuples by relying on the same conversion framework used
for translating between files and stored tuples. The default back end provides access
to tuples stored in nested environments.

In the opposite direction, it is not currently practical for outside applications
to communicate with one.world applications through REP, especially if the outside
applications are not written in Java. Because of our programmatic data model, an
outside application would have to re-implement large parts of Java’s object serial-
ization, which is unnecessarily complex. We believe that moving to a declarative
data model, as discussed in Section 8.1, and using a standardized communications
protocol will help in providing better interoperability between pervasive applica-
tions, even if they run on different system architectures.



36 · Robert Grimm et al.

9. RELATED WORK

one.world relies on several technologies that have been successfully used by other
systems. The main difference is that our architecture integrates these technologies
into a simple and comprehensive framework targeted at the pervasive computing
space. Furthermore, our environment abstraction is unique in that it combines
persistent storage and the management of computations into a single hierarchical
structure. In this section, we highlight relevant systems and discuss their differences
when compared to our architecture.

Starting with Linda [Carriero and Gelernter 1986], tuple spaces have been used to
enable coordination between loosely coupled services [Davies et al. 1998; Freeman
et al. 1999; Murphy et al. 2001; Wyckoff et al. 1998]. Departing from the original
tuple space model, several of these systems support more than one global tuple
space and may even be extended through application-specific code, for example, to
automatically coordinate between a local and a remote tuple space. Our architec-
ture’s use of tuples differs from these systems in that, as discussed in Section 4.1,
our structured I/O interface is separate from remote communications and more
closely resembles a database interface than Linda’s in, out, and rd operations.

Like tuple spaces, the Information Bus helps with coordinating loosely coupled
services [Oki et al. 1993]. Unlike tuple spaces, it is based on a publish/subscribe
paradigm and does not retain sent messages in storage. While its design is nominally
object-based, data exchanged through the bus is self-describing and separate from
service objects, comparable to the separation of data and functionality in one.world .

Asynchronous events have been used across a wide spectrum of systems, including
networked sensors [Hill et al. 2000], embedded systems [Chou et al. 1999], user inter-
faces [Petzold 1998; Walrath and Campione 1999], and large-scale servers [Gribble
et al. 2000; Pai et al. 1999; Welsh et al. 2001]. Out of these systems, one.world ’s
support for asynchronous events closely mirrors that of DDS [Gribble et al. 2000]
and SEDA [Welsh et al. 2001]. As a result, it took one author a very short time to
re-implement SEDA’s thread pool controllers in one.world . Our architecture also
provides two improvements over these two systems. First, in DDS and SEDA, the
event passing machinery is exposed to application developers, and events need to
be explicitly enqueued in the appropriate event queues. In contrast, one.world auto-
mates event passing through the use of wrapped event handlers. Second, DDS and
SEDA lack support for structuring event-based applications beyond breaking them
into so-called stages (which map to environments in our architecture). While stages
represent a significant advance when compared to prior event-based systems, op-
erations in one.world provide additional structure for event-based applications and
simplify the task of writing asynchronous code.

Sun’s Jini [Arnold et al. 1999] nominally provides many of the same services
as our architecture. However, Jini embodies a different approach to building
distributed applications: it builds on existing technologies, such as RPC, and is
strongly object-oriented. Consequently, Jini’s services are limited when compared
to the corresponding services in one.world . For instance, Jini includes support for
remote events but synchronously sends them through Java’s RMI. Applications
that require asynchrony thus need to implement their own event handling machin-
ery. Furthermore, in Jini’s discovery system, the service objects double as their



Programming for Pervasive Computing Environments · 37

own service descriptors. As a result, Jini’s discovery only supports early binding
and simple equality queries. By comparison, SDS [Czerwinski et al. 1999] and
INS [Adjie-Winoto et al. 1999] support richer service descriptions and more flexible
queries. Our architecture’s discovery service differs from all three systems in that
it does not rely on a dedicated infrastructure; rather, the current discovery server
is automatically elected from the nodes running one.world .

A considerable number of projects have explored migration in distributed sys-
tems [Milojic̆ić et al. 1999]. Notable examples include migration at the operating
system level, as provided by Sprite [Douglis and Ousterhout 1991], and at the pro-
gramming language level, as provided by Emerald [Jul et al. 1988; Steensgaard and
Jul 1995]. In these systems, providing support for a uniform execution environment
across all nodes and for transparent migration of application state has resulted in
considerable complexity. In contrast, many mobile agent systems, such as IBM’s
aglets [Lange and Oshima 1998], avoid this complexity by implementing what we
call “poor man’s migration”. They do not provide transparency and only migrate
application state by serializing and deserializing an agent’s objects. Since these
systems are thread-based, they do not migrate an application’s execution state,
forcing application developers to implement their own mechanisms for managing
execution state. Because of its programming model, one.world can strike a better
balance between the complexity of fully featured migration and the limited utility
of poor man’s migration. While one.world does not provide transparency, it does
migrate an application’s execution state as well as its persistent data.

Several efforts, including Globe [van Steen et al. 1999], Globus [Foster and Kessel-
man 1997], and Legion [Lewis and Grimshaw 1996], explore an object-oriented
programming model and infrastructure for wide area computing. They share the
important goal of providing a common execution environment that is secure and
scales across a global computing infrastructure. However, these systems are tar-
geted at collaborative and scientific applications running on conventional PCs and
more powerful computers. As a result, these systems are too heavyweight and not
adaptable enough for pervasive computing environments. Furthermore, as argued
in Section 2, we believe that their reliance on RPC for remote communications and
on objects to encapsulate data and functionality is ill-advised.

Several other projects are exploring aspects of systems support for pervasive com-
puting. Notably, InConcert, the architectural component of Microsoft’s EasyLiving
project [Brumitt et al. 2000], provides service composition in a dynamic environ-
ment by using location-independent addressing and asynchronous event passing.
The Paths system [Kiciman and Fox 2000] allows diverse services to communicate
in ad-hoc networks by dynamically instantiating mediators to bridge between the
services’ data formats and protocols.

10. CONCLUSIONS

In this paper, we have identified three principles for structuring systems support
for pervasive computing environments. First, systems need to expose change, so
that applications can implement their own strategies for handling changes. Second,
systems need to make it easy to compose applications and services dynamically, so
that they can be extended at runtime. Third, systems need to separate data and



38 · Robert Grimm et al.

functionality, so that they can be managed separately and evolve independently.
We have introduced one.world , a system architecture for pervasive computing,

that adheres to these principles. Our architecture uses event-based notification to
expose change. It uses nested environments as well as discovery to dynamically
compose applications. It cleanly separates data and functionality: tuples represent
data and components implement functionality. Additionally, our architecture pro-
vides a set of powerful services, namely operations, checkpointing, migration, and
remote messaging, that serve as building blocks for pervasive applications.

Our evaluation of one.world shows that our architecture is a viable platform
for building adaptable applications. Programming for change is in fact tractable
and does not decrease programmer productivity when compared to more conven-
tional programming styles. The performance of our implementation is sufficient for
streaming audio between several users, and applications react swiftly to change,
resulting in very short service interruptions if any. Based on our experience, we
have identified important lessons that are applicable beyond our work. Notably,
nesting is a powerful paradigm for controlling and composing applications, but
asynchronous events are as hard to program as threads. We have also suggested
areas for future work on pervasive computing, specifically declarative data models
and scalable user interfaces. More information on our architecture, including a
source release, is available at http://one.cs.washington.edu.

ACKNOWLEDGMENTS

Ben Hendrickson implemented parts of structured I/O, Kaustubh Deshmukh im-
plemented a debugger, and Daniel Cheah implemented a web server running within
one.world . We thank the students of University of Washington’s CSE 490dp for
serving as test subjects and Vibha Sazawal and David Notkin for their advice and
assistance in evaluating the students’ projects. Mike Swift provided valuable feed-
back on earlier versions of this paper.

REFERENCES

Abrams, M. 2000. User interface markup language (UIML). Draft specification, Harmonia, Inc.,
Blacksburg, Virginia. Jan. Available at http://www.uiml.org/docs/uiml20.

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., and Lilley, J. 1999. The design and

implementation of an intentional naming system. In Proceedings of the 17th ACM Symposium

on Operating Systems Principles. Kiawah Island Resort, South Carolina, 186–201.

Anderson, J. P. 1972. Computer security technology planning study. Tech. Rep. ESD-TR-73-51,
Vol. I, Electronic Systems Division, Air Force Systems Command, Bedford, Massachusetts. Oct.

Also AD-758 206, National Technical Information Service.

Arnold, K., O’Sullivan, B., Scheifler, R. W., Waldo, J., and Wollrath, A. 1999. The Jini

Specification. Addison-Wesley.

Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E., Becker, D., Cham-
bers, C., and Eggers, S. 1995. Extensibility, safety and performance in the SPIN operating
system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles. Copper

Mountain, Colorado, 267–284.

Biron, P. V. and Malhotra, A. 2001. XML schema part 2: Datatypes. W3C recommendation,
World Wide Web Consortium, Cambridge, Massachusetts. May.

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D. 1982. Grapevine: An

exercise in distributed computing. Communications of the ACM 25, 4 (Apr.), 260–274.



Programming for Pervasive Computing Environments · 39

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte,

S., and Winer, D. 2000. Simple object access protocol (SOAP) 1.1. W3C note, World Wide
Web Consortium, Cambridge, Massachusetts. May.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M. 1998. Extensible markup language (XML)
1.0. W3C recommendation, World Wide Web Consortium, Cambridge, Massachusetts. Feb.

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of the
ACM 13, 4 (Apr.), 238–241, 250.

Brumitt, B., Meyers, B., Krumm, J., Kern, A., and Shafer, S. 2000. EasyLiving: Technologies
for intelligent environments. In Proceedings of the 2nd International Symposium on Handheld

and Ubiquitous Computing. Lecture Notes in Computer Science, vol. 1927. Springer-Verlag,

Bristol, England, 12–29.

Cardelli, L. 1999. Abstractions for mobile computations. In Secure Internet Programming:

Security Issues for Distributed and Mobile Objects, J. Vitek and C. D. Jensen, Eds. Lecture

Notes in Computer Science, vol. 1603. Springer-Verlag, 51–94.

Carriero, N. and Gelernter, D. 1986. The S/Net’s Linda kernel. ACM Transactions on
Computer Systems 4, 2 (May), 110–129.

Chankhunthod, A., Danzig, P. B., Needaels, C., Schwartz, M. F., and Worrell, K. J. 1996.
A hierarchical Internet object cache. In Proceedings of the 1996 USENIX Annual Technical
Conference. San Diego, California, 153–163.

Chou, P., Ortega, R., Hines, K., Partridge, K., and Borriello, G. 1999. ipChinook: An
integrated IP-based design framework for distributed embedded systems. In Proceedings of the
36th ACM/IEEE Design Automation Conference. New Orleans, Louisiana, 44–49.

Clifton, C., Leavens, G. T., Chambers, C., and Millstein, T. 2000. MultiJava: Modular
open classes and symmetric multiple dispatch for Java. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications ’00. Minneapolis,

Minnesota, 130–145.

Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D., and Katz, R. H. 1999. An
architecture for a secure service discovery service. In Proceedings of the 5th ACM/IEEE Inter-

national Conference on Mobile Computing and Networking. Seattle, Washington, 24–35.

Davies, N., Friday, A., Wade, S. P., and Blair, G. S. 1998. L2imbo: A distributed systems
platform for mobile computing. Mobile Networks and Applications 3, 2 (Aug.), 143–156.

Dertouzos, M. L. 1999. The future of computing. Scientific American 281, 2 (Aug.), 52–55.

Douglis, F. and Ousterhout, J. 1991. Transparent process migration: Design alternatives and

the Sprite implementation. Software—Practice and Experience 21, 8 (Aug.), 757–785.

Engler, D. R., Kaashoek, M. F., and Jr., J. O. 1995. Exokernel: an operating system architec-

ture for application-level resource management. In Proceedings of the 15th ACM Symposium

on Operating Systems Principles. Copper Mountain Resort, Colorado, 251–266.

Esler, M., Hightower, J., Anderson, T., and Borriello, G. 1999. Next century challenges:

Data-centric networking for invisible computing. In Proceedings of the 5th ACM/IEEE Inter-

national Conference on Mobile Computing and Networking. Seattle, Washington, 256–262.

Ferguson, P., Leman, G., Perini, P., Renner, S., and Seshagiri, G. 1999. Software process

improvement works! Tech. Rep. CMU/SEI-99-TR-027, Carnegie Mellon University, Software

Engineering Institute. Nov.

Ford, B., Hibler, M., Lepreau, J., Tullmann, P., Back, G., and Clawson, S. 1996. Micro-

kernels meet recursive virtual machines. In Proceedings of the 2nd USENIX Symposium on

Operating Systems Design and Implementation. Seattle, Washington, 137–151.

Foster, I. and Kesselman, C. 1997. Globus: A metacomputing infrastructure toolkit. In-

ternational Journal of Supercomputer Applications and High Performance Computing 11, 2,

115–128.

Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and Gauthier, P. 1997. Cluster-based

scalable network services. In Proceedings of the 16th ACM Symposium on Operating Systems

Principles. Saint-Malo, France, 78–91.

Freeman, E., Hupfer, S., and Arnold, K. 1999. JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley.



40 · Robert Grimm et al.

Gong, L. 1999. Inside Java Platform Security—Architecture, API Design, and Implementation.

Addison-Wesley.

Gray, C. G. and Cheriton, D. R. 1989. Leases: An efficient fault-tolerant mechanism for
file cache consistency. In Proceedings of the 12th ACM Symposium on Operating Systems

Principles. Litchfield Park, Arizona, 202–210.

Gribble, S. D., Brewer, E. A., Hellerstein, J. M., and Culler, D. 2000. Scalable, distributed
data structures for Internet service construction. In Proceedings of the 4th USENIX Symposium
on Operating Systems Design and Implementation. San Diego, California, 319–332.

Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Gribble, S., Anderson, T.,

Bershad, B., Borriello, G., and Wetherall, D. 2001. Programming for pervasive computing

environments. Tech. Rep. UW-CSE-01-06-01, University of Washington. June.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System archi-
tecture directions for networked sensors. In Proceedings of the 9th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems. Cambridge,

Massachusetts, 93–104.

Johnson, K. L., Carr, J. F., Day, M. S., and Kaashoek, M. F. 2000. The measured performance
of content distribution networks. In Proceedings of the 5th International Web Caching and Con-
tent Delivery Workshop. Lisbon, Portugal. http://www.terena.nl/conf/wcw/Proceedings/S4/

S4-1.pdf.

Jones, M. B. 1993. Interposition agents: Transparently interposing user code at the system inter-

face. In Proceedings of the 14th ACM Symposium on Operating Systems Principles. Asheville,
North Carolina, 80–93.

Jul, E., Levy, H., Hutchinson, N., and Black, A. 1988. Fine-grained mobility in the Emerald

system. ACM Transactions on Computer Systems 6, 1 (Feb.), 109–133.

Kaashoek, M. F., Engler, D. R., Ganger, G. R., Briceño, H., Hunt, R., Mazières, D.,

Pinckney, T., Grimm, R., Jannotti, J., and Mackenzie, K. 1997. Application performance
and flexibility on exokernel systems. In Proceedings of the 16th ACM Symposium on Operating

Systems Principles. Saint-Malo, France, 52–65.

Kiciman, E. and Fox, A. 2000. Using dynamic mediation to integrate COTS entities in a

ubiquitous computing environment. In Proceedings of the 2nd International Symposium on
Handheld and Ubiquitous Computing. Lecture Notes in Computer Science, vol. 1927. Springer-

Verlag, Bristol, England.

Lange, D. B. and Oshima, M. 1998. Programming and Deploying Java Mobile Agents with

Aglets. Addison Wesley.

Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., and Byrne, S.
2000. Document object model (DOM) level 2 core specification. W3C recommendation, World

Wide Web Consortium, Cambridge, Massachusetts. Nov.

Leach, P. J. and Salz, R. 1998. UUIDs and GUIDs. Internet Draft draft-leach-uuids-guids-

01.txt, Internet Engineering Task Force. Feb.

Levy, E. and Silberschatz, A. 1990. Distributed file systems: Concepts and examples. ACM

Computing Surveys 22, 4 (Dec.), 321–374.

Lewis, M. and Grimshaw, A. 1996. The core Legion object model. In Proceedings of the Fifth
IEEE International Symposium on High Performance Distributed Computing. Syracuse, New

York, 551–561.

Liang, S. and Bracha, G. 1998. Dynamic class loading in the Java virtual machine. In Pro-

ceedings of the ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications ’98. Vancouver, Canada, 36–44.

Liefke, H. and Suciu, D. 2000. XMill: An efficient compressor for XML data. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, Texas,

153–164.

Martin, B. and Jano, B. 1999. WAP binary XML content format. W3C note, World Wide Web
Consortium, Cambridge, Massachusetts. June.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. 1997. The Definition of Standard ML

(Revised). MIT Press.



Programming for Pervasive Computing Environments · 41

Milojic̆ić, D., Douglis, F., and Wheeler, R., Eds. 1999. Mobility—Processes, Computers, and

Agents. ACM Press. Addison-Wesley.

Murphy, A. L., Picco, G. P., and Roman, G.-C. 2001. Lime: A middleware for physical and

logical mobility. In Proceedings of the 21st IEEE International Conference on Distributed

Computing Systems. Phoenix, Arizona, 524–533.

Muthitacharoen, A., Chen, B., and Mazières, D. 2001. A low-bandwidth network file system.

In Proceedings of the 18th ACM Symposium on Operating Systems Principles. Banff, Canada,
174–187.

Nye, A., Ed. 1995. X Protocol Reference Manual , 4th ed. O’Reilly.

Oki, B., Pfluegl, M., Siegel, A., and Skeen, D. 1993. The Information Bus — an architecture
for extensible distributed systems. In Proceedings of the 14th ACM Symposium on Operating

Systems Principles. Ashville, North Carolina, 58–68.

Olson, M. A., Bostic, K., and Seltzer, M. 1999. Berkeley DB. In Proceedings of the FREENIX

Track, 1999 USENIX Annual Technical Conference. Monterey, California, 183–192.

Ousterhout, J. 1996. Why threads are a bad idea (for most purposes). http://home.pacbell.

net/ouster/threads.ppt. Invited Talk presented at the 1996 USENIX Annual Technical Con-
ference, San Diego, California.

Pai, V. S., Druschel, P., and Zwaenepoel, W. 1999. Flash: An efficient and portable Web

server. In Proceedings of the 1999 USENIX Annual Technical Conference. Monterey, California,
199–212.

Pardyak, P. and Bershad, B. N. 1996. Dynamic binding for an extensible system. In Proceedings

of the 2nd USENIX Symposium on Operating Systems Design and Implementation. Seattle,
Washington, 201–212.

Petzold, C. 1998. Programming Windows, 5th ed. Microsoft Press.

Powell, M. L. and Miller, B. P. 1983. Process migration in DEMOS/MP. In Proceedings of
the 9th ACM Symposium on Operating Systems Principles. Bretton Woods, New Hampshire,

110–119.

Prechelt, L. 2000. An empirical comparison of seven programming languages. IEEE Com-
puter 33, 10 (Oct.), 23–29.

Saltzer, J. H., Reed, D. P., and Clark, D. D. 1984. End-to-end arguments in system design.
ACM Transactions on Computer Systems 2, 4 (Nov.), 277–288.

Shapiro, M. 1986. Structure and encapsulation in distributed systems: The proxy principle.

In Proceedings of the 6th IEEE International Conference on Distributed Computing Systems.
Boston, Massachusetts, 198–204.

Steensgaard, B. and Jul, E. 1995. Object and native code thread mobility among heterogeneous

computers. In Proceedings of the 15th ACM Symposium on Operating Systems Principles.
Copper Mountain Resort, Colorado, 68–77.

Stevens, W. R. 1994. TCP/IP Illustrated. Vol. 1. Addison-Wesley.

Tamches, A. and Miller, B. P. 1999. Fine-grained dynamic instrumentation of commodity

operating system kernels. In Proceedings of the 3rd USENIX Symposium on Operating Systems

Design and Implementation. New Orleans, Louisiana, 117–130.

Tewari, R., Dahlin, M., Vin, H. M., and Kay, J. S. 1999. Design considerations for distributed

caching on the Internet. In Proceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems. Austin, Texas, 273–284.

Thai, T. and Lam, H. 2001. .NET Framework Essentials. O’Reilly.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. 2001. XML schema part 1:
Structures. W3C recommendation, World Wide Web Consortium, Cambridge, Massachusetts.
May.

Thorn, T. 1997. Programming languages for mobile code. ACM Computing Surveys 29, 3

(Sept.), 213–239.

Tullmann, P. and Lepreau, J. 1998. Nested Java processes: OS structure for mobile code. In
Proceedings of the 8th ACM SIGOPS European Workshop. Sintra, Portugal, 111–117.

Tulloch, M. 2001. Windows 2000 Administration in a Nutshell. O’Reilly.



42 · Robert Grimm et al.

van Steen, M., Homburg, P., and Tanenbaum, A. S. 1999. Globe: A wide-area distributed

system. IEEE Concurrency 7, 1, 70–78.

Walrath, K. and Campione, M. 1999. The JFC Swing Tutorial: A Guide to Constructing GUIs.
Addison-Wesley.

Weiser, M. 1991. The computer for the twenty-first century. Scientific American 265, 3 (Sept.),
94–104.

Welsh, M., Culler, D., and Brewer, E. 2001. SEDA: An architecture for well-conditioned,
scalable Internet services. In Proceedings of the 18th ACM Symposium on Operating Systems

Principles. Banff, Canada, 230–243.

Wyckoff, P., McLaughry, S. W., Lehman, T. J., and Ford, D. A. 1998. T Spaces. IBM

Systems Journal 37, 3, 454–474.


