
© 2004 Advanced Distributed Learning. All Rights Reserved

This page intentionally left blank.

© 2004 Advanced Distributed Learning. All Rights Reserved.

Advanced Distributed Learning (ADL)

Sharable Content Object Reference Model
(SCORM®)

Run-Time Environment (RTE)
Version 1.3

Available at ADLNet.org
(http://www.adlnet.org/)

For questions and comments visit the
ADL Help & Info Center at ADLNet.org

SCORM ® Run-Time Environment Version 1.3 i
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

ii SCORM ® Run-Time Environment Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Chief Technical Architect
Philip Dodds

Technical Editor
Schawn E. Thropp

Key ADL Technical Team Contributors to the
SCORM Run-Time Environment Version 1.3:

William Capone Mary Krauland
Clark Christensen Jeff Krinock

Jeffrey M. Falls Lori Morealli
Dexter Fletcher Angelo Panar

Matthew Handwork Douglas Peterson
Rob Harrity Jonathan Poltrack
Sue Herald Betsy Spigarelli

Alan Hoberney Schawn E. Thropp
Paul Jesukiewicz Bryce Walat

Kirk Johnson Jerry West

Key ADL Community Contributors to the
SCORM Run-Time Environment Version 1.3:

Mike Bednar Claude Ostyn
Bill Blackmon Nina Pasini
Howard Fear Dan Rehak

Lenny Greenberg Tyde Richards
Peter Hope Roger St. Pierre

Boyd Nielsen Brendon Towle

SCORM ® Run-Time Environment Version 1.3 iii
© 2004 Advanced Distributed Learning. All Rights Reserved.

Acknowledgements

ADL would like to thank the following organizations and their members for their
continued commitment to building interoperable e-learning standards and specifications:

Alliance of Remote Instructional Authoring & Distribution
Networks for Europe (ARIADNE) (http://www.ariadne-eu.org/)

Erik Duval
Eddy Forte

Florence Haenny
Ken Warkentyne

Aviation Industry CBT Committee (AICC) (http://www.aicc.org/)

Jack Hyde
Bill McDonald

Anne Montgomery

Institute of Electrical and Electronics Engineers (IEEE)
Learning Technology Standards Committee (LTSC) (http://ltsc.ieee.org/)

Erik Duval
Mike Fore

Wayne Hodgins
Tyde Richards
Robby Robson

IMS Global Learning Consortium, Inc. (http://www.imsglobal.org/)

Thor Anderson
Steve Griffin
Mark Norton
Ed Walker

(At Large)

Bob Alcorn Chantal Paquin
Tom Grobicki Mike Pettit

Tom King Tom Rhodes
Chris Moffatt Kenny Young

…and many others.

ADL would also like to thank the ADL Community for their commitment and
contribution to the evolution of SCORM.

iv SCORM ® Run-Time Environment Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

COPYRIGHT

Copyright 2004 Advanced Distributed Learning (ADL). All rights reserved.

DISTRIBUTION

Permission to distribute this document is granted under the following conditions:

1. The use of this document, its images and examples is for non-commercial,
educational or informational purposes only.

2. The document, its images and examples are intact, complete and unmodified. The
complete cover page, as well as the COPYRIGHT, DISTRIBUTION and
REPRODUCTION sections are consequently included.

REPRODUCTION

Permission to reproduce this document completely or in part is granted under the
following conditions:

1. The reproduction is for non-commercial, educational or informational purposes
only.

2. Appropriate citation of the source document is used as follows:

a. Source: Advanced Distributed Learning (ADL), Sharable Content Object
Reference Model (SCORM®) Run-Time Environment Version 1.3, 2004.

For additional information or questions regarding copyright, distribution and
reproduction, contact:

ADL Co-Laboratory
1901 North Beauregard Street, Suite 106
Alexandria, VA 22311
USA
(703) 575-2000

SCORM ® Run-Time Environment Version 1.3 v
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

vi SCORM ® Run-Time Environment Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Table of Contents

SECTION 1 THE SCORM RUN-TIME ENVIRONMENT (RTE) ... 1-1
1.1. INTRODUCTION TO THE SCORM RUN-TIME ENVIRONMENT (RTE) BOOK 1-3

1.1.1. What is Covered in the SCORM Run-Time Environment Book? 1-3
1.1.2. Using the SCORM RTE Book... 1-4
1.1.3. Relationship with other SCORM Books.. 1-4

1.2. RUN-TIME ENVIRONMENT OVERVIEW ... 1-7
SECTION 2 MANAGING THE RUN-TIME ENVIRONMENT (RTE)... 2-1

2.1. RUN-TIME ENVIRONMENT (RTE) MANAGEMENT.. 2-3
2.1.1. Run-Time Environment Temporal Model ... 2-3
2.1.2. Launching Content Objects ... 2-8
2.1.3. Taking Content Objects Away .. 2-10

SECTION 3 APPLICATION PROGRAMMING INTERFACE (API)... 3-1
3.1. APPLICATION PROGRAMMING INTERFACE (API).. 3-3

3.1.1. API Overview.. 3-3
3.1.2. API Methods and Syntax... 3-5
3.1.3. Session Methods.. 3-6
3.1.4. Data-Transfer Methods.. 3-7
3.1.5. Support Methods ... 3-9
3.1.6. Communication Session State Model.. 3-11
3.1.7. API Implementation Error Codes .. 3-12
3.1.8. API General Application Rules ... 3-24

3.2. LMS RESPONSIBILITIES ... 3-25
3.2.1. API Instance .. 3-25

3.3. SCO RESPONSIBILITIES.. 3-27
3.3.1. Finding the API Instance ... 3-27
3.3.2. API Usage Requirements and Guidelines.. 3-29

SECTION 4 SCORM RUN-TIME ENVIRONMENT DATA MODEL .. 4-1
4.1. DATA MODEL OVERVIEW .. 4-3

4.1.1. SCORM Run-Time Environment Data Model Basics... 4-4
4.2. SCORM RUN-TIME ENVIRONMENT DATA MODEL.. 4-14

4.2.1. Data Model Version .. 4-17
4.2.2. Comments From Learner... 4-18
4.2.3. Comments From LMS... 4-25
4.2.4. Completion Status ... 4-31
4.2.5. Completion Threshold ... 4-35
4.2.6. Credit ... 4-36
4.2.7. Entry .. 4-38
4.2.8. Exit .. 4-40
4.2.9. Interactions .. 4-42
4.2.10. Launch Data .. 4-77
4.2.11. Learner Id .. 4-79
4.2.12. Learner Name .. 4-80
4.2.13. Learner Preference... 4-81
4.2.14. Location... 4-87
4.2.15. Maximum Time Allowed .. 4-89
4.2.16. Mode.. 4-90
4.2.17. Objectives.. 4-92
4.2.18. Progress Measure... 4-109
4.2.19. Scaled Passing Score ... 4-111

SCORM ® Run-Time Environment Version 1.3 vii
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.20. Score .. 4-112
4.2.21. Session Time.. 4-117
4.2.22. Success Status.. 4-119
4.2.23. Suspend Data ... 4-122
4.2.24. Time Limit Action ... 4-124
4.2.25. Total Time ... 4-126

APPENDIX A ACRONYM LISTING.. A-1
ACRONYM LISTING ... A-3
APPENDIX B REFERENCES.. B-1
REFERENCES ... B-3
APPENDIX C DOCUMENT REVISION HISTORY... C-1
DOCUMENT REVISION HISTORY.. C-3

viii SCORM ® Run-Time Environment Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

SECTION 1
The SCORM Run-Time Environment

(RTE)

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-1-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-1-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

1.1. Introduction to the SCORM Run-Time Environment
(RTE) Book

The SCORM is often described as a set of books on a bookshelf. The Run-Time
Environment (RTE) book is one of a set of books (refer to Figure 1.1a: The Run-Time
Environment Book as Part of the SCORM Bookshelf). More information on the other
SCORM books and their relationships to one another can be found in the SCORM 2004
Overview. The SCORM RTE book describes the Learning Management System (LMS)
requirements in managing the run-time environment (i.e., content launch process,
standardized communication between content and LMSs and standardized data model
elements used for passing information relevant to the learner’s experience with the
content). The RTE book also covers the requirements of Sharable Content Objects
(SCOs) and their use of a common Application Programming Interface (API) and the
SCORM Run-Time Environment Data Model.

Run-Time Environment

IEEE API 1484.11.2

IEEE Data Model 1484.11.1

Key SCORM® Technologies
• API
• API Instance
• Launch
• Session Methods
• Data Transfer Methods
• Support Methods
• Temporal Model
• Data Model

Figure 1.1a: The SCORM Run-Time Environment Book as part of the SCORM Bookshelf

1.1.1. What is Covered in the SCORM Run-Time Environment
Book?

There are several key concepts that are introduced in the SCORM Run-Time
Environment (RTE) book. The book covers the essential LMS responsibilities for
sequencing content objects (SCOs or Assets) during run-time and allowing SCOs to
indicate navigation requests. In addition, guidance is offered for providing navigation
controls to learners. General subjects discussed include:
SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-1-3

© 2004 Advanced Distributed Learning. All Rights Reserved.

• Run-Time Environment Management: Launching of content objects – SCOs and
Assets, Management of communications with a SCO, Run-time environment data
model management

• Application Programming Interface (API): LMS API requirements, SCOM
communication requirements, communication error conditions)

• Run-Time Environment Data Model: Data model management and behavior
requirements, Data type requirements

1.1.2. Using the SCORM RTE Book

This book should prove useful to LMS, SCO and authoring tool vendors wishing to
support SCORM in their products, and to anyone wishing to understand the
communications relationship between content and LMSs, such as SCORM content
developers.

Section 1 and Section 2 of this book cover general RTE-related concepts. These sections
are recommended reading for those seeking an introduction to the concepts behind the
SCORM RTE and who may not wish to delve into its technical details. Others who may
find these sections useful include those wishing to learn about updates to the RTE.
Section 2.1: Run-Time Environment (RTE) Management, for instance, discusses how the
new Sequencing and Navigation book impacts the SCORM RTE.

Section 3: Application Programming Interface is the first section providing technical
details about the RTE. This section explains every SCORM API method and error
message available to content developers, and even provides sample code as well as API
Usage Requirements and Guidelines.

Section 4: SCORM Run-Time Environment Data Model covers every SCORM data
model element in detail, which includes a listing of specific LMS and SCO behavior
requirements in relation to a given element.

1.1.3. Relationship with other SCORM Books

While the various SCORM books are intended to stand alone, there are areas of overlap
or mutual coverage. For instance, while this book focuses primarily on communication
between learning content and LMSs, it frequently refers to Sharable Content Objects
(SCOs) that conduct that communication. SCOs are discussed in some detail in the CAM
book.

Similarly, while the SN book covers the details of SCORM sequencing and navigation
processes, including detailed coverage of how an LMS evaluates navigation requests and
related activities, this book deals with content delivery, and as such, lightly touches on
how an LMS determines which piece of content to deliver at any given time.

RTE-1-4 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

1.1.3.1 The SCORM Content Aggregation Model (CAM) Book
The SCORM Content Aggregation Model (CAM) book [19] defines responsibilities and
requirements for building content aggregations (i.e., the process of assembling, labeling
and packaging content). The book contains information on creating content packages,
applying meta-data to the components in the content package and applying sequencing
and navigation details in the context of a content package. Several dependencies span
from the SCORM CAM book to the SCORM RTE book.

Meta-data is “data about data”. SCORM meta-data describes the different components
of the SCORM content model (Content Organizations, Activities, SCOs and Assets).
Meta-data, a form of labeling, enhances search and discovery of these components. At
this time, there are no defined relationships between SCORM meta-data and the SCORM
Run-Time Environment Data Model and SCORM meta-data has no impact on run-time
behaviors or events. For these reasons, meta-data is not discussed in detail in the
SCORM RTE book. This relationship may change as SCORM evolves.

A Content Package, in a general sense, bundles content objects with a content structure
that is described by a manifest. A SCORM Content Package may represent a SCORM
course, lesson, module or may simply be a collection of related content objects that may
be stored in a repository. The manifest, an essential part of all SCORM Content
Packages is contained in an XML-based file named “imsmanifest.xml”. This file,
similar in many ways to a “packaging slip”, describes the contents of the package and
may include an optional description of the content structure.

SCORM Content Packages may include additional information that describes how an
LMS is intended to process the Content Package and its contents. Some of these
elements are utilized by the SCORM RTE Model.

• Content object launch locations and launch parameters are also described as
elements in a SCORM Content Package. These elements are essential to the
launch and delivery of content objects. The SCORM Run-Time Environment
book details these elements and their effects on launching content objects.

• Several elements in a SCORM Content Package affect initialization and
management of a content object’s run-time data model. The SCORM RTE book
details these data model elements and the required LMS behaviors.

• Other elements in a SCORM Content Package describe initial values for specific
elements of a content object’s run-time data model. The SCORM RTE book
details these data model elements and their initialization behavior.

• When a SCORM Content Package includes a description of content structure,
sequencing information elements may be added to define an intended approach to
sequencing the package’s content objects. A SCORM Content Package may
include User Interface (UI) elements that are intended to provide guidance to an
LMS on how certain UI navigation controls are to present, enabled or hidden.
When a content object is launched, as defined in this book, these elements may be
used, in conjunction with sequencing information (refer to the SCORM
Sequencing and Navigation book), to present the correct (at the time of rendering)
UI navigation controls (e.g., “continue” or “previous” user interface controls).

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-1-5
© 2004 Advanced Distributed Learning. All Rights Reserved.

For a better understanding of how all of the elements described above are specified in a
SCORM Content Package, refer to the SCORM CAM book.

1.1.3.2 The SCORM Sequencing and Navigation (SN) Book
The SCORM Sequencing and Navigation (SN) book is based on the IMS Simple
Sequencing (SS) Specification [17], which defines a method for representing the intended
behavior of an authored learning experience such that any conformant LMS will
sequence discrete learning activities consistently.

The SCORM SN Model defines how the IMS SS specification is applied and it is
extended in a SCORM environment. It defines the required behaviors and functionality
that SCORM-conformant LMSs must implement to process sequencing information at
run-time. More specifically, it describes the branching and flow of learning activities in
terms of an Activity Tree, based on the results of a learner’s interactions with launched
content objects and an authored sequencing strategy. An Activity Tree is a conceptual
structure of learning activities managed by the LMS for each learner.

The SCORM SN book describes how learner-initiated and system-initiated navigation
events can be triggered and processed, resulting in the identification of learning activities
for delivery. Each learning activity identified for delivery will have an associated content
object. The SCORM RTE Model describes how identified content objects are launched.
The sequence of launched content objects, for a given learner and content structure,
provides a learning experience (learner interaction with content objects); the SCORM
RTE Model describes how the LMS manages the resulting learning experience and how
that learning experience may affect the Activity Tree.

RTE-1-6 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

1.2. Run-Time Environment Overview

This book defines the SCORM RTE Model which details the requirements for launching
content objects, establishing communication between LMSs and SCOs, and managing the
tracking information that can be communicated between SCOs and LMSs. In the context
of SCORM, content objects are either:

• Sharable Content Objects (SCOs), which communicate during run-time, or
• Assets, which do not communicate during run-time.

The SCORM RTE book describes a common content object launch mechanism, a
common communication mechanism between content objects and LMSs, and a common
data model for tracking a learner’s experience with content objects. These aspects create
an environment where several of the ADL “ilities” are satisfied. For example, content
objects that communicate through the standardized communication mechanism can be
moved from LMS to LMS without modification to their communication attempts; this
increases learning object portability and durability, thereby lowering the cost of
development, installation and maintenance.

The SCORM RTE defines a model that picks up at the point when a specific content
object has been identified for launch. The actual identification of the content object to be
launched is out of scope of this book and can be found in the SCORM SN book [11].

This book only deals with the management of the run-time environment, which includes:

• the delivery of a content object to the learner’s Web browser (i.e., launch),
• if necessary, how a content object communicates with the LMS, and
• what information is tracked for a content object and how the LMS manages that

information

The following sections explain the relationships between the SCORM RTE book and the
remaining SCORM books. In addition, frequently used terminology will be introduced at
a high level to eliminate the need for the reader to become an expert in the entire
SCORM to understand this book. This, however, is not an effective method to learn and
apply SCORM and its concepts as a whole. It is strongly recommended that each book of
the SCORM be read to more fully understand the purpose, details, relationships and
advantages of all of the SCORM concepts.

Two goals of SCORM are that content objects be reusable and interoperable across
multiple LMSs. For this to be possible, there must be a common way to launch and
manage content objects, a common mechanism for content objects to communicate with
an LMS and a predefined language or vocabulary forming the basis of the
communication. As illustrated in Figure 1.2a, these three aspects of the RTE are Launch,
Application Programming Interface (API) and Data Model.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-1-7
© 2004 Advanced Distributed Learning. All Rights Reserved.

Learning Management System
(LMS)

LMS Server

Web Browser

SCO
Asset

ECMAScript
API

Instance

Server Side

Client SideLaunch

API: Communications Link between a SCO
and LMS

Data Model: Data is requested to be
retrieved from and stored in the LMS from the
SCO.

Data Model:
Actual data sent
back and forth
between a SCO
and LMS

Communication
with backend
server is not
specified in
SCORM. Asset

AssetAsset

Figure 1.2a: SCORM Conceptual Run-Time Environment.

The Launch process defines a common way for LMSs to start Web-based content objects.
The term content object is used generically here to describe any piece of content that can
be launched for a learner. In SCORM, there are two types of content objects: SCOs and
Assets. The launch process defines procedures and responsibilities for the establishment
of communication between the launched content object and the LMS. The
communication mechanism is standardized with a common API.

The API is the communication mechanism for informing the LMS of the conceptual
communication state between a content object and an LMS (e.g., initialized, terminated
and/or in an error condition), and is used for retrieving and storing data (e.g., score, time
limits, etc.) between the LMS and the SCO.

A Data Model is a standard set of data model elements used to define the information
being tracked for a SCO, such as the SCO’s completion status or a score from an
assessment such as a quiz or a test. In its simplest form, the data model defines data
model elements that both the LMS and SCO are expected to “know about.” The LMS
must maintain the state of SCO’s data model elements across learner sessions, and the
SCO must utilize only these predefined data model elements to ensure reuse across
multiple systems.

RTE-1-8 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

SECTION 2
Managing The Run-Time Environment

(RTE)

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-2-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-2-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

2.1. Run-Time Environment (RTE) Management

While the learner interacts with content objects (the learning experience), the LMS
evaluates learner performance and navigation requests (refer to the SCORM SN book).
When the LMS identifies an activity for delivery to the learner, the activity has a content
object associated with it. The LMS will launch the content object and present it to the
learner. Figure 2.1a depicts how the content structure (organization section of a
manifest) can be interpreted in a tree (i.e., activity tree). The tree representation is just a
different way of presenting the content structure found in the manifest (refer to the
SCORM CAM).

Activity

Learning
Resource (SCO)

<manifest>
 <organizations>
 <organization>
 <item>
 <item identifier=”ID1" identifierref=”RES_1">
 </item>
 <item> ... </item>
 <item> ... </item>
 </organization>
 </organizations>
 <resources>
 <resource identifier=”RES_1"> … </resource>
 …
</manifest>

Item
(ID1)

Resource
(RES_1)

SCO 1 SCO 2 SCO 3

Resource
(RES_2)

Resource
(RES_3)

Figure 2.1a: Launching Content Objects

A common launch model addresses delivery of Web-enabled content objects in the form
of SCOs and Assets within the context of a learning experience. This launch model
enables consistency of content object launch behavior across LMSs without specifying
the underlying LMS implementation. Note, in this context, the term “LMS” is used to
describe any system that provides the launch of content objects.

2.1.1. Run-Time Environment Temporal Model

A learner becomes engaged with the content object once an activity with the associated
content object (i.e., SCOs or Asset) has been identified for delivery and the content object
has been launched in the learner’s browser-environment. Several key aspects need to be
defined to aid in the tracking of the learner during the learning experience. The following
terms are defined by the IEEE P1484.11.1 Draft Standard for Learning Technology –
Data Model for Content Object Communication [1] and are referenced throughout this
document:

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-2-3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Learner Attempt – A tracked effort by a learner to satisfy the requirements of a learning
activity that uses a content object. An attempt may span one or more learner sessions and
may be suspended between learner sessions [1].

Learner Session – An uninterrupted period of time during which a learner is accessing a
content object [1].

Communication Session – An active connection between a content object (i.e., SCO)
and an application programming interface [1].

Login Session – A period of time during which a learner begins a session with a system
(logged on) until the time the learner terminates the session with the system (logged out).

These three terms are relevant when it comes to managing the Run-Time Environment
for a SCO. For an Asset, the RTE consists of only independent learner attempts and
learner sessions; one learner attempt with a corresponding learner session for each launch
of the Asset. The learner attempt begins once an activity has been identified to be
delivered (refer to the SCORM SN book). During the attempt, the learner will be
engaged with a content object (either a SCO or Asset). Once the learner becomes
engaged (content has been launched in the learner’s Web browser), a learner session
begins. If the launched content object is a SCO, as soon as the SCO initializes
communication with the LMS, a communication session begins. A communication
session ends when the SCO terminates communication with the LMS. Learner sessions
can end leaving the SCO in a suspended state (the learner is not through with the SCO) or
leaving the SCO in a normal state (the learner ended the learner attempt by meeting
requirements defined by the SCO). For a SCO, the learner attempt ends when a learner
session ends in a normal state. For an Asset, the learner attempt ends once the Asset is
taken away from the learner. Figure 2.1.1a depicts the three terms and their relationships
with one another for a specific SCO.

Figure 2.1.1a: Temporal Model Relationships for a Specific SCO

RTE-2-4 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

2.1.1.1 Managing Learner Attempts and Learner Sessions
A learner attempt is associated with an important LMS requirement defining the
management of the set of run-time data model elements that the SCO may communicate
to the LMS. When a new learner attempt begins for a SCO, the LMS is required to create
and initialize a new set of run-time data for the SCO to access and use (Refer to Section
4: SCORM Run-Time Environment Data Model for more details). SCORM does not
specify exactly when the new set of run-time data is created, but all data model accesses
must appear (to the SCO) as if they are being performed on a new set of run-time data.

What the LMS does with the previous attempt’s data is outside the scope of SCORM.
The LMS may elect to store this data for historical purposes or for other purposes such as
reporting, auditing, diagnostic or statistical. The LMS may elect to discard any run-time
data collected during the previous attempt. The LMS is only required to keep run-time
data for the learner attempt if the learner attempt was suspended. SCORM does not
specify any LMS requirements on the persistence or access to previous learner attempt
data. However if the learner session is suspended, hence causing the learner attempt to
be incomplete (i.e., suspended), the LMS is responsible for ensuring that any run-time
data that was set prior to the suspension is available when the next learner session for the
SCO begins; that is, the next time the (suspended) learning activity associated with the
SCO is identified for delivery, the previous learner attempt is resumed and the run-time
data from the previous learner attempt is provided in a new learner session.

The following figures (2.1.1.1a, 2.1.1.1b and 2.1.1.1c) illustrate several different
relationships between a learner attempt and learner session(s). Figure 2.1.1.1a illustrates
a single learner attempt being accomplished with one learner session.

Figure 2.1.1.1a: Single Learner Attempt with one Learner Session

Figure 2.1.1.1b illustrates a single learner attempt spread over several learner sessions.
These sessions have been suspended and the learner attempt has been subsequently
resumed until a learning session ends in a normal state.

Figure 2.1.1.1b: Learner Attempt spread over several Learner Sessions

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-2-5
© 2004 Advanced Distributed Learning. All Rights Reserved.

Figure 2.1.1.1c illustrates successive learner attempts. Within each of these learner
attempts, any number of learner sessions may take place.

Figure2.1.1.1c: Successive Learner Attempts, each of which is spread over several Learner Sessions

2.1.1.2 Persisting Run-Time Data Across Learner Attempts and Activities
In some cases, it may be necessary for a learning activity to have one and only one set of
run-time data, spanning all learner attempts on the SCO associated with the learning
activity. This requirement can be specified by declaring that the SCO resource needs to
persist its state (run-time data) between attempts (refer to the SCORM CAM book for
more details on defining this capability). If the learning activity has defined that the run-
time data be persisted between all learner attempts, then the LMS should only create and
initialize a set of run-time data when the first learner session on the SCO associated with
that activity begins. The persistence of state has no effect on an activity associated with
an Asset.

In some cases, two or more learning activities may reference the same SCO resource. If
that SCO resource defines that its state must be persisted between learner attempts, then
its state is also persisted between the learning activities that reference the SCO resource.
In Figure 2.1.1.2a, two Activities (represented by Item A12 and Item A51) refer to the
same SCO resource (R2). Since the SCO resource has been defined with Persist State
equal to true, then the LMS must maintain the run-time data between learner attempts on
the SCO (within either of the two activities). If during a learner attempt of Activity A12,
run-time data is set by the SCO, this same data shall be accessible by any subsequent
learner attempts on Activity A51 (i.e., persisting state across learner attempts and
activities).

RTE-2-6 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Manifest

Item ID: A1

Item ID: A11

Item ID: A12

Item ID: A5

Item ID: A51

Resource ID: R1

Resource ID: R2
Persist State: True

SCO

Run-Time Data

Figure 2.1.1.2a: Persisting of State Across Learner Attempts and Activities

In Figure 2.1.1.2b, two Activities (represented by Item A12 and Item A51) refer to the
same SCO resource (R2). However, since the SCO resource has been defined with
Persist State equal to false (i.e., the default value if nothing is defined), then the LMS
must create a new complete set of run-time data for the learner attempts on the SCO
during each activity. For example, if during a learner attempt on Activity A12, run-time
data is set by the SCO, then this data is not persisted across learner attempts and
activities. This means that during a learner attempt on the SCO during the attempt on
Activity A51, the data set during the attempt on A12 is not available.

Manifest

Item ID: A1

Item ID: A11

Item ID: A12

Item ID: A5

Item ID: A51

Resource ID: R1

Resource ID: R2
Persist State: False (default)

SCO

Run-Time Data

Run-Time Data

Figure 2.1.1.2b: No Persisting of State Across Learner Attempts and Activities

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-2-7
© 2004 Advanced Distributed Learning. All Rights Reserved.

2.1.2. Launching Content Objects

As described in the Content Aggregation Model [19], the SCORM Content Model is
made up of three components:

• Assets
• SCOs
• Content Organizations

The SCORM CAM describes the characteristics of launchable content objects; SCOs and
Assets are the defined content model components that can be launched. Different
launching requirements exist depending on the content object’s type. The launching
process defines the common way for LMSs to launch content objects to the learner’s Web
browser. The procedures and responsibilities for establishing communication between
the launched content object and the LMS vary depending on the type of the launched
content object.

It is the responsibility of the LMS to manage the sequencing between learning activities
(refer to the SCORM SN book) based on well-defined behaviors and the evaluation of
defined sequencing information applied to activities. The progression through learning
activities that comprise a particular learning experience may be sequential, non-
sequential, user-directed or adaptive, depending on the sequencing information defined
and the interactions between a learner and content objects.

It is the responsibility of the LMS (or sequencing component/service thereof), based on
some navigation event, to determine which learning activity to deliver. The LMS may
identify the next learning activity in the sequence defined in the content structure,
identify a user selected learning activity or determine which learning activity to deliver
based on learner performance in previously experienced content objects in an adaptive
fashion. A learning activity identified for delivery will always have an associated content
object. It is the responsibility of the LMS (or launch component/service thereof) to
launch the content object associated with the identified learning activity. Upon
determining the appropriate content object to launch, the LMS uses the Universal
Resource Locator (URL) defined by the content object’s launch location, defined in the
content package (refer to Figure 2.1.2a), to navigate to, or replace the currently displayed
content object with the content object referenced by the launch location.

<manifest>
 <organizations>
 <organization>
 <item>
 <item identifierref=”RES_1>…</item>
 <item> … </item>
 <item> … </item>
 </item>
 </organization>
 </organizations>
 <resources>
 <resource identifier=”RES_1”
 type=”webcontent”

RTE-2-8 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

 adlcp:scormType=”sco”
 href=”Lesson1/Module1/sco1.htm”> … </resource>
 </resources>
</manifest>

Figure 2.1.2a: Href used for Launching

The LMS is responsible to determine the appropriate fully qualified URL. The SCORM
CAM defines, using the IMS Content Packaging Specification [18], requirements on how
to build the fully qualified URL. The URL is built based on the following pieces (if they
exist in a manifest):

• xml:base declarations
• Launch Parameters (i.e., query component [6] of a URL)
• Href declarations

Refer to the SCORM CAM for more information on the process involved in building the
absolute URL for the content object.

The LMS may implement the launch in any manner desired or may delegate the actual
launch responsibility to the client or server portion of the LMS as needed. The actual
launch must be accomplished using the Hypertext Transfer Protocol (HTTP). Ultimately,
the content object identified by the launch location in a content package is launched and
delivered to the client Web browser.

2.1.2.1 Asset
For content objects that represent Assets, the SCORM launch model only requires that an
LMS launch the Asset using the HTTP protocol. An Asset does not communicate to the
LMS via the API and Data Model.

2.1.2.2 Sharable Content Object (SCO)
For content objects that represent SCOs, the SCORM launch model requires that an LMS
launch and track one SCO at a time (per learner). In other words, the LMS launches and
tracks one SCO at a time (per learner).

The launched SCO can itself implement an API Instance for subordinate SCOs that it
may launch and track. The LMS is not responsible for “knowing” of these subordinate
SCOs. If this is the case, the SCO that was launched by the LMS is responsible for all
cleanup (e.g., closing of any windows that were opened to host the subordinate SCO)
upon termination of itself. All communication with the LMS must take place with the
SCO that was launched by the LMS. Figure 2.1.2.2a depicts the scenario described.
SCO 1 was launched by the LMS and the LMS knows how to handle communication
sessions with SCO 1. SCO 1 has some sore of mechanism for launching SCO 1.1. SCO
1 also has an implementation of the API Instance. All communication between SCO 1.1
and SCO 1 happen between each other. SCO 1 can decide whether or not to
communicate any other data back to the LMS using its reference to the LMS provided
API Instance. SCO 1.1 is not permitted to communicate back directly to the LMS via the
LMS provided API Instance.
SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-2-9

© 2004 Advanced Distributed Learning. All Rights Reserved.

LMS

SCO 1

Client SideServer Side

API Instance

SCO 1.1

X

Figure 2.1.2.2a: SCOs and Subordinate SCOs

The LMS must launch the SCO in a browser window that is a dependent window (i.e.,
“popup” window) or child frame of the LMS window that exposes the API Instance as a
Document Object Model (DOM) object [8]. The API Instance must be provided by the
LMS.

It is the responsibility of the SCO to recursively search the parent and/or opener window
hierarchy until the API Instance is found. Once the API Instance has been found the
SCO may initiate communication with the LMS. Section 3.3: SCO Responsibilities
defines the requirements of the SCO. The SCO is responsible for adhering to all
requirements defined by the API Instance functions (Refer to Section 3.1: Application
Programming Interface).

2.1.3. Taking Content Objects Away

At the conclusion of a learner session, the content object currently being experienced by
the learner will be taken away and replaced with the next content object identified for
delivery (refer to Section 2.1.2: Launching Content Objects). Typically, content objects
are taken away in response to a learner or system triggered navigation event (refer to the
SCORM SN book for more details). After the current content object is taken away, the
LMS needs to have the most accurate information regarding the learner’s interactions
with the content object to make correct sequencing evaluations. If the content object
taken away is an Asset, the LMS will make assumptions regarding the learner’s
interactions. If the content object taken away is a SCO, the SCO may have
communicated more finely grained information regarding the learner’s interactions
during the just ended learner session. It is the LMS’s responsibility to account for
information communicated by a SCO through its run-time data model that may affect
successive sequencing evaluations. The run-time data model section describes the LMS
responsibilities for mapping the data model elements that may affect sequencing
evaluations to the learning activity associated with the SCO. To ensure timely use of run-
time data in sequencing evaluations, it is recommended that LMSs account for run-time
data changes on each commit data event (Refer to Section 3: Application Programming
Interface).

RTE-2-10 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

In some cases, the content author does not want to allow the user to interact with the SCO
after it has finished (whatever "finish" means in the context of the SCO). In such a case,
the following behaviors are allowed, depending on the type of window in which the SCO
was launched (Refer to Section 3.2: LMS Responsibilities):

1. If the window in which the SCO was launched is a top-level window (i.e., the
window has no parent window, but it has an opener) then the SCO may attempt to
close the window after calling Terminate(“”). There is no requirement that the
SCO behave this way. It is recommended that an LMS monitor the status of the
dependent pop-up window in which it launched the SCO to detect when such an
event happens. This will allow an LMS to present the appropriate
implementation-defined user interface to the learner.

2. If the window is not a top-level window (i.e., the window has a parent window),
the SCO may not act on the parent window or any window in the chain of parents.
For example, a SCO is not allowed to attempt to close the top window, unless it is
its own window.

Note: In such a case, the recommended behavior is for the SCO to display neutral,
passive content while waiting to be taken away by the LMS.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-2-11
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-2-12 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

SECTION 3
Application Programming Interface

(API)

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-3-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1. Application Programming Interface (API)

3.1.1. API Overview

Early versions of SCORM, up to and including SCORM Version 1.2, were based on the
run-time environment functionality defined in the AICC’s CMI001 Guidelines for
Interoperability [7]. Since then, the AICC has submitted their work to the IEEE Learning
Technology Standards Committee (LTSC) with the emphasis to standardize various
pieces of the CMI Guidelines for Interoperability. SCORM describes the IEEE
P1484.11.2-2003 Standard for Learning Technology - ECMAScript Application
Programming Interface for Content to Runtime Services Communication [2] as used in
SCORM. The standard describes the API for content to run-time service (RTS)
communication. An RTS is defined as the software that controls the execution and
delivery of learning content and that may provide services such as resource allocation,
scheduling, input-output control and data management [2]. From a SCORM perspective,
the term RTS and LMS are terms that could be used interchangeably. The API enables
the communication of data between content and an RTS typically provided by an LMS
via a common set of API services using the ECMAScript [9] (more commonly known as
JavaScript) language. In this section, the term “content” used by the IEEE standard
relates to a SCO (because in SCORM, SCOs are the content objects that communicate to
an LMS using the API).

The use of a common API fulfills many of the SCORM’s high-level requirements for
interoperability and reuse. It provides a standardized way for SCOs to communicate with
LMSs, yet it shields the particular communication implementation from the SCO
developer. How the LMS-provided API Instance communicates with the server-side
component of the LMS is outside the scope of SCORM. This back-channel
communication can be implemented anyway the LMS vendor likes.

There are several terms that are used throughout SCORM: API, API Implementation and
API Instance. Figure 3.1.1a describes the terms and their relationships to each other.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Initialize()

Terminate()

GetValue()

SetValue()

Commit()

GetLastError()

GetErrorString()

GetDiagnostic()

SCO

API Implementation
(“functional code”)

API Instance

API

Figure 3.1.1a: API, API Instance, API Implementation

In its simplest terms, the API is merely a set of defined functions that the SCO can rely
on being available.

An API Implementation is a piece of functional software that implements and exposes the
functions of the API. How an API Implementation functions should not matter to a SCO
developer, as long as the API Implementation uses the same public interface and adheres
to the semantics of the interface. The LMS need only provide an API Implementation
that implements the functionality of the API and exposes its public interface to the client
SCO.

An API Instance is an individual execution context and state of an API Implementation
[2]. The API Instance represents the piece of executing software that the SCO interacts
with during the SCOs operation.

A key aspect of the API is to provide a communication mechanism that allows the SCO
to communicate with the LMS. It is assumed that once the SCO is launched it can then
store and retrieve information with an LMS. All communication between the LMS and
the SCO is initiated by the SCO. There is currently no supported mechanism for LMSs
to initiate calls to functions implemented by a SCO.

RTE-3-4 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

The methods exposed by the API Implementation are divided into three categories. The
following table (Table 3.1.1b) defines these categories.

Method Description
Session Methods Session methods are used to mark the beginning and end of a

communication session between a SCO and an LMS through
the API Instance.

Data-transfer Methods Data-transfer methods are used to exchange data model values
between a SCO and an LMS through the API Instance.

Support Methods Support methods are used for auxiliary communications (e.g.,
error handling) between a SCO and an LMS through the API
Instance.

Table: 3.1.1b: API Methods

3.1.2. API Methods and Syntax

The use of a common API fulfills many of the SCORM’s high-level requirements for
interoperability and reuse. It provides a standardized way for SCOs to communicate with
LMSs, yet it shields the particular communication implementation from the SCO
developer. This is true if a SCO can find the API Instance in a consistent manner.
Otherwise, content developers must adapt their content to work on different LMS
vendor’s systems. This is one of the primary reasons why there are restrictions on where,
in the DOM hierarchy, the LMS provides the API Instance and why there is a common
name of the API Instance to search.

There are some general requirements dealing with the API that shall be adhered to:

• All function names are case sensitive and shall be expressed exactly as shown.
• All function parameters or arguments are case sensitive.
• All data passed as parameters shall be represented as a characterstring. Note that

several examples throughout SCORM include return data with quotes (“”). The
quotes are not intended to be part of the characterstring returned. The quotes are
used to delineate the value as a characterstring.

A key aspect of the API is that it allows the SCO to communicate with the LMS. It is
assumed that once the SCO is launched, it exchanges (i.e., “get” and “set”) information
with an LMS. All communication between the API Instance and the SCO is initiated by
the SCO. In other words, the communication is initiated in one direction, from the SCO
to the LMS. The SCO always invokes functions on the LMS’s API Instance. The LMS
does not invoke any functions defined by the SCO. This should not be confused with the
notion of the API Instance returning a value. That is done purely in response to the call
initiated by the SCO. There are currently no supported mechanisms for LMSs to initiate
calls to functions implemented by a SCO.

All of the API functions are described in detail in the following sections. Note that some
functions refer to a data model. The data model is described in detail in Section 4:

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-5
© 2004 Advanced Distributed Learning. All Rights Reserved.

SCORM Run-Time Environment Data Model. Error handling and error codes are
described in detail in Section 3.1.7: API Implementation Error Codes.

3.1.3. Session Methods

A SCO uses session methods to initiate and terminate data communication between itself
and an API Instance.

3.1.3.1 Initialize

Method Syntax: return_value = Initialize(parameter)

Description: The function is used to initiate the communication session. It allows the
LMS to handle LMS specific initialization issues.

Parameter: (“”) – empty characterstring. An empty characterstring shall be passed as a
parameter.

Return Value: The function can return one of two values. The return value shall be
represented as a characterstring. The quotes (“”) are not part of the characterstring
returned, they are used purely to delineate the values returned.

• “true” – The characterstring “true” shall be returned if communication session
initialization, as determined by the LMS, was successful.

• “false” – The characterstring “false” shall be returned if communication
session initialization, as determined by the LMS, was unsuccessful. The API
Instance shall set the error code to a value specific to the error encountered. The
SCO may call GetLastError() to determine the type of error. More detailed
information pertaining to the error may be provided by the LMS through the
GetDiagnostic() function.

3.1.3.2 Terminate

Method Syntax: return_value = Terminate(parameter)

Description: The function is used to terminate the communication session. It is used by
the SCO when the SCO has determined that it no longer needs to communicate with the
LMS. The Terminate() function also shall cause the persistence of any data (i.e., an
implicit Commit(“”) call) set by the SCO since the last successful call to
Initialize(“”) or Commit(“”), whichever occurred most recently. This guarantees to
the SCO that all data set by the SCO has been persisted by the LMS.

Once the communication session has been successfully terminated, the SCO is only
permitted to call the Support Methods.

Parameter: (“”) – empty characterstring. An empty characterstring shall be passed as a
parameter.

RTE-3-6 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Return Value: The method can return one of two values. The return value shall be
represented as a characterstring. The quotes (“”) are not part of the characterstring
returned, they are used purely to delineate the values returned.

• “true” – The characterstring “true” shall be returned if termination of the
communication session, as determined by the LMS, was successful.

• “false” – The characterstring “false” shall be returned if termination of the
communication session, as determined by the LMS, was unsuccessful. The API
Instance shall set the error code to a value specific to the error encountered. The
SCO may call GetLastError() to determine the type of error. More detailed
information pertaining to the error may be provided by the LMS through the
GetDiagnostic() function.

3.1.4. Data-Transfer Methods

A SCO uses data-transfer methods to direct the storage and retrieval of data to be used
within the current communication session. The SCO uses these methods to transfer run-
time data to and from the LMS. For example, the LMS can use this data to help
determine completion/mastery of activities and make sequencing and navigation
decisions.

3.1.4.1 GetValue

Method Syntax: return_value = GetValue(parameter)

Description: The function requests information from an LMS. It permits the SCO to
request information from the LMS to determine among other things:

• Values for data model elements supported by the LMS.
• Version of the data model supported by the LMS.
• Whether or not specific data model elements are supported.

Parameter: The parameter represents the complete identification of a data model
element.

Return Value: The method can return one of two values. The return value shall be
represented as a characterstring.

• A characterstring containing the value associated with the parameter
• If an error occurs, then the API Instance shall set an error code to a value specific

to the error and return an empty characterstring (“”). The SCO may call
GetLastError() to determine the type of error. More detailed information
pertaining to the error may be provided by the LMS through the
GetDiagnostic() function.

The SCO should not rely on an empty characterstring returned from this function as being
a valid value. The SCO should check to see if the error code indicates that no error was
encountered. If this is the case, then the empty characterstring is a valid value returned

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-7
© 2004 Advanced Distributed Learning. All Rights Reserved.

from the LMS. If an error condition was encountered during the processing of the
request, then this would be indicated by an appropriate error code (Refer to Section 3.1.7:
API Implementation Error Codes).

3.1.4.2 SetValue

Method Syntax: return_value = SetValue(parameter_1, parameter_2)

Description: The method is used to request the transfer to the LMS of the value of
parameter_2 for the data element specified as parameter_1. This method allows the
SCO to send information to the LMS for storage. The API Instance may be designed to
immediately persist data that was set (to the server-side component) or store data in a
local (client-side) cache.

Parameter:

• parameter_1 – The complete identification of a data model element to be set.
• parameter_2 – The value to which the contents of parameter_1 is to be set. The

value of parameter_2 shall be a characterstring that shall be convertible to the
data type defined for the data model element identified in parameter_1.

Return Value: The method can return one of two values. The return value shall be
represented as a characterstring. The quotes (“”) are not part of the characterstring
returned, they are used purely to delineate the values returned.

• “true” – The characterstring “true” shall be returned if the LMS accepts the
content of parameter_2 to set the value of parameter_1.

• “false” – The characterstring “false” shall be returned if the LMS encounters
an error in setting the contents of parameter_1 with the value of parameter_2.
The SCO may call GetLastError() to determine the type of error. More detailed
information pertaining to the error may be provided by the LMS through the
GetDiagnostic() function.

3.1.4.3 Commit

Method Syntax: return_value = Commit(parameter)

Description: The method requests forwarding to the persistent data store any data from
the SCO that may have been cached by the API Instance since the last call to
Initialize(“”) or Commit(“”), whichever occurred most recently. The LMS would
then set the error code to “0” (no error encountered) and return “true”.

If the API Instance does not cache values, Commit(“”) shall return “true” and set the
error code to “0” (no error encountered) and do no other processing.

Cached data shall not be modified because of a call to the commit data method. For
example, if the SCO sets the value of a data model element, then calls the commit data
method, and then subsequently gets the value of the same data model element, the value
returned shall be the value set in the call prior to invoking the commit data method. The
RTE-3-8 SCORM ® Run-Time Environment (RTE) Version 1.3

© 2004 Advanced Distributed Learning. All Rights Reserved.

Commit(“”) method can be used as a precautionary mechanism by the SCO. The method
can be used to guarantee that data set by the SetValue() is persisted to reduce the
likelihood that data is lost because the communication session is interrupted, ends
abnormally or otherwise terminates prematurely prior to a call to Terminate(“”).

Parameter: (“”) – empty characterstring. An empty characterstring shall be passed as a
parameter.

Return Value: The method can return one of two values. The return value shall be
represented as a characterstring. The quotes (“”) are not part of the characterstring
returned, they are used purely to delineate the values returned.

• “true” – The characterstring “true” shall be returned if the data was successfully
persisted to a long-term data store.

• “false” – The characterstring “false” shall be returned if the data was
unsuccessfully persisted to a long-term data store. The API Instance shall set the
error code to a value specific to the error encountered. The SCO may call
GetLastError() to determine the type of error. More detailed information
pertaining to the error may be provided by the LMS through the
GetDiagnostic() function.

3.1.5. Support Methods

Support methods exist within the API to allow a SCO to determine error handling and
diagnostic information. With each API function described so far, and only those
described so far, error conditions may occur. When these error conditions are
encountered the error code is changed to indicate the error encountered. The calls to
support methods do not affect the error state. In other words, calling any of the support
methods shall not change the current error code. These support methods allow the SCO
to determine if an error occurred and how to handle any error conditions encountered.

3.1.5.1 GetLastError

Method Syntax: return_value = GetLastError()

Description: This method requests the error code for the current error state of the API
Instance. If a SCO calls this method, the API Instance shall not alter the current error
state, but simply return the requested information.

A best practice recommendation is to check to see if a Session Method or Data-transfer
Method was successful. The GetLastError() can be used to return the current error
code. If an error was encountered during the processing of a function, the SCO may take
appropriate steps to alleviate the problem.

Parameter: The API method shall not accept any parameters.

Return Value: The API Instance shall return the error code reflecting the current error
state of the API Instance. The return value shall be a characterstring (convertible to an
SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-9

© 2004 Advanced Distributed Learning. All Rights Reserved.

integer in the range from 0 to 65536 inclusive) representing the error code of the last
error encountered.

3.1.5.2 GetErrorString

Method Syntax: return_value = GetErrorString(parameter)

Description: The GetErrorString() function can be used to retrieve a textual
description of the current error state. The function is used by a SCO to request the textual
description for the error code specified by the value of the parameter. The API Instance
shall be responsible for supporting the error codes identified in Section 3.1.7: API
Implementation Error Codes. This call has no effect on the current error state; it simply
returns the requested information.

Parameter:

• parameter: Represents the characterstring of the error code (integer value)
corresponding to an error message.

Return Value: The method shall return a textual message containing a description of the
error code specified by the value of the parameter. The following requirements shall be
adhered to for all return values:

• The return value shall be a characterstring that has a maximum length of 256
characters (including null terminator).

• SCORM makes no requirement on what the text of the characterstring shall
contain. The error codes themselves are explicitly and exclusively defined. The
textual description for the error code is LMS specific.

• If the requested error code is unknown by the LMS, an empty characterstring (“”)
shall be returned. This is the only time that an empty characterstring shall be
returned.

3.1.5.3 GetDiagnostic

Method Syntax: return_value = GetDiagnostic(parameter)

Description: The GetDiagnostic() function exists for LMS specific use. It allows the
LMS to define additional diagnostic information through the API Instance. This call has
no effect on the current error state; it simply returns the requested information.

Parameter:

• parameter: An implementer–specific value for diagnostics. The maximum
length of the parameter value shall be 256 characters (including null terminator).
The value of the parameter may be an error code, but is not limited to just error
codes.

Return Value: The API Instance shall return a characterstring representing the
diagnostic information. The maximum length of the characterstring returned shall be 256

RTE-3-10 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

characters (including null terminator). If the parameter is unknown by the LMS, an
empty characterstring (“”) shall be returned.

3.1.6. Communication Session State Model

The IEEE defines a conceptual state model that the API Instance transitions through
during its existence. Figure 3.1.6a, describes the states that an API Instance transitions
through for a given SCO at run-time. The states of the API Instance specify the
transitions of the API Instance to specific events. Each of the defined API Instance states
defines which functions a SCO may invoke. The states encountered by the API Instance
are defined as:

• Not Initialized
• Running
• Terminated

Note that an implementation is not required to implement a state model. The state model
is just a conceptual model used to help illustrate the intended behavior of the API
functions during a typical communication session.

Not Initialized

Running

Terminated

SCO is Launched by
LMS and SCO has
found the API

NOTE: SCO
Responsibility: Find
the API Instance and
call Initialize()

Initialize(“”) Terminate(“”)

GetValue()
SetValue()
Commit()
GetLastError()
GetErrorString()
GetDiagnostic()

GetLastError()
GetErrorString()
GetDiagnostic()

GetLastError()
GetErrorString()
GetDiagnostic()

Figure 3.1.6a: Conceptual API Instance State Transitions

Not Initialized: This describes the conceptual communication state between the actual
launching of the SCO and before the Initialize(“”) API method is successfully
invoked by the SCO. During this state, it is the SCO’s responsibility to find the API
Instance provided by the LMS. The SCO is permitted to call the following set of API
functions:

• GetLastError()
• GetErrorString()
• GetDiagnostic()

Running: This describes the conceptual communication state once the Initialize(“”)
API method is successfully invoked by the SCO and before the Terminate(“”) API

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-11
© 2004 Advanced Distributed Learning. All Rights Reserved.

method call is successfully invoked by the SCO. The SCO is permitted to call the
following set of API functions:

• GetValue()
• SetValue()
• Commit()
• GetLastError()
• GetErrorString()
• GetDiagnostic()

Terminated: This describes the conceptual communication state once the
Terminate(“”) API method is successfully invoked. The SCO is permitted to call the
following set of API functions:

• GetLastError()
• GetErrorString()
• GetDiagnostic()

3.1.7. API Implementation Error Codes

All error codes are required to be integers represented as characterstrings. The IEEE
standard [2] requires that all error codes be in the range of 0 to 65536 inclusive. The
standard has also reserved the range of 0 to 999 inclusive for future editions of the
standard. Additional error codes may be defined by implementations and profiles in the
range of 1000 to 65535. SCORM does not define any additional error codes to be used
for error conditions. This does not preclude implementations for defining error codes and
using those codes in implementation-defined practices. SCORM only requires the use of
the given error code in the defined error conditions (defined in this section).

Every API function, except for Support Methods: GetLastError(), GetErrorString()
and GetDiagnostic(), sets the currently maintained error code of the API Instance. The
SCO may invoke the GetLastError() function to assess whether or not the most recent
API function call was successful, and if it was not successful, what went wrong. The
GetLastError() function returns an error code that can be used to determine the type of
error raised, if any, by the most recent API function call.

The IEEE has defined the following categories and numeric ranges for the various error
codes:

Error Code Category Error Code Range
No Error 0
General Errors 100 – 199
Syntax Errors 200 – 299
RTS Errors 300 – 399
Data Model Errors 400 – 499
Implementation-defined Errors 1000 - 65535

Table 3.1.7a: Error Code Categories and Ranges

RTE-3-12 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1.7.1 Successful API Function Invocation
If, during the execution of an API function, no errors are encountered, the LMS shall set
the API Instance’s error code to 0. This indicates that the API function invocation
encountered no errors while processing the request.

If after an API function call, the error code is 0, one can assume the following based on
the actual function called:

• Initialize(“”): The API Instance has successfully performed the appropriate
LMS specific communication session initialization procedures. The
communication session has been established and the API Instance is ready for
other function calls. The conceptual communication state of the API Instance is
now “Running”.

• GetValue(parameter): The requested data model element’s value is returned.
The value from the request shall be considered reliable and accurate according to
the LMS. The conceptual communication state has not changed.

• SetValue(parameter_1, parameter_2): The value passed in as parameter_2
of the SetValue() was successfully set (stored as the value associated with the
data model element described by parameter_1) by the LMS. A request to
GetValue() for the data model element used in the SetValue(), parameter_1,
shall return the value that was stored by the LMS. The conceptual
communication state has not changed.

• Commit(“”): Any values that were set (using the SetValue() method call) since
Initialize(“”) or the last Commit(“”) method call, have been successfully
forwarded to the persistent data store. This method guarantees that the data will
be available during subsequent learner sessions within the same learner attempt
with the SCO. The conceptual communication state has not changed.

• GetLastError(), GetErrorString() and GetDiagnostic(): These API
methods do not affect or alter the error code for the API Instance.

• Terminate(“”): The API Instance has successfully performed the appropriate
LMS specific communication session termination procedures. The
communication session has ended. The conceptual communication state of the
API Instance is now “Terminated”.

3.1.7.2 General Error Codes
The General Error codes describe errors that are encountered during the processing of
API method requests. These errors are used based on several conditions:

• The current state of the conceptual communication state model
• The type of API request being processed by the API Instance

3.1.7.2.1 General Exception (101)

The General Exception error condition indicates that an exception occurred and no other
specific error code exists. The API Instance shall use the General Exception error code in
scenarios where a more specific error code is not defined.
SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-13

© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1.7.2.2 General Initialization Failure (102)

The General Initialization Failure error condition indicates that a failure occurred while
attempting to initialize the communication session. The General Initialization Failure
error code shall be used by an API Instance when the communication session
initialization process fails while the conceptual communication state is “Not
Initialized” and no other specific error code exists. The API Instance shall set the
error code to “102” and return “false” to the SCO. The conceptual communication state
shall remain unchanged (“Not Initialized”).

3.1.7.2.3 Already Initialized (103)

The Already Initialized error condition indicates that the SCO attempted to initialize the
communication session after the communication session has already been initialized
successfully. The Already Initialized error code shall be used by an API Instance when
the SCO attempts to initialize the communication session (Initialize(“”)) more than
once during that communication session. This error code shall be used when the
conceptual communication state is “Running” and the request is made to initialize the
communication session. In this scenario, the API Instance shall set the error code to
“103” and return a “false” to the SCO. The conceptual communication state shall
remain unchanged (“Running”).

3.1.7.2.4 Content Instance Terminated (104)

The Content Instance Terminated error condition indicates that the communication
session has already terminated. This error condition occurs when a SCO attempts to
invoke the Initialize(“”) method after a successful call to the Terminate(“”)
method has occurred. This error code shall be used when the conceptual communication
state is “Terminated” and the request to initialize the communication session occurs. In
this scenario, the API Instance shall set the error code to “104” and return a “false” to
the SCO. The conceptual communication state shall remain unchanged (“Terminated”).

3.1.7.2.5 General Termination Failure (111)

The General Termination Failure error condition indicates a failure occurred while
attempting to terminate the communication session. The General Termination Failure
error code shall be used by an API Instance when the communication session termination
process fails while the conceptual communication state is “Running” and no other error
information is available (i.e., a more specific communication session termination error
condition). The API Instance shall set the error code to “111” and return “false” to the
SCO. The conceptual communication state shall remain unchanged (“Running”).

3.1.7.2.6 Termination Before Initialization (112)

The Termination Before Initialization error condition indicates that the SCO attempted to
terminate the communication session before the communication session was ever
initialized (conceptual communication state is “Not Initialized”). The Termination
Before Initialization error code shall be used by an API Instance when the SCO tries to

RTE-3-14 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

invoke Terminate(“”) prior to a successful call to Initialize(“”). The API Instance
shall set the error code to “112” and return “false” to the SCO. The conceptual
communication state shall remain unchanged (“Not Initialized”).

3.1.7.2.7 Termination After Termination (113)

The Termination After Termination error condition indicates that the SCO attempted to
terminate the communication session after the communication session has already been
terminated successfully. The Termination After Termination error code shall be used by
an API Instance when the SCO has invoked the Termination(“”) method after a
previous Termination(“”) method has already been processed successfully. The API
Instance shall set the error code to “113” and return “false” to the SCO. The conceptual
communication state shall remain unchanged (“Terminated”).

3.1.7.2.8 Retrieve Data Before Initialization (122)

The Retrieve Data Before Initialization error condition indicates that the SCO attempted
to retrieve data prior to a successful communication session initialization. The Retrieve
Data Before Initialization error code shall be used by an API Instance when the SCO
attempts to invoke the GetValue() method prior to a successful call to the
Initialize(“”) method. The API Instance shall set the error code to “122” and return
an empty characterstring (“”). The conceptual communication state shall remain
unchanged (“Not Initialized”).

3.1.7.2.9 Retrieve Data After Termination (123)

The Retrieve Data After Termination error condition indicates that the SCO attempted to
retrieve data after the communication session has successfully terminated. The Retrieve
Data After Termination error code shall be used by an API Instance when the SCO
attempts to invoke the GetValue() method after a successful call to the Terminate(“”)
method. The API Instance shall set the error code to “123” and return an empty
characterstring (“”). The conceptual communication state shall remain unchanged
(“Terminated”).

3.1.7.2.10 Store Data Before Initialization (132)

The Store Data Before Initialization error condition indicates that the SCO attempted to
store data prior to a successful communication session initialization. The Store Data
Before Initialization error code shall be used by an API Instance when the SCO attempts
to invoke the SetValue() method prior to a successful call to the Initialize(“”)
method. The API Instance shall set the error code to “132” and return “false”. The
conceptual communication state shall remain unchanged (“Not Initialized”).

3.1.7.2.11 Store Data After Termination (133)

The Store Data After Termination error condition indicates that the SCO attempted to
store data after the communication session has successfully terminated. The Store Data
After Termination error code shall be used by an API Instance when the SCO attempts to

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-15
© 2004 Advanced Distributed Learning. All Rights Reserved.

invoke the SetValue() method after a successful call to the Terminate(“”) method.
The API Instance shall set the error code to “133” and return “false”. The conceptual
communication state shall remain unchanged (“Terminated”).

3.1.7.2.12 Commit Before Initialization (142)

The Commit Before Initialization error condition indicates that the SCO attempted to
commit data to persistent storage prior to a successful communication session
initialization. The Commit Before Initialization error code shall be used by an API
Instance when the SCO attempts to invoke the Commit(“”) method prior to a successful
call to the Initialize(“”) method. The API Instance shall set the error code to “142”
and return “false”. The conceptual communication state shall remain unchanged (“Not
Initialized”).

3.1.7.2.13 Commit After Termination (143)

The Commit After Termination error condition indicates that the SCO attempted to
commit data to persistent storage after the communication session has successfully
terminated. The Commit After Termination error code shall be used by an API Instance
when the SCO attempts to invoke the Commit(“”) method after a successful call to the
Terminate(“”) method. The API Instance shall set the error code to “143” and return
“false”. The conceptual communication state shall remain unchanged (“Terminated”).

3.1.7.3 Syntax Error Codes
The Syntax Error codes describe error conditions that are relevant to the syntax of the
API methods. At this time, the IEEE standard has defined one error code dealing with
syntax specific error conditions. The following section describes the defined error
condition and its usage scenarios.

3.1.7.3.1 General Argument Error (201)

The General Argument Error error condition indicates that an attempt was made to pass
an invalid argument to one of the API functions, and no other defined error condition can
be used to describe the error. Data Model errors should be used to specify a more
specific error condition , if one occurs. If no other error code can be used to describe the
error condition, the API Instance should use error code “201”. One scenario where this
error code shall be used occurs when parameters are passed to the following API calls:

• Initialize(“”)
• Terminate(“”)
• Commit(“”)

All three of these API calls have a restriction that an empty characterstring parameter is
passed to it. If a SCO passes any other argument to these function calls the API Instance
shall return “false” and set the error code to “201”. The conceptual communication
state shall remain unchanged.

RTE-3-16 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1.7.4 RTS Error Codes
The RTS Error codes describe error conditions that are relevant to an implementation of
an RTS. At this time, the IEEE standard has defined three error codes dealing with run-
time specific error conditions. The following sections describe these defined error
conditions and their usage scenarios.

3.1.7.4.1 General Get Failure (301)

The General Get Failure error condition indicates a general get failure has occurred and
no other information on the error is available (more specific error code). This error
condition acts as a catch all condition for processing a GetValue() request. The General
Get Failure error code shall be used by an API Instance when a retrieve data event (
GetValue()) error has occurred and the API Instance cannot determine a more specific
error condition to report (more specific error code). The API Instance shall set the error
code to “301” and return an empty characterstring (“”). This error condition can only
happen if the conceptual communication state is “Running”. If this error condition is
encountered, the conceptual communication state shall remain unchanged (“Running”).

3.1.7.4.2 General Set Failure (351)

The General Set Failure error condition indicates a general set failure has occurred and no
other information on the error is available (more specific error code). This error
condition acts as a catch-all condition for processing a SetValue() request. The General
Set Failure error code shall be used by an API Instance when a store data event (
SetValue()) error has occurred and the API Instance cannot determine a more specific
error condition to report (more specific error code). The API Instance shall set the error
code to “351” and return “false”. This error condition can only happen if the conceptual
communication state is “Running”. If this error condition is encountered, the conceptual
communication state shall remain unchanged (“Running”).

3.1.7.4.3 General Commit Failure (391)

The General Commit Failure error condition indicates a general commit failure has
occurred and no other information on the error is available (more specific error code).
This error condition acts as a catch all condition. The General Commit Failure error code
shall be used by an API Instance when a commit data event (Commit(“”)) error has
occurred and the API Instance cannot determine a more specific error condition to report
(more specific error code). The API Instance shall set the error code to “391” and return
“false”. This error condition can only happen if the conceptual communication state is
“Running”. If this error condition is encountered, the conceptual communication state
shall remain unchanged (“Running”).

3.1.7.5 Data Model Error Codes
One of the features of the API is to allow content to communicate data to and retrieve
data from an LMS. During the processing of such events, certain error conditions may be
encountered. The IEEE standard has defined several error conditions that describe

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-17
© 2004 Advanced Distributed Learning. All Rights Reserved.

general-purpose data model errors. The following sections describe these defined error
conditions and their usage scenarios.

3.1.7.5.1 Undefined Data Model Element (401)

The Undefined Data Model Element error condition indicates that:

• The data model element passed as the parameter in the
GetValue(parameter) is undefined and not recognized by the API Instance.
This condition indicates that an attempt was made to use a data model element
that is not recognized by the API Instance.

• The data model element passed as parameter_1 in the SetValue(parameter_1,
parameter_2) is undefined and not recognized by the API Instance. This
condition indicates that an attempt was made to use a data model element that is
not recognized by the API Instance.

An unrecognized or undefined data model element is any element that is not formally
defined by the SCORM Run-Time Environment Data Model or an implementation-
defined extension element that is not recognized by the API Instance. The Undefined
Data Model Element error code shall be used by an API Instance when one of the two
scenarios described above is encountered. The API Instance shall:

• For a GetValue() request: set the error code to “401” and return an empty
characterstring(“”). This error condition can only happen if the conceptual
communication state is “Running”. If this error condition is encountered, the
conceptual communication state shall remain unchanged (“Running”).

• For a SetValue() request: set the error code to “401” and return “false”. This
error condition can only happen if the conceptual communication state is
“Running”. If this error condition is encountered, the conceptual communication
state shall remain unchanged (“Running”).

3.1.7.5.2 Unimplemented Data Model Element (402)

The Unimplemented Data Model Element error condition indicates that:

• The data model element passed as parameter in the GetValue(parameter) is
recognized by the API Instance but is not implemented.

• The data model element passed as parameter_1 in the SetValue(parameter_1,
parameter_2) is recognized by the API Instance but is not implemented.

All of the SCORM Run-Time Environment Data Model elements are required to be
implemented by an LMS. This error condition shall not occur when accessing SCORM
Run-Time Environment Data Model elements, but may occur when accessing extension
data model elements.

RTE-3-18 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1.7.5.3 Data Model Element Value Not Initialized (403)

The Data Model Element Value Not Initialized error condition indicates that a SCO
attempted to retrieve a data model value that has never been initialized. A data model
element may be initialized in several manners:

• By the LMS: Some data model elements are initialized by values defined in a
Content Package. Some data model elements may be initialized by some learner
registration process or learner profiling requirements defined by the LMS.

• By the SCO: Some data model elements are initialized by the SCO.

The Data Model Element Value Not Initialized error code shall be used by an API
Instance when the SCO attempts to invoke the GetValue() on an element that has no
initial value. The API Instance shall set the error code to “403” and return an empty
characterstring (“”). The empty characterstring (“”) value may be a valid value for a data
model element request. Therefore, the value returned may not be reliable and the SCO
should check the error code to determine whether the value is reliable. If the error code
was set to “0” – No Error, then this indicates that the empty characterstring was the
current value, stored by the LMS, for the data model element requested. This error
condition can only happen if the conceptual communication state is “Running”. If this
error condition is encountered, the conceptual communication state shall remain
unchanged (“Running”).

3.1.7.5.4 Data Model Element Is Read Only (404)

The Data Model Element Is Read Only error condition indicates that a SCO attempted to
store a data model value for an element that is implemented as read-only. This error
condition may be encountered with the use of the SCORM Run-Time Environment Data
Model, SCORM Navigation Data Model or any other data model used in a SCORM
environment (extension data model). The Data Model Element Is Read Only error code
shall be used by an API Instance when the SCO attempts to invoke the SetValue() on a
read only data model element. The API Instance shall set the error code to “404” and
return “false”. This error condition can only happen if the conceptual communication
state is “Running”. If this error condition is encountered, the conceptual communication
state shall remain unchanged (“Running”).

3.1.7.5.5 Data Model Element Is Write Only (405)

The Data Model Element Is Write Only error condition indicates that a SCO attempted to
retrieve a data model value for an element that is implemented as write-only. This error
condition may be encountered with the use of the SCORM Run-Time Environment Data
Model, SCORM Navigation Data Model or any other data model used in a SCORM
environment (extension data model). The Data Model Element Is Write Only error code
shall be used by an API Instance when the SCO attempts to invoke the GetValue() on a
write only data model element. The API Instance shall set the error code to “405” and
return an empty characterstring (“”). This error condition can only happen if the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-19
© 2004 Advanced Distributed Learning. All Rights Reserved.

conceptual communication state is “Running”. If this error condition is encountered, the
conceptual communication state shall remain unchanged (“Running”).

3.1.7.5.6 Data Model Element Type Mismatch (406)

The Data Model Element Type Mismatch error condition indicates that a SCO attempted
to store a data model value for a data model element and the value was not of the correct
data type. This error condition may be encountered with the use of the SCORM Run-
Time Environment Data Model, SCORM Navigation Data Model or any other data
model used in a SCORM environment (extension data model). The Data Model Element
Type Mismatch error code shall be used by an API Instance if the value passed as
parameter_2 in a SetValue() does not evaluate to a valid type or defined format for the
data model element indicated in parameter_1 of a SetValue(). The API Instance shall
set the error code to “406” and return “false”. This error condition can only happen if
the conceptual communication state is “Running”. If this error condition is encountered,
the conceptual communication state shall remain unchanged (“Running”).

3.1.7.5.7 Data Model Element Value Out Of Range (407)

The Data Model Element Value Out Of Range error condition indicates that a SCO
attempted to store a data model value for an element, however the value was not in the
specified range of values for the element. This error condition may be encountered with
the use of the SCORM Run-Time Environment Data Model, SCORM Navigation Data
Model or any other data model used in a SCORM environment (extension data model).
The Data Model Element Value Out Of Range error code shall be used by an API
Instance if the value passed as parameter_2 in a SetValue() is out of range for the data
model element indicated in parameter_1 of a SetValue(). The API Instance shall set
the error code to “407” and return “false”. This error condition can only happen if the
conceptual communication state is “Running”. If this error condition is encountered, the
conceptual communication state shall remain unchanged (“Running”).

3.1.7.5.8 Data Model Dependency Not Established (408)

The Data Model Dependency Not Established error condition shall be used when relevant
dependencies are not in place. A dependency represents one or more key values in a data
model that shall have been set prior to other data model elements. The dependencies data
model elements for the SCORM Run-Time Environment Data Model are described in
Section 4: SCORM Run-Time Environment Data Model.

This error condition is described by the IEEE standard as being used for situations that
may arise during a GetValue() or SetValue() request, however, SCORM does not
define any situations for use of this error code during the processing of GetValue()
requests. For SetValue() requests, some data model elements have requirements that
certain other data model elements be set prior to other data model elements. By setting
elements in a specific order, this maintains the integrity of a dependency being met. If
one of these dependency requirements have not been established the LMS shall set the
API Instance error code to “408” and return “false”. This error condition can only

RTE-3-20 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

happen if the conceptual communication state is “Running”. If this error condition is
encountered, the conceptual communication state shall remain unchanged (“Running”).

3.1.7.6 SCORM Extension Error Conditions
Due to the nature of the SCORM Run-Time Environment Data Model elements and the
binding of the data model elements (dot-notation), SCORM defines extension error
conditions to cover error scenarios that may occur within a SCORM environment. There
is no mechanism, defined by the IEEE standard, to permit extension error codes to be set
by an API Instance. In the following sections, SCORM defines a set of error conditions.
If these error conditions are encountered, API Instance shall behave as follows:

• Set the error code to “301” (for GetValue() failures) or “351” (for SetValue()
failures), and return “false”.

• If requested by a SCO to return more information about the error encountered (
GetDiagnostic()), it is recommended that the LMS return information
detailing the error conditions that follow.

3.1.7.6.1 Data Model Element Does Not Have Children

The Data Model Element Does Not Have Children error condition indicates that a SCO
attempted to retrieve a list of supported data model elements (children) for a data model
element that does not have children (refer to the SCORM Run-Time Environment Data
Model for information regarding the data model elements). The Data Model Element
Does Not Have Children error condition should be used by an API Instance if the value
passed as parameter in GetValue() is a request for a listing of child elements for a data
model element that does not have any children (refer to the SCORM Run-Time
Environment Data Model for more information on processing of children requests). The
API Instance shall set the error code to “301” and return an empty characterstring (“”).
This error condition can only happen if the conceptual communication state is
“Running”. If this error condition is encountered, the conceptual communication state
shall remain unchanged (“Running”).

Example: GetValue(“cmi.learner_name._children”);

For this example the API Instance shall set the error code to “301” and return an empty
characterstring (“”). The learner_name element is considered a child element and does
not have any children. If the SCO requests further information about the error (by
invoking GetDiagnostic()), it is recommended that the LMS return a characterstring
indicating that the data model element does not have children, such as, “The data model
element does not have children”.

3.1.7.6.2 Data Model Element Cannot Have Count

The Data Model Element Cannot Have Count error condition indicates that a SCO
attempted to retrieve the number of entries (count) currently stored in a data model
element that is not an array (refer to the SCORM Run-Time Environment Data Model for

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-21
© 2004 Advanced Distributed Learning. All Rights Reserved.

data model elements that are arrays and array handling). The Data Model Element
Cannot Have Count error condition shall be used by an API Instance if the value passed
as parameter in a GetValue() is a request for the number of entries (count) currently
stored in a data model element that is not an array. The API Instance should set the error
code to “301” and return an empty characterstring (“”). This error condition can only
happen if the conceptual communication state is “Running”. If this error condition is
encountered, the conceptual communication state shall remain unchanged (“Running”).

Example: GetValue(“cmi.learner_name._count”);

For this example the API Instance shall set the error code to “301” and return an empty
characterstring (“”). The learner_name element is not a collection and therefore does
not have a count. If the SCO requests further information about the error (by invoking
GetDiagnostic()), it is recommended that the LMS return a characterstring indicating
that the data model element is not an array and does not have a count, such as, “The data
model element is not a collection and therefore does not have a count”.

3.1.7.6.3 Data Model Element Collection Set Out Of Order

The Data Model Element Collection Set Out Of Order error condition indicates that a
SCO attempted to set a value in an array where the index number used (n) is not the next
available position in the array. All collections (Refer to Section 4.1.1.3: Handling
Collections) are required to be packed arrays (no skipped positions). When a new value
is added to the array it must be in the next available position. The SCO can determine
this position by using the _count keyword data model element (Refer to Section 4.1.1.5:
Keyword Data Model Elements).

The Data Model Element Collection Set Out Of Order error condition should be used by
an API Instance if the value for the index position (n) passed as parameter_1 in a
SetValue(), for a new entry in the array, is not the next available position in the array.
The API Instance shall set the error code to “351” and return “false”. This error
condition can only happen if the conceptual communication state is “Running”. If this
error condition is encountered, the conceptual communication state shall remain
unchanged (“Running”).

Example:

• SetValue(“cmi.objectives.0.id”,”identifier_1”);
• SetValue(“cmi.objectives.2.id”,”identifier_2”);

For this example the API Instance shall set the error code to “351” and return “false”.
The second request is attempting to set the objective identifier in position 2, prior to
position 1, in the array. If the SCO requests further information about the error (by
invoking GetDiagnostic()), it is recommended that the LMS return a characterstring
indicating that the data model element collection was set out of order, such as, “The data
model element collection was attempted to be set out of order”.

RTE-3-22 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1.7.6.4 Data Model Collection Element Request Out Of Range

The Data Model Collection Element Request Out Of Range error condition indicates that
a SCO attempted to retrieve a data model element found in a collection and the index
value provided is larger than what is currently being maintained by the LMS. All
collections (Refer to Section 4.1.1.3: Handling Collections) are required to be packed
arrays (no skipped positions). The SCO can determine the current number of data model
element values being stored by using the _count keyword data model element (Refer to
Section 4.1.1.5: Keyword Data Model Elements).

If the current data model collection only contains four values, this implies that the index
positions that are accessible by the SCO are 0, 1, 2, and 3. If the SCO attempts to
retrieve a value from a position with an index (n) greater than 3, the API Instance shall
set the error code to “301” and return an empty characterstring “”. This error condition
can only happen if the conceptual communication state is “Running”. If this error
condition is encountered, the conceptual communication state shall remain unchanged
(“Running”).

If the SCO requests further information about the error (by invoking GetDiagnostic()
), it is recommended that the LMS return a characterstring indicating that the data model
collection element does not exist due to an index out of range, such as, “The data model
element request failed to be processed due to an index out of range error”.

3.1.7.6.5 Data Model Element Not Specified

The Data Model Element Not Specified error condition indicates that a SCO attempted to
make a GetValue() or SetValue() API method call without providing any indication of
the data model element to retrieve or store. Both of the API method calls require the
presence of a data model element:

• GetValue(parameter_1)
• SetValue(parameter_1, parameter_2)

The Data Model Element Not Specified error condition should be used by an API
Instance if the value passed as parameter_1 in a GetValue() request or parameter_1 in
a SetValue() request is not specified (i.e., empty characterstring – “”).

• GetValue(“”): The API Instance should set the error code to “301” – General
Get Failure and return an empty characterstring (“”)

• SetValue(“”,”3.4”): The API Instance should set the error code to “351” –
General Set Failure and return “false”

This error condition can only happen if the conceptual communication state is
“Running”. If this error condition is encountered, the conceptual communication state
shall remain unchanged (“Running”). If the SCO requests further information about the
error (by invoking GetDiagnostic()), it is recommended that the LMS return a
characterstring indicating that the data model element was not specified, such as, “The
data model element was not specified”.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-23
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.1.7.6.6 Unique Identifier Constraint Violated

The Unique Identifier Constraint Violated error condition should be used by an API
Instance if the value passed as parameter_2 in a SetValue() request is to be used to set
an identifier for which the identifier is required to be unique. The API Instance should
set the error code to “351” and return an empty characterstring (“”). This error condition
can only happen if the conceptual communication state is “Running”. If this error
condition is encountered, the conceptual communication state shall remain unchanged
(“Running”).

Example:

• API Call 1: SetValue(“cmi.objectives.0.id”,”objective1)
• API Call 2: SetValue(“cmi.objectives.1.id”,”objective2”)
• API Call 3: SetValue(“cmi.objectives.2.id”,”objective1”)

In the example above, the identifier for the objective data stored in position 2 of the array
is trying to set the identifier of the objective to objective1. This identifier was used for
the objective data stored at position 0 of the array. Since the cmi.objectives.n.id, is
required to be a unique identifier, this would cause a General Set Failure error. The LMS
shall not set the requested element, return “false” and set the error code to “351”. If the
SCO requests further information about the error (by invoking GetDiagnostic()), it is
recommended that the LMS return a characterstring indicating that there was a unique
identifier constraint violated, such as, “The data model element’s value is already in use
and is not unique”.

3.1.8. API General Application Rules

The following general API application rules shall be followed in order to achieve
interoperability:

• The function names are all case-sensitive, and must always be expressed exactly
as shown and described in this document.

• The function parameters or arguments are case-sensitive. All SCORM supported
data model (SCORM Run-Time Environment Data Model and SCORM
Navigation Data Model) parameters shall be represented in lower case.

• Each call to an API function, other than the Support methods, sets the error code.

• All parameters passed between a SCO and the API Instance are treated as
ECMAScript strings and shall be compatible with the data types and formats
described by the data models that use the API for communication.

RTE-3-24 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.2. LMS Responsibilities

SCORM requires the LMS to provide an instance of the API as defined by the IEEE
standard and SCORM. The API Instance shields the SCO from the particular
implementation details. SCORM does not place any restrictions on the underlying
communication infrastructure of the API Instance. The following sections describe those
additional requirements, not described thus far, of an API Instance for an LMS
implementation.

3.2.1. API Instance

SCORM requires that an LMS supply an API Instance that implements the required API
functionality described earlier. In order for a SCO to utilize the API Instance developed
by an LMS, the LMS has certain requirements on where and how to provide access to the
API Instance. To provide for an interoperable means to locate the API Instance, the
LMS’s API Instance must be accessible via the DOM [8] as an object named
“API_1484_11”. The LMS must provide the ability for the SCO to access the API
Instance via ECMAScript.

In order for SCOs to find the LMS-provided API Instance, the LMS is responsible for
launching SCOs in a particular DOM hierarchy. The LMS shall launch the SCO in a
browser window that is a child window or a child frame of the LMS window that
contains the API Instance.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-25
© 2004 Advanced Distributed Learning. All Rights Reserved.

Opener

Parent 4

API_1484_11

SCO

Parent 1

Parent 2

Parent 3

API_1484_11

SCO

Parent 1

Parent 2

Parent 3

Opener
SCO

API_1484_11

Chain of Parents
Opener

Chain of Parents of
the Opener

Figure 3.2.1a: Permitted location of API Implementation

There are ongoing research and development efforts investigating alternative methods
(e.g., as a Web Service) for LMS vendors to provide SCOs access to the API Instance.
However, SCORM only supports the method described above, the DOM and
ECMAScript are reliable technologies that have been around for some time and are
simple to use. Future versions of SCORM may introduce other communication protocols
that support the fundamental requirements defined by the IEEE standard.

RTE-3-26 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

3.3. SCO Responsibilities

All SCOs have certain responsibilities when communicating across the API. SCOs must
be able to consistently find the API Instance. This is one of the primary reasons why
there are restrictions on where, in the DOM hierarchy, the LMS provides the API
Instance and why there is a common name of the API Instance to locate. If the API
Instance were allowed to exist anywhere in the DOM hierarchy, this would make it
extremely difficult to provide a consistent communication mechanism and management
of the run-time environment.

3.3.1. Finding the API Instance

In order for a SCO to begin tracking a learner’s experience with an LMS, the SCO must
be able to find the LMS provided API Instance. Since the content objects, in the SCORM
environment, are launched in Web browsers, the Web browsers provide a DOM in which
to place an API Instance. The DOM can be considered a defined structure or
organization of the objects in a page. In order for SCOs to find the API Instance from
one LMS to another, the IEEE standard has placed restrictions on where the API Instance
can be placed in this hierarchy. The important fact is that the SCO must look in the
following locations, in the order specified, for the API Instance:

1. The chain of parents of the current window, if any exist, until the top of the
window of the parent chain is reached

2. The opener window, if any
3. The chain of parents of the opener window, if any exist, until the top window of

the parent chain is reached

The SCO must search for the API Instance in this manner and stop as soon as an API
instance is found. For the SCO to know what it is looking for, the IEEE standard has also
defined a mandatory name for the object in the DOM that is associated with the API
Implementation. The name defined for the API Implementation is API_1484_11.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-27
© 2004 Advanced Distributed Learning. All Rights Reserved.

SCO

Parent 1

Parent 2

Parent NChain of Parents

Parent 1

Parent 2

Parent N

SCO

Chain of Parents of
the Opener

Figure 3.3.1a: Illustration of finding the API

Once a SCO finds an API Instance, the SCO is required to, at a minimum, issue
Initialize(“”) and Terminate(“”) API calls.

The IEEE standard has provided a simple piece of ECMAScript that will find the API
Instance in a consistent manner. It is not a requirement to use this ECMAScript code.
Other variations can be written.

var nFindAPITries = 0;
var API = null;
var maxTries = 500;
var APIVersion = "";

function ScanForAPI(win)
{
 while ((win.API_1484_11 == null) && (win.parent != null)
 && (win.parent != win))
 {
 nFindAPITries++;
 if (nFindAPITries > maxTries)
 {
 alert("Error in finding API instance -- too deeply nested.");
 return null;
 }
 win = win.parent;

RTE-3-28 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

 }
 return win.API_1484_11;
}

function GetAPI()
{
 if ((win.parent != null) && (win.parent != win))
 {
 API = ScanForAPI(win.parent);
 }
 if ((API == null) && (win.opener != null))
 {
 API = ScanForAPI(win.opener);
 if (API != null)
 {
 APIVersion = API.version;
 }
 }
}

Figure 3.3.1b: Example ECMAScript for finding the API Implementation (from IEEE standard)

3.3.2. API Usage Requirements and Guidelines

This section outlines several additional requirements and guidelines for using the API to
communicate information to an LMS.

3.3.2.1 Unexpected events
SCOs are built in a variety of different ways. When developing a SCO, content authors
need to be aware of the design of the SCO, how the SCO is intended to be delivered in an
LMS, and the different ways a learner may interact with the SCO.

For example, some SCOs are built as a collection of pages, which allow internal SCO
navigation from one page to another. In this design, some content authors may
implement the SCO to invoke the Initialize(“”) call on the first page and
Terminate(“”) only on the last page. What happens if there was an unexpected
behavior that was encountered during the learning experience? The unexpected event
may fall into several categories:

• Accidental exit
• Deliberate user action
• Catastrophic termination (e.g., lost connection, browser crash)

Some LMSs handle these different scenarios by simulating the effect of Terminate(“”)
function if it detects that a SCO that successfully called Initialize(“”) became
unexpectedly inaccessible before invoking the Terminate() function. This is done
because there is no way to detect (or decide) the cause of the problem - was it an
accident, a deliberate user action, or just a poorly built SCO? Of course, if there is a
catastrophic event (lost connection, complete browser crash, etc.) then only the data that

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-3-29
© 2004 Advanced Distributed Learning. All Rights Reserved.

had been copied from a client side cache (if one is being used) through a Commit(“”)
function survives in the server side database.

One of the main reasons why Commit(“”) is in the API is to minimize time-consuming
communication delays between the client side of a runtime service and the server side
that would occur if every data element value update was transmitted across the network
in real time. Implementations of the API are free to provide a client side cache that only
transmits and persists data state when the Commit(“”) function is invoked.

A SCO has no way to detect if the API Instance it is communicating through is providing
a client side cache or sending all data updates to the server. To help minimize unexpected
behaviors and problems that may be encountered, SCO developers should adhere to the
following recommendations:

• Invoke Commit(“”) whenever something significant happens that that must be
recorded, regardless of what might happen later.

• Do NOT call Commit(“”) after every SetValue() call -- that defeats the
performance enhancement and can lead to serious problems with some LMS
implementations. DO call Commit(“”) only after a "batch" of SetValue() calls.

• There is typically no benefit in calling Commit(“”) immediately prior to calling
Terminate(“”). It does no harm since there would be nothing new to commit
during the Terminate(“”) function call.

• Call Terminate(“”) prior to the SCO being taken away from the learner (i.e.,
unloaded from the browser). The SCO should keep track of whether it has
successfully invoked Terminate(“”), so the SCO can be built not to invoke
Terminate(“”)again. A properly built LMS will be able to handle the call. It
should ignore the second call and set the error status accordingly. If the client
browser is Microsoft Internet Explorer, call Terminate(“”) in an
onbeforeunload handler rather than in an onunload handler, because there is a
much better chance that all the resulting work involved with unloading the SCO
will actually happen in an orderly manner. Other browsers do not raise an event
called onbeforeunload and therefore rely on the onunload event. It may be
wise to provide a mechanism to terminate the communication session somewhere
other than the onunload event.

• Use SetValue() and Commit(“”) on an ongoing basis during the communication
session rather than trying to save a large amount of data immediately prior to
Terminate(“”). Do this because there is anecdotal evidence that some browsers
or browser versions actually start loading the next page even while onunload is
executing, and do not finish executing some operations triggered by onunload
especially if the operations involve posting across a network. This could make for
a difficult situation on the back end, and in some implementations, some data may
not be committed properly or completely. If the data has been saved and
committed before unload occurs, then this data is most likely safe.

RTE-3-30 SCORM ® Run-Time Environment (RTE) Version 1.3

© 2004 Advanced Distributed Learning. All Rights Reserved.

SECTION 4
 SCORM Run-Time Environment Data

Model

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-4-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.1. Data Model Overview

The purpose of establishing a common data model is to ensure that a defined set of
information about SCOs can be tracked by different LMS environments. If, for example,
it is determined that tracking a learner’s score is a general requirement, then it is
necessary to establish a common way for content to report scores to LMS environments.
If SCOs use a unique scoring representation, LMSs may not know how to receive, store
or process the information.

Figure 4.1.1a: Using the data model with the API

The SCORM Run-Time Environment Data Model is based on the P1484.11.1 Draft
Standard for Learning Technology - Data Model for Content Object Communication [1]
standard produced by the IEEE LTSC Computer Managed Instruction (CMI).
P1484.11.1 is a standard that defines a set of data model elements that can be used to
communicate information from a content object (i.e., SCO in SCORM) to an LMS. This
set of data includes, but is not limited to, information about the learner, interactions that
the learner had with the SCO, objective information, success status and completion
status. This information may be vital for many purposes. This data can be used to track
the learner’s progress and status, aid in sequencing decisions and report on the overall
learner interaction with the SCO.

The data model in this section is defined as the SCORM Run-Time Environment Data
Model. Prior to SCORM 2004, the SCORM Run-Time Environment Data Model was
based on the AICC CMI001 Guideline for Interoperability [7]. Since the release of
SCORM Version 1.2, AICC has submitted CMI001 to the IEEE for standardization. This
version of SCORM introduces the changes to the data model as defined by the IEEE
P1484.11.1 Draft Standard for Learning Technology Data Model for Content Object

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Communication [1]. Since the IEEE draft standard purely defines data model elements
and their data types, SCORM needs to apply more requirements pertaining to the use,
behavior and relationship with the API Instance. The SCORM Run-Time Environment
Data Model defines a particular binding (dot-notation), implementation guidance and
behavioral requirements of the IEEE P1484.11.1 draft standard.

4.1.1. SCORM Run-Time Environment Data Model Basics

4.1.1.1 Data Model Elements
To identify the data model, all of the names of the data model elements described in the
SCORM Run-Time Environment Data Model start with “cmi”. This signals to LMSs
that these data model elements are part of the IEEE P1484.11.1 Data Model for Content
Object Communication draft standard[1]. It is envisioned that as alternative data models
are developed they will start with a different designation (e.g., adl.elementName instead
of cmi.elementName) or may have a different binding other than the dot-notation.

All data model elements described by SCORM are required to be implemented and their
behaviors supported by an LMS.

All data model elements are optional for use by SCOs. SCOs are required only to use the
API functions Initialize(“”) and Terminate(“”); they are not required to use
SetValue() or GetValue(). SCOs may be very, very small and not designed to be
tracked in detail. However, if they are to be tracked, they must conform to a common
data model for reusability across multiple LMS environments.

All data model element names are bound to an ECMAScript characterstring using a dot-
notation (e.g., cmi.success_status). During SetValue() method calls, all values to be
used for setting the data model element are bound as ECMAScript characterstrings. The
ECMAScript standard [9] supports and is in conformance with the Unicode Standard [13]
(Version 2.1 or later). SCOs and LMSs need to be aware that since these characterstrings
are Unicode encoded they may include Unicode escape sequences. When dealing with
any data that may be rendered in the browser, SCOs must be aware of the level of support
for the Unicode in the different browsers and versions of browsers.

4.1.1.2 Data Model Effects on Sequencing
SCORM Sequencing (refer to the SCORM SN book) describes how a series of content
objects are identified for delivery based on defined sequencing information, sequencing
behaviors and results of learner interaction with launched content objects. Assets have a
limited affect on sequencing. An LMS only tracks the fact that an Asset is launched.
Once the Asset has been launched, the Asset shall be considered “completed.” SCOs can
affect sequencing by reporting the results of a learner’s interactions during a learner
session with that SCO; this is done through the SCO’s Run-time Environment Data
Model. An LMS is required to utilize information reported by the SCO, through the
SCORM Run-time Environment Data Model, to affect the sequencing of subsequent

RTE-4-4 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

learning activities. SCORM does not mandate a specific method or timing for how and
when a SCO's run-time data is used for sequencing. SCORM prescribes only that the
most recent information is used when a sequencing evaluation requires it. Specific LMS
requirements for this data mapping are provided in the following tables, broken down by
each data model element (for more information refer to the Sequencing Impacts section
of relevant tables)

For example, if the SCO reports the learner’s completion of the SCO through
cmi.completion_status, the activity identified with that SCO will be assumed to also
be completed.

4.1.1.3 Handling Collections
Some data model elements collect sets of data related to their respective requirements.
The collection of data is referred to as a record of data throughout this document. Each
record of data shall be collected as a single entity in the array. The record of data is
accessed by an index value representing the record of data’s position in the array. All
arrays shall be implemented with a starting index of 0 (zero-based arrays).

The following data model elements are defined as collections of records of data:

• Comments from learner (cmi.comments_from_learner)
• Comments from LMS (cmi.comments_from_lms)
• Objectives (cmi.objectives)
• Interactions (cmi.interactions)

These data model elements exist with the intention that SCOs may track multiple
comments, objectives and/or interactions.

There are two distinct error conditions that can occur when invoking a GetValue()
request:

1. General Get Failure: Data Model Collection Element Request Out Of Range.
The record of data does not exist at the array position (i.e., index) requested. For
example, if data exists for objectives in array positions 0,1 and 2 and the SCO
invokes a GetValue() request for objective information at position 4, the LMS
shall set the error code to “301” – General Get Failure and return an empty
characterstring. It is recommended that the LMS provide to the SCO, if requested
by a GetDiagnostic() request, more specific information about the error
encountered (refer to Section 3.1.7.6.4: Data Model Collection Element Request
Out Of Range)

2. Data Model Element Value Not Initialized. The record of data exists at the array
position, however the data requested has not been initialized with a value yet. For
example, if the SCO makes a request to get an objective’s scaled score
(cmi.objectives.0.score.scaled), however the scaled score was never
initialized with data. In this case, the objective’s record of data exists (i.e., the at
least the cmi.objectives.0.id has been set) at position 0, however the scaled score

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-5
© 2004 Advanced Distributed Learning. All Rights Reserved.

was never initialized. The LMS shall set the error code to “403” – Data Model
Element Value Not Initialized and return an empty characterstring.

Because of the current dot-notation binding of the SCORM Run-Time Environment Data
Model, these data model elements contain an integer value representing the index (or
position) in the array. The index is just that, an index. Indexes should not be considered
unique for any given SCO, meaning that there is no guarantee from LMS to LMS (or
learner session to learner session) that the same objective is stored at the same index.
SCO developers should keep this in mind when using these data model elements.

The Objectives and Interactions data model elements contain an identifier data model
element that indicates a unique identifier for each of the SCO’s Objectives and
Interactions. This value should be used when searching for the index of a specific set of
objective or interaction data. To retrieve values for a specific Objective or Interaction, it
is recommended that the list of all of the SCO’s Objectives or Interactions be searched
for a given identifier to determine its index rather than relying on a specific (hard-coded)
index position. The index position is not guaranteed to be the same from learner session
to learner session. All new collection elements shall be added sequentially. Indexes used
to access collection elements shall not have insignificant starting zeros – “15” not
“0015”. When a value is to be added to a collection, the SCO must determine the last
index position used for that collection. The SCO and LMS shall not skip index positions
(packed arrays) when constructing or appending to a collection element. The _count
keyword data model element can be used to determine the current number of data model
elements in the collection. For instance, to determine the number of objectives currently
stored for the SCO, the following API call would be used:

var numOfObjectives = GetValue("cmi.objectives._count");

All collection data model elements, besides cmi.comments_from_lms (this data model
element is read-only from a SCO perspective), can have their sub-elements overwritten
by the SCO. Overwriting or appending is a decision that is made by the SCO developer
during the creation of the SCO.

Data model elements in a collection are referred to using a dot-number notation
(represented by .n).

cmi.objective.n.completion_status

For instance, the value of the completion status data model element in the first objective
in a SCO would be referred to as "cmi.objective.0.completion_status", and the
completion status data model element in the fourth objective would be referred to as
"cmi.objective.3.completion_status".

4.1.1.4 Smallest Permitted Maximum
There are two cases when describing data model element requirements where there are
smallest permitted maximums (SPMs) defined. The two cases are for characterstring
lengths and the number of data model elements contained in collections (arrays, bags,
etc.). The SPM is defined as the minimum number of entries (in a collection) or

RTE-4-6 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

characters (length of character strings) that an implementation must accept or process.
Implementations are free to accept and process more than the SPM, however they must
support at least the SPM. For example,

• Characterstrings: If a characterstring is defined with an SPM of 100, then an
implementation must accept and support at least 100 characters. Implementations
may support more than the defined SPM. SCORM is silent on handling of
characterstrings that contain more than the SPM number of characters (e.g., an
implementation is free to truncate the characterstring). Implementations should
be aware of the consequences if the characterstring contains more than the defined
SPM.

• Collections: If a collection (e.g., array, set, bag) is defined with an SPM of 100,
then an implementation must accept and support at least 100 entries in that
collection. Implementations may support more than the defined SPM. SCORM
is silent on handling of collections that contain more than the SPM number of
entries (e.g., an implementation is free to not accept new entries).
Implementations should be aware of the consequences if the number of entries
exceeds the defined SPM.

The SPMs defined represent implementation storage requirements. As mentioned above,
an implementation has to support the storage of at least the SPM. An implementation
may elect to support the storage of more than the SPM. If an implementation only
supports the SPM and performs a truncation of the characterstring, then ADL
recommends that the implementation make information available through the
GetDiagnostic() method call indicating that truncation of a characterstring has occurred.

For example, if an implementation truncates a characterstring (because it only supports
the SPM), then if the SCO calls GetDiagnostic() the implementation could return a
characterstring that states: “The SetValue() call was successful. The value was greater
than the SPM and was truncated”.

All validation of characterstrings and collections should be done prior to the actual
storage of the value. If an implementation elects to truncate the characterstring at the
SPM, the validation process will enforce the validation of the characterstring prior to this
truncation. The SPM for the characterstrings are in place for content developers to
utilize. Content developers need to be aware of the SPM and what may happen if an
SPM is exceeded. It is recommended that content developers keep within the SPM
constraints for maximum interoperability.

4.1.1.5 Keyword Data Model Elements
SCORM defines a set of keyword data model elements in the binding of the IEEE
Content Object Communication Data Model. The three keyword data model elements
are: _version, _count and _children. The keyword data model elements are managed
by the LMS and are derived from the state of the other data model elements. These
keywords allow SCOs to find out descriptive information about the data model elements.
The keyword data model elements shall be implemented as read-only. If a SCO attempts

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-7
© 2004 Advanced Distributed Learning. All Rights Reserved.

to set (i.e., SetValue() API request) a keyword data model element, then the LMS shall
set the error code to “404” Data Model Element Is Read Only and return “false”. The
_count and _children data model elements can only be applied to certain data model
elements. The application of the keyword data model elements is defined in Section 4.2:
SCORM Run-Time Environment Data Model. If a SCO attempts to get a keyword data
model element on a data model element that is not defined in Section 4.2 then the LMS
shall return an empty characterstring and set the error code to “401” – Undefined Data
Model Element.

_version: The _version keyword data model element is used to determine the version
of the data model supported by the LMS. This keyword data model element cannot be
applied to any data model element (refer to Section 4.2.1: Data Model Version for
implementation details).

_count: The _count keyword data model element is used to determine the number of
data model elements currently in a collection. The count is the total number of data
model elements in the collection. This value can be requested by the SCO to determine
the next index position that is free to be used for storing information. This keyword data
model element can only be applied to a data model element that is a collection.

_children: The _children keyword data model element is used to determine all of the
data model elements in a parent data model element that are supported by the LMS. The
characterstring returned from a valid _children request should be a comma separated
listing of all of the data model elements supported by the LMS. The listing of data model
elements returned shall match the data model elements found in Section 4.2 (i.e., case-
sensitive naming of data model elements apply). The data model element names shall be
considered reserved tokens and if white space is provided in the characterstring (i.e., used
in separating the reserved tokens), then the white space shall be ignored. The order of the
data model elements returned in the characterstring shall not matter. This keyword data
model element can only be applied to a data model element that has children.

4.1.1.6 Reserved Delimiters
Due to the nature of the dot-notation binding, some of the data model elements need to
convey more information than what can easily be represented as a characterstring. In
these cases, a special reserved delimiter has been created to meet the requirements of the
dot-notation binding. These special delimiters appear in either the characterstring used in
a SetValue() request or in the characterstring returned from a GetValue() request. The
cases where a special reserved delimiter may be needed are:

• Representing the language type for a particular characterstring (Data Type:
localized_string_type)

• Representing the indication of whether or not order matters in a learner response
to an interaction

• Representing the indication of whether or not case matters in a learner response to
an interaction

• Representing a set of values in a list or a pair of values

RTE-4-8 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

For each of the cases described above, a default value is provided, if applicable. This
default value shall be used if the special reserved delimiter is not specified. In all cases,
the reserved delimiters shall not be counted toward the value of the SPM. Table 4.1.1.6a
describes the specifics of the reserved delimiters.

Reserved Delimiter Syntax Default Value Example

{lang=<language_type>} {lang=en} {lang=en}

{case_matters=<boolean>} {case_matters=false} {case_matters=true}

{case_matters=false}

{order_matters=<boolean>} {order_matters=true} {order_matters=true}

{order_matters=false}

[.] Not applicable,
needs to be provided

Used to separate a
pair of values that
are related for an
interaction:

1[.]a

[,] Not applicable,
needs to be provided

Used to separate a
set of values for an
interaction:

1[.]a[,]2[.]c[,]3[.]b

Table 4.1.1.6a: Reserved Delimiters

Because these delimiters are not required, the default value shall be assumed for those
cases where the delimiter is not specified. If the delimiters are used in the
characterstring, then there are other requirements on placement of the delimiter and the
delimiter syntax.

Delimiter Syntax Requirements: The delimiter shall be treated as a constant set of
characters with no white space permitted. The format of the delimiter shall be:

delimiter ::= “{“ + name + “=” + value + “}”

The name represents the identifier of the delimiter. The name is represented by a set of
reserved tokens:

• lang
• case_matters
• order_matters

The value indicates the value for the named delimiter. The value portion of the
delimiter is restricted to the following:

• lang: Restricted to the value represented by a language_type (Refer to Section
4.1.1.7: Data Types for requirements of a language_type).

• case_matters: Restricted to either true or false

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-9
© 2004 Advanced Distributed Learning. All Rights Reserved.

• order_matters: Restricted to either true or false

Delimiter Placement Requirements: The delimiters are required to be placed in
specific positions within the characterstring. In those cases where a combination of
delimiters may be used, the order of the delimiters is described by the data model
element. If a default value is used (implied by the absence of a delimiter) for one of the
delimiters in the set of delimiters, then the order should still be preserved. The delimiters
shall be concatenated together with no white space permitted between the delimiters. For
example:

• {case_matters=true}{order_matters=true}

No white space or other characters are permitted prior to the first delimiter identified in
the characterstring. If there are no delimiters, which implies that the default values are
being used, then the value represents the characterstring used for the data model element.

4.1.1.7 Data Types
Each of the data model elements has a defined data type. All applications of these data
types are required to adhere to the defined requirements. This section outlines the set of
data types and the specific requirements for each of the data types.

characterstring: A characterstring is a string of characters that are defined in ISO
10646. ISO 10646 is equivalent to the Unicode Standard.

localized_string_type: A localized characterstring is a characterstring that has an
indicator of the language of the characterstring. There are certain data model elements
where the language information is important. SCORM applies a reserved delimiter for
representing the language of the characterstring: {lang=<language_type>}.

The format of the characterstring is required to have the following syntax:

“{lang=<language_type>}”<actual characterstring>

Example:
“{lang=en}The content presented an excellent point dealing with the topic.”

The {lang=<language_type>} shall represent the delimiter that indicates the language of
the characterstring to follow. The {lang=<language_type>} is optional. The default
language_type, if not specified, shall be “en” (English).

language_type: A data type used to represent a language. The format of a language
code is defined as:

language_type ::= langcode [“-” subcode]*

where the langcode:

• 2-letter codes are defined by ISO 639-1 [14]
• 3-letter codes are defined by ISO 639-2 [15]
• The value “i” is reserved for registrations defined by IANA

RTE-4-10 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• The value “x” is reserved for private use

and the subcode:

• multiple, optional, hyphen-prefixed subcodes may follow where the subcodes are
defined by ISO 3166-1 [16].

The language_type is also permitted to be an empty characterstring for certain data
model elements. The language_type of a localized_string_type is not permitted to
be an empty characterstring. The default value for the language_type portion of a
localized_string_type is “en” (English). The language_type may be an empty
characterstring for all other data model elements defined as this type (Refer to Section
4.2.13: Learner Preference).

long_identifier_type: The long_identifier_type represents a label or identifier. This
label or identifier shall be unique within the context of the SCO. The
long_identifier_type shall be a characterstring that conforms to the syntax defined for
Universal Resource Identifiers (URI), refer to RFC 2396 [6]. SCORM recommends that
the URI be a globally unique identifier in the form of a Uniform Resource Name (URN) ,
refer to RFC 2141 [3].

All URNs are required to have the following syntax (phrases in quotes are required):

<URN> ::= “urn:”<NID>”:”<NSS>

where <NID> is the Namespace Identifier and <NSS> is the Namespace Specific String
[3].

Example: urn:ADL:interaction-id-0001

The long_identifier_type is used for identifiers that are intended to be globally unique.

short_identifier_type: The short_identifier_type represents a label or identifier. This
label or identifier shall be unique within the context of the SCO. The
short_identifier_type shall be a characterstring that conforms to the syntax defined for
Universal Resource Identifiers (URI), refer to RFC 2396 [6].

The short_identifier_type is used for identifiers that are not intended to be globally
unique.

integer: The integer data type indicates that the data model element is a member of the
set of positive whole numbers (i.e., 1,2,3, etc.), negative whole numbers (i.e., -1, -2, -3,
etc.) and zero (0).

state: Some of the data model elements values have a defined set of states. This is
defined by a statement like:

state (browse,normal,review)

Each state is bound to a reserved token. These reserved tokens are specific
characterstring representations of the state values defined by the data model elements.
These reserved tokens are defined in the Value Space section in the Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-11
© 2004 Advanced Distributed Learning. All Rights Reserved.

Implementation Requirements. Each defined state does not necessarily map one-to-one
to a reserved token (e.g., not_attempted state value maps to the not attempted
reserved token).

real (10,7): The real(10,7) data type denotes a real number with a precision of seven
significant digits.

time (second, 10, 2): The time (second,10,2) denotes that the value for time is a number
expressed as a real data type with values that are accurate to one hundredths of a second.
The number of seconds in the time value is the number of seconds since 00:00 on January
1, 1970 [1]. The SCORM dot-notation binding defines a particular format for a
characterstring to represent a time.

The format of the characterstring shall be as follows:

YYYY[-MM[-DD[Thh[:mm[:ss[.s[TZD]]]]]]] where

• YYYY: A four-digit year (1970 >= YYYY >=2038)
• MM: A two-digit month (01 through 12 where 01=January)
• DD: A two-digit day of month (01 through 31, depending on the value of month

and year)
• hh: Two-digits of hour (00 through 23)
• mm: Two-digits of minute (00 through 59)
• ss: Two-digits of second (00 through 59)
• s: One or more digits representing a decimal fraction of a second). If fractions of

a second are used, SCORM further restricts the string to a maximum of 2 digits
(e.g., 34.45 – valid, 34.45454545 – not valid).

• TZD: Time zone designator (“Z” for UTC or +hh:mm or –hh:mm). The hh and
mm shall adhere to the requirements defined above for hh and mm.

• At least the four-digit year must be present. If additional parts of the time are
included, the character literals “-“,”T”,”:” and “.” are part of the character lexical
representation [1].

Example:
• “2003”
• ”2003-07-25T03:00:00”

timeinterval (second, 10,2): The timeinterval (second, 10, 2) denotes that the value for
the data model element timeinterval is a number expressed as a real data type with a
value that is accurate to one hundredths of a second [1]. The SCORM dot-notation
binding defines a particular format for a characterstring to represent a timeinterval.

The format of the characterstring shall be as follows:

P[yY][mM][dD][T[hH][mM][s[.s]S] where:

• y: The number of years (integer, >= 0, not restricted)
• m: The number of months (integer, >=0, not restricted)
• d: The number of days (integer, >=0, not restricted)

RTE-4-12 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• h: The number of hours (integer, >=0, not restricted)
• n: The number of minutes (integer, >=0, not restricted)
• s: The number of seconds or fraction of seconds (real or integer, >=0, not

restricted). If fractions of a second are used, SCORM further restricts the string to
a maximum of 2 digits (e.g., 34.45 – valid, 34.45454545 – not valid).

• The character literals designators “P”,”Y”,”M”,”D”,”T”,”H”,”M”,”S” shall
appear if the corresponding non-zero value is present.

Example:

• P1Y3M2DT3H indicates a period of time of 1 year, 3 months, 2 days and 3 hours
• PT3H5M indicates a period of time of 3 hours and 5 minutes

4.1.1.8 Extending SCORM Run-Time Environment Data Model
The SCORM Run-Time Environment Data Model itself shall not be extended. If an
LMS receives an API request in which the parameter is cmi.elementName (where
elementName is some other token not defined in Section 4.2), then an LMS shall behave
as follows:

• GetValue(parameter): The LMS shall return an empty characterstring and set
the error code to “401” – Undefined Data Model Element

• SetValue(parameter_1, parameter_2): The LMS shall return “false” and
set the error code to “401” – Undefined Data Model Element

There is work currently taking place to address additional ways of extending and defining
other data models. SCORM may be updated to include these development efforts as they
progress and become stable.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-13
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2. SCORM Run-Time Environment Data Model

The SCORM Run-Time Environment Data Model contains a set of data model elements
that can be tracked by the SCO with an LMS during the run-time of the SCO. The data
model elements can be used to track items like status, scores, interactions, objectives, etc.
Some of the run-time environment data model elements impact each other or are used in
coordination with others. Some of the data model elements, if used, impact the control
and sequence of other SCOs that are being used in the same context (e.g., lesson or
course). The data model elements are summarized in Table 4.2.a with the details of each
data model element to follow.

Data Model Element Description

Comments From Learner Contains text from the learner.

Comments From LMS Contains comments and annotations intended to be made available to the learner.

Completion Status Indicates whether the learner has completed the SCO.

Completion Threshold A value against which the measure of the progress the learner has made toward
completing the SCO can be compared to determine whether the SCO should be
considered completed.

Credit Indicates whether the learner will be credited for performance in this SCO.

Entry Contains information that asserts whether the learner has previously accessed the
SCO.

Exit Indicates how or why the learner left the SCO.

Interactions Defines information pertaining to an interaction for the purpose of measurement or
assessment.

Launch Data Provides data specific to a SCO that the SCO can use for initialization.

Learner Id Identifies the learner on behalf of whom the SCO instance was launched.

Learner Name Represents the name of the learner.

Learner Preference Specifies learner preferences associated with the learner’s use of the SCO.

Location Represents a location in the SCO.

Maximum Time Allowed The amount of accumulated time the learner is allowed to use a SCO in the learner
attempt.

Mode Identifies the modes in which the SCO may be presented to the learner.

Objectives Specifies learning or performance objectives associated with a SCO.

Progress Measure A measure of the progress the learner has made toward completing the SCO.

Scaled Passing Score The scaled passing score for a SCO.

Score The learner’s score for the SCO.

Session Time The amount of time that the learner has spent in the current learner session for the
SCO.

Success Status Indicates whether the learner has mastered the SCO.

Suspend Data Provides information that may be created by a SCO as a result of a learner accessing
or interacting with the SCO.

RTE-4-14 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Time Limit Action Indicates what the SCO should do when the maximum time allowed is exceeded.

Total Time The sum of all of the learner’s learner session times accumulated in the current
learner attempt prior to the current learner session.

Table 4.2a: SCORM Run-Time Environment Data Model Elements Summary

The following sections define the requirements for implementation of the SCORM Run-
Time Environment Data Model. Each data model element is presented in a new section
(i.e., 4.2.1, 4.2.2, etc.). Each section contains a table that describes the specific
requirements for the data model element. These requirements apply to both LMS and
SCO implementations. Some requirements impact LMS implementations, some impact
SCO implementations and some impact both LMS and SCO implementations.

Table 4.2b describes the layout and format of the tables. The following table provides
descriptive information describing each portion of the tables.

Dot-Notation Binding Details

<dot-notation characterstring
representation of the data model element>

This section provides descriptive data about the data model
element.
Data Model Element Implementation Requirements: This
section of the table defines the data model element implementation
requirements. This section outlines those requirements about the
data type that both an LMS and a SCO shall adhere. This section of
the table is broken up into three sub-sections Data Type, Value
Space and Format.

• Data Type: Describes the specific data type for the data
model element as defined by the IEEE draft standard [1].

• Value Space: Represents the space of values that can be
held by the data type. For example the data type may be
a characterstring, however that characterstring data values
may be restricted to the ASCII character set.

• Format: Describes any format restrictions placed on the
value for the data type. For example, times may have a
certain format (i.e., hh:mm:ss).

LMS Behavior Requirements:
• This section describes the set of requirements that an

LMS is required follow.
Sequencing Impacts:

• This section describes the impacts of the data model
element on sequencing rules and behaviors. If this
section is omitted, the data model element has no impacts
on sequencing.

SCO Behavior Requirements:
• This section describes the set of requirements that a SCO

is required to follow.
API Implementation Requirements:

• GetValue(): This section outlines the specific behaviors
that an LMS shall adhere to when processing GetValue()
requests for the specified data model element. This
section also outlines the error conditions that could occur
using the specified data model element with a GetValue()
request.

• SetValue(): This section outlines the specific behaviors
that an LMS shall adhere to when processing SetValue()
requests for the specified data model element. This
section also outlines the error conditions that could occur

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-15
© 2004 Advanced Distributed Learning. All Rights Reserved.

using the specified data model element with a SetValue()
request.

Additional Behavior Requirements:
• This section outlines any additional behavior

requirements that are specific to the data model element.
Example:

• This section outlines valid API method calls using the
data model element.

Table 4.2b: Data Model Element Table Explanation

RTE-4-16 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.1. Data Model Version

The cmi._version keyword data model element can be used by the SCO to determine
the data model version supported by the LMS. The associated cmi_version for the
SCORM Run-Time Environment Version 1.3 shall be “1.0”. This value is defined by
the IEEE draft standard [1]. This value can be requested by a SCO to determine the
version of the SCORM Run-Time Environment Data Model supported by the LMS. For
example, a SCO could be authored to support multiple versions of the SCORM Run-
Time Environment Data Model if so desired.

Dot-Notation Binding Details

cmi._version Represents the version of the data model.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: The value shall consist of a period-delimited

characterstring containing major and minor release values
as whole numbers. Any characters appearing after the
minor release value shall be separated from the minor
release value by a period (“.”) [1].
The characterstring shall represent the value defined by
the draft IEEE standard: “1.0”

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented as read-only.
• The LMS is responsible for returning the characterstring

“1.0”, when requested by the SCO.
SCO Behavior Requirements:

• This data model element is required to be implemented by
an LMS as read-only. The SCO is only permitted to
retrieve the value of the data model version
(cmi._version) data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value “1.0” (Refer

to Data Model Element Implementation Requirements
above) and set the error code to “0” – No Error.

• SetValue(): If the SCO invokes a SetValue() request to
set the cmi._version, then the LMS shall set the error code
to “404” – Data Model Element Is Read Only and return
“false”.

Example:
• GetValue(“cmi._version”)

Table 4.2.1a: Dot-notation Binding for the Data Model Version Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-17
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.2. Comments From Learner

There may be times where the content designer wishes to collect comments from the
learner about the learning experience. The data model permits the tracking of comments
from the learner on a per SCO basis. How the comments are collected or presented is
outside the scope of SCORM. For example, an LMS may provide an option to collect
comments on the SCO through some LMS provided user interface control or the SCO
may have the ability to collect comments built directly into the SCO. How the comments
are used is also outside the scope of SCORM. For example, once the comments have
been collected, an LMS may provide the designers (of the SCO) the ability to create a
report listing out the comments. These may be able to be collected for the entire content
organization. These comments then may be used by the designer to evaluate the current
design and structure of the content.

The cmi.comments_from_learner data model element provides the ability to not only
collect the actual text of the comment but also the location (where in the content) and a
timestamp (when).

The cmi.comments_from_learner contains freeform text generated by the learner. The
structure of the text is not specified. The value of this data model element is intended to
provide feedback about the SCO or the learning experience with the SCO from a specific
learner. Using this data model element for other purposes may adversely affect
interoperability.

The LMS shall support at least the SPM of 250 comments from the learner. Each
comment from the learner contains a data model element that represents the textual
comment made by the learner. This textual comment has a SPM of 4000. In either case,
the LMS is free to support more than the SPM.

Dot-Notation Binding Details

cmi.comments_from_learner._children The cmi.comments_from_learner._children data model element
represents a listing of supported data model elements. This data
model element is typically used by a SCO to determine which data
model elements are supported by the LMS. The characterstring
returned may be used by the SCO to dynamically build parameters
for the GetValue() and SetValue() requests.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data model

elements in the Comments From Learner parent data
model element that are supported by the LMS. Since all
data model elements are required to be supported by the
LMS, the characterstring shall represent the following
data model elements:

o comment
o location
o date_time

MS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read-only.

RTE-4-18 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• The LMS is responsible for returning a comma-separated
list of all of the Comments From Learner child data
model elements (Refer to Data Model Element
Implementation Requirements above).

SCO Behavior Requirements:
• This data model element is required to be implemented by

an LMS as read-only. The SCO is only permitted to
retrieve the value of the
cmi.comments_from_learner._children data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return a comma-separated

list of the Comments From Learner child data model
elements supported by the LMS (Refer to Data Model
Element Implementation Requirements above) and set the
error code to “0” – No Error. The ordering of data model
elements is not important. The characterstring returned
shall adhere to the requirements identified in the Data
Model Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to
set the cmi.comments_from_learner._children, then the
LMS shall set the error code to “404” – Data Model
Element Is Read Only and return “false”.

Example:
• GetValue(“cmi.comments_from_learner._children”)

cmi.comments_from_learner._count The cmi.comments_from_learner._count keyword describes the
current number of learner comments that are being stored by the
LMS for the SCO. The total number of entries currently being
managed by the LMS shall be returned.
Data Model Element Implementation Requirements:

• Data Type: integer
• Value Space: Non-negative integer
• Format: The characterstring representing the number of

learner comments that the LMS is currently managing.
LMS Behavior Requirements:

• This data model element is mandatory and shall be
implemented by the LMS as read-only.

• If the LMS receives a request to get the
cmi.comments_from_learner._count value prior to any
comments being set by the SCO, then the LMS shall
adhere to the requirements listed below for API
Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by

an LMS as read-only. The SCO is only permitted to
retrieve the value of the
cmi.comments_from_learner._count data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the number of learner

comments currently stored by the LMS and set the error
code to “0” – No error.

o If no comments have been set by the SCO, then
the LMS shall return “0” , set the error code to
“0” - No Error.

• SetValue(): If the SCO invokes a SetValue() request to
set the cmi.comments_from_learner._count, then the
LMS shall set the error code to “404” – Data Model

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-19
© 2004 Advanced Distributed Learning. All Rights Reserved.

Element Is Read Only and return “false”.
Example:

• GetValue(“cmi.comments_from_learner._count”)

cmi.comments_from_learner.n.comment The cmi.comments_from_learner.n.comment data model element
shall describe textual input [1]. The characterstring value
represents a localized characterstring.
Data Model Element Implementation Requirements:

• Data Type: localized_string_type (SPM: 4000)
• Value Space: A characterstring (defined by ISO-10646-

1) with localization information
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
localized_string_type data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by an LMS as read/write.
• The value is supplied by the SCO. The LMS shall not

make any assumption on an initial value for this data
model element. If a GetValue() request is made before
the actual comment has been set by the SCO, then the
LMS shall behave according to the API Implementation
Requirements below.

SCO Behavior Requirements:
• The data model element is required to be implemented by

an LMS as read/write. The SCO is permitted to retrieve
and store the value of the
cmi.comments_from_learner.n.comment data model
element.

• During a SetValue() request, the SCO should be aware
that the delimiter is optional. If the delimiter is not
provided as part of the characterstring, the LMS will
assume that the default language is “en” (English).

• During a GetValue() request, the SCO should be aware
that the delimiter may be part of the characterstring
returned by the LMS (depending on the LMS
implementation). What the SCO does with the
characterstring returned by the LMS is dependent on the
implementation of the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for

the cmi.comments_from_learner.n.comment data model
element and set the error code to “0” – No Error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a GetValue() request where the index
(n) is a number larger than what the LMS is
currently maintaining (e.g., the request
indicated an n value of 5 when there are only 3
comments in the array), then the LMS shall set
the error code to “301” – General Get Failure
and return an empty characterstring (“”). Refer
to Section 3.1.7.6: SCORM Extension Error
Conditions for further recommendations on
processing this request.

o If the SCO attempts to retrieve the
cmi.comments_from_learner.n.comment and

RTE-4-20 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

the record of data has been created but the
comment data model element has not been set
by the SCO, then the LMS shall set the error
code to “403” Data Model Element Value Not
Initialized and return an empty characterstring
(“”).

• SetValue(): The LMS shall set the
cmi.comments_from_learner.n.comment to the supplied
value in the SetValue() request, set the error code “0” -
No error and return “true”.

o If the supplied value of the SetValue() does not
meet the requirements of the Data Model
Element Implementation Requirements, then
the LMS shall set the error code to “406” –
Data Model Element Type Mismatch and return
“false”. The LMS shall not alter the state of
the data model element based on the request.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a SetValue() request where the index
(n) provided is a number that is greater than the
current number of comments from learner being
stored (can be determined by requesting the
cmi.comments_from_learner._count), then the
LMS shall set the error code to “351” –
General Set Failure and return “false”. Refer
to Section 3.1.7.6: SCORM Extension Error
Conditions for more information on processing
this request.

Additional Behavior Requirements:
• If the data model element is implemented, the SCO has

the responsibility to make sure that
cmi.comments_from_learner.n.comment is set initially in
a sequential order. The SCO has the ability to retrieve
previously set comments and overwrite these comments,
updating the comment, location and timestamp. The SCO
should be aware of the smallest permitted maximum
number of characters (4000) that shall be implemented by
the LMS.

Example:
• GetValue(“cmi.comments_from_learner.0.comment”)
• SetValue(“cmi.comments_from_learner.0.comment”,”So
me comments about the SCO”)

cmi.comments_from_learner.n.location The cmi.comments_from_learner.n.location data model element
indicates the point in the SCO to which the comment applies. This
data model element is implementation-defined by each SCO. If no
value is specified for location, then the comment is applicable to the
entire SCO (as a whole) rather than a specific location in the SCO.
[1].
Data Model Element Implementation Requirements:

• Data Type: characterstring (SPM: 250)
• Value Space: ISO-10646-1
• Format: The format of this data model element is

defined and controlled by the SCO. Refer to Section
4.1.1.7: Data Types for more information on the
requirements for the format of the characterstring data
type.

LMS Behavior Requirements:

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-21
© 2004 Advanced Distributed Learning. All Rights Reserved.

• The data model element is mandatory and shall be
implemented by the LMS as read/write.

• The value is controlled and supplied by the SCO. If a
GetValue() request is made before the actual location has
been set by the SCO, then the LMS shall behave
according to the API Implementation Requirements
below.

SCO Behavior Requirements:
• The data model element is required to be implemented by

an LMS as read/write. The SCO is permitted to retrieve
and store the value of the
cmi.comments_from_learner.n.location data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for

the cmi.comments_from_learner.n.location data model
element and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a GetValue() request where the index
(n) is a number larger than what the LMS is
currently maintaining (e.g., the request
indicated an n value of 5 when there are only 3
comments in the array), then the LMS shall set
the error code to “301” – General Get Failure
and return an empty characterstring (“”).
Refer to Section 3.1.7.6: SCORM Extension
Error Conditions for further recommendations
on processing this request.

o If the SCO attempts to retrieve the
cmi.comments_from_learner.n.location and the
record of data has been created but the location
data model element has not been set by the
SCO, then the LMS shall set the error code to
““403” – Data Model Element Value Not
Initialized and return an empty characterstring
(“”).

• SetValue(): The LMS shall set the
cmi.comments_from_learner.n.location to the supplied
value in the SetValue() request, set the error code “0” -
No error and return “true”.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a SetValue() request where the index
(n) provided is a number that is greater than the
current number of comments from learner being
stored (can be determined by requesting the
cmi.comments_from_learner._count), then the
LMS shall set the error code to “351” –
General set failure and return “false”. Refer
to Section 3.1.7.6: SCORM Extension Error
Conditions for more information on processing
this request.

Additional Behavior Requirements:
• The SCO has the ability to retrieve previously set

comments and overwrite these comments, updating the
comment, location and timestamp. The SCO should be

RTE-4-22 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

aware of the smallest permitted maximum number of
characters (250) that shall be implemented by the LMS.

Example:
• GetValue(“cmi.comments_from_learner.0.location”)
• SetValue(“cmi.comments_from_learner.0.location”,”PA
GE1SECTION#3”)

cmi.comments_from_learner.n.date_time The cmi.comments_from_learner.n.date_time data model element
indicates the date and time at which the comment was created or
most recently changed. Implementation shall support, minimally,
time periods in the range of January 1, 1970 through January 1,
2038 [1].
Data Model Element Implementation Requirements:

• Data Type: time (second,10,2)
• Value Space: The data type denotes the value for time is

expressed as a value that is accurate to one hundredth of a
second (0.01
• Format: Refer to Section 4.1.1.7: Data Types for
more information on the requirements for the format of
the time (second,10,2) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by the LMS as read/write.
• The value is controlled and supplied by the SCO. If a

GetValue() request is made before the date_time has been
set, then the LMS shall behave according to the API
Implementation Requirements below.

SCO Behavior Requirements:
• The data model element is required to be implemented by

an LMS as read/write. The SCO is permitted to retrieve
and store the value of the
cmi.comments_from_learner.n.date_time data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for

the cmi.comments_from_learner.n.date_time data model
element and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a GetValue() request where the index
(n) is a number larger than what the LMS is
currently maintaining (e.g., the request
indicated an n value of 5 when there are only 3
comments in the array), then the LMS shall set
the error code to “301” – General Get Failure
and return an empty characterstring (“”). Refer
to Section 3.1.7.6: SCORM Extension Error
Conditions for further recommendations on
processing this request.

o If the SCO attempts to retrieve the
cmi.comments_from_learner.n.date_time and
the record of data has been created but the
date_time data model element has not been set
by the SCO, then the LMS shall set the error
code to “403” Data Model Element Value Not
Initialized and return an empty characterstring
(“”).

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-23
© 2004 Advanced Distributed Learning. All Rights Reserved.

• SetValue(): The LMS shall set the
cmi.comments_from_learner.n.date_time to the supplied
value in the SetValue() request, set the error code “0” -
No error and return “true”.

o If the supplied value of the SetValue() does not
meet the requirements of the Data Model
Element Implementation Requirements, then
the LMS shall set the error code to “406” –
Data Model Element Type Mismatch and return
“false”. The LMS shall not alter the state of
the data model element based on the request.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a SetValue() request where the index
(n) provided is a number that is greater than the
current number of comments from learner being
stored (can be determined by requesting the
cmi.comments_from_learner._count), then the
LMS shall set the error code to “351” –
General set failure and return “false”. Refer
to Section 3.1.7.6: SCORM Extension Error
Conditions for more information on processing
this request.

Example:
• GetValue(“cmi.comments_from_learner.0.data_time”)
• SetValue(“cmi.comments_from_learner.0.date_time”,“20
03-07-25T03:00:00”)

Table 4.2.2a: Dot-notation Binding for the Comments from Learner Data Model Element

RTE-4-24 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.3. Comments From LMS

The cmi.comments_from_lms data model element contains comments and annotations
intended to be seen by all learners for the SCO for which they are defined. These
comments are intended to be a mechanism for adding information of interest to all
learners in a particular community, instructor notes, etc. SCORM does not define a
mechanism for how these comments are initialized. LMSs are free to provide a
mechanism to support the creation and initialization of this data. This support is not
required for SCORM conformance.

How this information is presented or used is outside the scope of SCORM. One such use
would be for the ability to retrieve the comments and display them to the learner upon
launch of the SCO (or during some point in the learner session).

The value of cmi.comments_from_lms is intended to provide information about the SCO
or the learning experience with the SCO. The structure of this data is not specified by
SCORM.

The LMS shall support at least the SPM of 100 comments from the LMS. The LMS is
free to support more than the SPM.

Dot-Notation Binding Details

cmi.comments_from_lms._children The cmi.comments_from_lms._children data model element
represents a listing of supported data model elements. This data
model element is typically used by a SCO to determine which
data model elements are supported by the LMS. The
characterstring returned may be used by the SCO to
dynamically build parameters for the GetValue() and SetValue()
requests.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data

model elements in the Comments From LMS parent
data model element that are supported by the LMS.
Since all data model elements are required to be
supported by the LMS, the characterstring shall
represent the following data model elements:

o comment
o location
o date_time

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read-only.
• The LMS is responsible for returning a comma-

separated list of all of the data model elements (Refer
to Data Model Element Implementation Requirements
above).

SCO Behavior Requirements:
• This data model element is required to be

implemented by an LMS as read-only. The SCO is
only permitted to retrieve the value of the
cmi.comments_from_lms._children data model

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-25
© 2004 Advanced Distributed Learning. All Rights Reserved.

element.
API Implementation Requirements:

• GetValue(): The LMS shall return a comma-
separated list of data model elements supported by the
LMS (Refer to Data Model Element Implementation
Requirements above) and set the error code to “0” –
No error. The ordering of elements is not important.
The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request
to set the cmi.comments_from_lms._children, then the
LMS shall set the error code to “404” – Data Model
Element Is Read Only and return “false”.

Example:
• GetValue(“cmi.comments_from_lms._children”)

cmi.comments_from_lms._count The cmi.comments_from_lms._count keyword is used to
describe the current number of comments from the LMS that
are currently being stored by the LMS. The total number of
entries currently being stored by the LMS shall be returned.
Data Model Element Implementation Requirements:

• Data Type: integer
• Value Space: Non-negative integer
• Format: The characterstring representing the number

of comments that the LMS is currently persisting.
LMS Behavior Requirements:

• This data model element is mandatory and shall be
implemented by the LMS as read-only.

• If the LMS receives a request to get the
cmi.comments_from_lms._count value prior to any
comments being set by the SCO, then the LMS shall
adhere to the requirements listed below for API
Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be

implemented by an LMS as read-only. The SCO is
only permitted to retrieve the value of the
cmi.coments_from_lms._count data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the number of

comments currently stored by the LMS and set the
error code to “0” – No error.

o If there are no comments defined for this
element, then the LMS shall return “0” and
set the error code to “0”.

• SetValue(): If the SCO invokes a SetValue() request
to set the cmi.comments_from_lms._count, then the
LMS shall set the error code to “404” – Data Model
Element Is Read Only and return “false”.

Example:
• GetValue(“cmi.comments_from_lms._count”)

cmi.comments_from_lms.n.comment The cmi.comments_from_lms.n.comment data model element
shall describe comments or annotations associated with a SCO
[1]. The characterstring value represents the localized
characterstring.
Data Model Element Implementation Requirements:

• Data Type: localized_string_type (SPM: 4000)

RTE-4-26 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• Value Space: A characterstring (defined by ISO-
10646-1) with localization information

• Format: Refer to Section 4.1.1.7: Data Types for
more information on the requirements for the format
of the localized_string_type data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by an LMS as read-only.
• How this data model element is initialized is outside

the scope of SCORM. The LMS may provide a
means to allow the author/instructor to provide the
comments and these comments may then be used to
initialize this value. If a GetValue() request is made
prior to the date_time being set or initialized by the
LMS then the LMS shall behave according to the API
Implementation Requirements below.

SCO Behavior Requirements:
• The data model element is required to be

implemented by an LMS as read-only. The SCO is
only permitted to retrieve the value of the
cmi.comments_from_lms.n.comment data model
element.

• During a GetValue() request, the SCO should be
aware that the delimiter may be part of the
characterstring returned by the LMS (depending on
the LMS implementation). What the SCO does with
the characterstring returned by the LMS is dependent
on the implementation of the SCO. If no delimiter is
provided the SCO shall assume the default language
of “en”.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored

for the cmi.comments_from_lms.n.comment data
model element and set the error code to “0” – No
error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a GetValue() request where the
index (n) is a number larger than what the
LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there
are only 3 comments in the array), then the
LMS shall set the error code to 301” –
General Get Failure and return an empty
characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error
Conditions for further recommendations on
processing this request.

o If the SCO attempts to retrieve the
cmi.comments_from_lms.n.comment and the
record of data has been created but the
comment data model element has not been
set by the LMS, then the LMS shall set the
error code to “403” Data Model Element
Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request
to set the cmi.comments_from_lms.n.comment, then

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-27
© 2004 Advanced Distributed Learning. All Rights Reserved.

the LMS shall set the error code to “404” – Data
Model Element Is Read Only and return “false”.
The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.comments_from_lms.0.comment”)

cmi.comments_from_lms.n.location The cmi.comments_from_lms.n.location data model element
indicates the point in the SCO to which the comment applies.
This data model element is implementation-defined by each
SCO. If no value is specified for location, then the comment is
applicable to the entire SCO (as a whole) [1].
Data Model Element Implementation Requirements:

• Data Type: characterstring (SPM: 250)
• Value Space: ISO-10646-1
• Format: Refer to Section 4.1.1.7: Data Types for

more information on the requirements for the format
of the characterstring data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by the LMS as read-only.
• How this element is initialized is outside the scope of

SCORM. The LMS may provide a means to allow
the author/instructor to provide the comments (along
with a location and date) and these comments may
then be used to initialize this value. If a GetValue()
request is made prior to the date_time being set or
initialized by the LMS then the LMS shall behave
according to the API Implementation Requirements
below.

SCO Behavior Requirements:
• The data model element is required to be

implemented by an LMS as read-only. The SCO is
only permitted to retrieve the
cmi.comments_from_lms.n.location data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored

for the cmi.comments_from_lms.n.location data
model element and set the error code to “0” – No
error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a GetValue() request where the
index (n) is a number larger than what the
LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there
are only 3 comments in the array), then the
LMS shall set the error code to “301” –
General Get Failure and return an empty
characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error
Conditions for further recommendations on
processing this request.

o If the SCO attempts to retrieve the
cmi.comments_from_lms.n.location and the
record of data has been created but the
location data model element has not been

RTE-4-28 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

set by the LMS, then the LMS shall set the
error code to “403” Data Model Element
Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request
to set the cmi.comments_from_lms.n.location, then
the LMS shall set the error code to “404” – Data
Model Element Is Read Only and return “false”.
The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.comments_from_lms.0.location”)

cmi.comments_from_lms.n.date_time The cmi.comments_from_lms.n.date_time data model element
indicates the date and time at which the comment was created or
most recently changed. Implementation shall support,
minimally, time periods in the range of January 1, 1970 through
January 1, 2038 [1].
Data Model Element Implementation Requirements:

• Data Type: time(second,10,2)
• Value Space: The data type denotes that the value for

time is a number expressed as a real data type with
values that are accurate to one hundredth of a second
(0.01). The number of seconds in the time value is
the number of seconds since 00:00 on January 1, 1970
[1].

• Format: Refer to Section 4.1.1.7: Data Types for
more information on the requirements for the format
of the time (second,10,2) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by the LMS as read-only.
• How this element is initialized is outside the scope of

SCORM. The LMS may provide a means to allow
the author/instructor to provide the comments (along
with a location and date) and these comments may
then be used to initialize this value. If a GetValue()
request is made prior to the date_time being set or
initialized by the LMS then the LMS shall behave
according to the API Implementation Requirements
below.

SCO Behavior Requirements:
• The data model element is required to be

implemented by an LMS as read-only. The SCO is
only permitted to retrieve the value of the
cmi.comments_from_lms.n.data_time data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored

for the cmi.comments_from_lms.n.date_time data
model element and set the error code to “0” – No
error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is
represented as packed arrays. If the SCO
invokes a GetValue() request where the
index (n) is a number larger than what the
LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-29
© 2004 Advanced Distributed Learning. All Rights Reserved.

are only 3 comments in the array), then the
LMS shall set the error code to 301” –
General Get Failure and return an empty
characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Condition
for further recommendations on processing
this request.

o If the SCO attempts to retrieve the
cmi.comments_from_lms.n.date_time and
the record of data has been created but the
date_time data model element has not been
set by the LMS, then the LMS shall set the
error code to “403” Data Model Element
Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request
to set the cmi.comments_from_lms.n.date_time, then
the LMS shall set the error code to “404” – Data
Model Element Is Read Only and return “false”.
The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.comments_from_lms.0.date_time”)

Table 4.2.3a: Dot-notation Binding for the Comment from LMS Data Model Element

RTE-4-30 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.4. Completion Status

The cmi.completion_status data model element indicates whether the learner has
completed the SCO [1]. How the SCO determines its completion status is outside the
scope of SCORM. This value indicates the overall completion status for the SCO as
determined by the SCO developer.

Dot-Notation Binding Details

cmi.completion_status Data Model Element Implementation Requirements:
• Data Type: state (completed, incomplete, not_attempted, unknown)
• Value Space: The IEEE draft defines four state values. SCORM binds

these state values to the following restricted vocabulary tokens:
o “completed”: The learner has experienced enough of the SCO to

consider the SCO complete [1]. How completion is determined is
controlled and managed by the SCO. The completion status can
be overridden by an LMS based on the requirements defined in
4.2.4.1: Completion Status Determination.

o “incomplete”: The learner has not experienced enough of the
SCO to consider the SCO complete [1]. How completion is
determined is controlled and managed by the SCO.

o “not attempted”: The learner is considered not to have used the
SCO in any significant way [1].

o “unknown”: No assertion is made [1]. This indicates that no
applicable assertion can be made that indicates the completion
status.

• Format: The format of the data model value shall be one of the four
restricted vocabulary tokens listed above (“completed”, “incomplete”, “not
attempted”, “unknown”).

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by an LMS

as read/write.
• Normally the SCO will report its own completion status to the LMS,

however there is no requirement in SCORM that mandates a SCO to set
cmi.completion_status. Since this is the case, there are cases where the
LMS shall override the value set by the SCO. Refer to Section 4.2.4.1:
Completion Status Determination for the defined LMS behaviors for
determining completion status.

• The default cmi.completion_status shall be “unknown”.
• Since the determination of cmi.completion_status is initially controlled and

managed by the SCO, the LMS cannot imply any value for the
cmi.completion_status in any way. There is no requirement in SCORM that
mandates a SCO to set cmi.completion_status. If the SCO does not set the
cmi.completion_status, then the LMS shall use the default value of
“unknown” as the value for cmi.completion_status. However, if a
cmi.completion_threshold is defined and a cmi.progress_measure is
reported by the SCO, then the LMS must override the
cmi.completion_status by adhering to the requirements defined in section
4.2.4.1.

Sequencing Impacts:
• If the SCO or LMS (through the process described in Section 4.2.4.1) sets

cmi.completion_status, of the SCO to “unknown”, the Attempt Progress
Status for the learning activity associated with the SCO shall be false.

• If the SCO or LMS (through the process described in Section 4.2.4.1) sets
cmi.completion_status, of the SCO to “completed”, the Attempt Progress
Status for the learning activity associated with the SCO shall be true, and
the Attempt Completion Status for the learning activity associated with the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-31
© 2004 Advanced Distributed Learning. All Rights Reserved.

SCO shall be true.
• If the SCO or LMS (through the process described in Section 4.2.4.1) sets

cmi.completion_status, of the SCO to “incomplete”, the Attempt Progress
Status for the learning activity associated with the SCO shall be true, and
the Attempt Completion Status for the learning activity associated with the
SCO shall be false.

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as

read/write. The SCO is permitted to retrieve and store the value of the
cmi.completion_status data model element.

• The SCO should be aware that setting the cmi.completion_status will affect
the learning activity associated with the SCO, therefore possibly affecting
sequencing.

• If there is sequencing information applied to the learning activity associated
with the SCO that relies on completion status, the SCO must ensure
completion information is accurately sent to the LMS (SetValue()) prior to
the SCO’s learner session ending. Otherwise, the LMS will use the value
“unknown” as the completion status of the learning activity associated with
the SCO when processing sequencing information.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.completion_status

currently stored by the LMS for the learner and set the error code to “0” –
No error. The characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation Requirements.

o Until the cmi.completion_status has been determined by the SCO
or LMS (refer to Section 4.2.4.1 Completion Status
Determination), the default value of the cmi.completion_status is
“unknown”.

• SetValue(): If the SCO invokes a request to set the cmi.completion_status
and the value is not a member of the restricted vocabulary tokens described
above, then the LMS shall set the API Error Code to “406” – Data Model
Element Type Mismatch and return “false”. The LMS shall not alter the
state of the data model element based on the request.

Example:
• GetValue(“cmi.completion_status”)
• SetValue(“cmi.completion_status”,”incomplete”)

Table 4.2.4a: Dot-notation Binding for the Completion Status Data Model Element

4.2.4.1 Completion Status Determination

Typically, the completion status of the SCO is determined by the SCO. The completion
status of the SCO can be designed by the content developer in various ways, including
but not limited to:

• Number of pages visited by the learner,
• Result of a learner selecting a user interface control (e.g., learner pressing a

button)
• Completion of the learner viewing a piece of video or reading a document
• Completion of various objectives in the SCO (i.e.,

cmi.objectives.n.completion_status)

Regardless of how the determination is made by the SCO, this process involves the SCO
setting the cmi.completion_status. SCORM does not require the SCO to track (i.e.,
GetValue() or SetValue() function calls) any SCORM Run-Time Environment Data

RTE-4-32 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Model elements. With this in mind, the LMS has additional behaviors that are required
in the determination of completion status. Under certain circumstances, the LMS is
required to behave differently.

The cmi.completion_status data model element is impacted by two other SCORM
Run-Time Environment Data Model Elements (Completion Threshold –
cmi.completion_threshold and Progress Measure – cmi.progress_measure). The
following table defines the possible states of these values and the defined LMS behavior.
The Completion Threshold value may be defined in the imsmanifest.xml file (refer to
Section 4.2.5: Completion Threshold for more details). Both the Progress Measure and
Completion Status are determined and set by the SCO. Table 4.2.4.1a defines the LMS
behaviors associated with the combinations of these values being set/defined or not
set/defined.

Completion
Threshold

Progress
Measure

Completion
Status

LMS Behavior

None defined No value set by
the SCO

No value set by
the SCO

The cmi.completion_status shall be set to
“unknown”

None defined No value set by
the SCO

One of the
defined
vocabularies

No action, the cmi.completion_status shall
be set to the value that was set by the SCO.

None defined 0.5 One of the
defined
vocabularies

No action, the cmi.completion_status shall
be set to the value that was set by the SCO.

0.8 0.5 One of the
defined
vocabularies

The cmi.completion_status shall be
overridden and set to “incomplete”

RATIONALE: 0.5 < 0.8. Refer to the requirements
defined by cmi.completion_threshold and
cmi.progress_measure.

0.8 0.9 One of the
defined
vocabularies

The cmi.completion_status shall be
overridden and set to “complete”

RATIONALE: 0.9 > 0.8. Refer to the requirements
defined by cmi.completion_threshold and
cmi.progress_measure.

0.8 No value set by
the SCO

No value set by
the SCO.

The cmi.completion_status shall be set to
“unknown”

0.8 0.5 No value set by
the SCO.

The cmi.completion_status shall be set to
“incomplete”

RATIONALE: 0.5 < 0.8. Refer to the requirements
defined by cmi.completion_threshold and
cmi.progress_measure.

0.8 0.9 No value set by
the SCO.

The cmi.completion_status shall be set to
“complete”

RATIONALE: 0.9 > 0.8. Refer to the requirements
defined by cmi.completion_threshold and
cmi.progress_measure.

None defined 0.5 No value set by
the SCO

The cmi.completion_status shall be set to
“unknown”

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-33
© 2004 Advanced Distributed Learning. All Rights Reserved.

0.8 No value set by
the SCO.

One of the
defined
vocabularies

No action, the cmi.completion_status shall
be set to the value that was set by the SCO.

Table 4.2.4.1a: Completion Status Determination

RTE-4-34 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.5. Completion Threshold

The value stored in the cmi.completion_threshold data model element can be used to
determine whether the SCO should be considered complete. This can be accomplished
by comparing the cmi.completion_threshold to the cmi.progress_measure, made by
the learner, towards the completion of the SCO.

Dot-Notation Binding Details

cmi.completion_threshold Data Model Element Implementation Requirements:
• Data Type: real(10,7) range (0..1)
• Value Space: 0.0 <= cmi.completion_threshold <= 1.0
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
real(10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by the LMS as read-only.
• The LMS is responsible for initializing this data model element

using the ADL Content Packaging namespace element
<adlcp:completionThreshold>. This element, if needed, shall
only be placed on an <imscp:item> element that references a
SCO resource, found in a Content Package Manifest.

SCO Behavior Requirements:
• The data model element is required to be implemented by the

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.completion_threshold data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for the

cmi.completion_threshold data model element and set the error
code to “0” – No error. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o If the SCO attempts to retrieve the
cmi.completion_threshold and no completion
threshold was defined in the Content Package
Manifest (<adlcp:completionThreshold> element),
then the LMS shall set the error code to “403” Data
Model Element Value Not Initialized and return an
empty characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.completion_threshold, then the LMS shall set the error
code to “404” – Data Model Element Is Read Only and return
“false”. The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.completion_threshold”)

Table 4.2.5a: Dot-notation Binding for the Completion Threshold Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-35
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.6. Credit

The cmi.credit data model element indicates whether the learner will be credited for
performance in the SCO [1]. How a SCO is prescribed to be taken for credit or no credit
is outside the scope of SCORM. The default value for this data model element is the fact
that the SCO is being taken for credit.

Typically, one does not choose which SCOs should be for credit and no credit. This is
usually handled at the content organization (e.g., course) level. If an LMS provides a
mechanism for allowing learners to register for content organization for credit and no
credit, then the value that the learner chooses (or possibly the value that the instructor
requires for the content organization) shall be used throughout all of the SCOs found in
the content organization.

Dot-Notation Binding Details

cmi.credit Data Model Element Implementation Requirements:
• Data Type: state (credit, no_credit)
• Value Space: The IEEE draft defines two state values. SCORM binds

these state values to the following restricted vocabulary tokens:
o “credit”: The learner is taking the SCO for credit [1]. The default

value for this data model element shall be “credit”. If no
mechanism is supplied to determine or assign this value, then the
default of “credit” shall be used. Taking the SCO for credit
affects the determination of the cmi.success_status data model
element (Refer to Section 4.2.16.1: Mode and Credit Usage
Requirements for more details).

o “no-credit”: The learner is taking the SCO for no credit [1]. If the
learner is taking the SCO for no credit, then values that affect the
determination of success status or score shall not be interpreted by
the LMS and shall not affect the current success status or score for
the SCO.

• Format: The format of the data model value shall be one of the two
restricted tokens listed above (“credit”, “no-credit”).

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by an LMS

as read only.
• SCORM does not require that an LMS support a mechanism for prescribing

the credit state for a SCO. Whether or not an LMS supports a mechanism
for this functionality is outside the scope of SCORM. If the LMS does not
support a mechanism, then the default value (”credit”) of credit shall be
returned in all cases.

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as read

only. The SCO is only permitted to retrieve the value of the cmi.credit data
model element.

• What the SCO does with this data is totally up to the discretion of
the SCO. The SCO could use the cmi.credit value to determine
the importance of reporting other data model element values to the
LMS (via a SetValue() call).

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.credit currently

stored by the LMS for the learner and set the error code to “0” – No error.
The characterstring returned shall adhere to the requirements identified in
the Data Model Element Implementation Requirements.

RTE-4-36 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

o If the SCO requests the cmi.credit and the LMS does not support a
mechanism or process for selecting “credit” vs. “no-credit”, then
the LMS shall return the default value (“credit”).

o If the LMS supports such a mechanism or process, then the LMS
shall return the current value being stored for cmi.credit.

• SetValue(): If the SCO invokes a request to set the cmi.credit, then the
LMS shall set the API Error Code to “404” – Data Model Element Is Read
Only and return “false”. The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.credit”)

Table 4.2.6a: Dot-notation Binding for the Credit Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-37
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.7. Entry

The cmi.entry data model element contains information that asserts whether the learner
has previously accessed the SCO [1].

As defined in the Temporal Model (Refer to Section 2.1.1: Run-Time Environment
Temporal Model), an entry value of “ab-initio” indicates that the SCO has a default
(clean) set of run-time data – there is no run-time data available from any previous
learner attempts. An entry value of “resume” indicates that the SCO is accessing run-
time data for the current learner attempt as set from the previous learner session on the
SCO.

Dot-Notation Binding Details

cmi.entry Data Model Element Implementation Requirements:
• Data Type: state (ab_initio, resume, _nil_) [1]
• Value Space: The IEEE draft defines three state values. SCORM binds

these state values to the following restricted vocabulary tokens:
o “ab-initio”: Indicates that the learner has not accessed the SCO

during the current learner attempt [1]. This value indicates that this
is the first learner session associated with the current learner
attempt on the SCO.

o “resume”: Indicates that (1) the learner has previously accessed the
SCO during the current learner attempt, and (2) upon exiting, the
cmi.exit data model element had the value of “suspend” or “logout”
[1].

o “” (empty characterstring): Indicates all other conditions. There is
no knowledge of previous access or no specific entry condition is
indicated [1]. Another example could be that the SCO was already
completed or mastered, and later it was launched for review
purposes.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by an LMS

as read-only.
• The LMS is responsible for initializing the cmi.entry data model element

based on the following rules:
o If this is the first learner session on a learner attempt, then the LMS

shall set the cmi.entry to “ab-initio” upon initial launch of the SCO.
o If the learner attempt on the SCO is being resumed from a

suspended learner session (cmi.exit was set to “suspend”), then the
LMS shall initialize this value to “resume”.

o For all other conditions, the LMS shall set the cmi.entry to an
empty characterstring (“”).

• Upon receiving a Terminate(“”) request or the user navigates away, the LMS
shall set the cmi.entry to either “” (empty characterstring) or “resume”. This
value shall be made available during the next learner session in the current
learner attempt. This is determined by the LMS by evaluating the value of
the cmi.exit. If the attempt of the activity is being suspended (either indicated
by the SCO by setting the value of cmi.exit to “suspend” or by some other
LMS provided suspension mechanism), then the LMS shall set cmi.entry to
“resume” upon the next attempt of the activity (that references the associated
SCO) for that learner. If the SCO set cmi.exit to a value other than “suspend”
or did not set the value at all, then the LMS will set the cmi.entry to an empty
characterstring (“”).

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as read

RTE-4-38 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

only. The SCO is only permitted to retrieve the value of the cmi.entry data
model element.

• What the SCO does with this data is totally up to the discretion of
the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.entry value currently

stored by the LMS for the learner and set the error code to “0” – No error.
The characterstring returned shall adhere to the requirements identified in the
Data Model Element Implementation Requirements.

• SetValue(): If the SCO invokes a request to set the cmi.entry, then the LMS
shall set the API Error Code to “404” – Data Model Element Is Read Only
and return “false”. The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.entry”)

Table 4.2.7a: Dot-notation Binding for the Entry Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-39
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.8. Exit

The cmi.exit data model element indicates how or why the learner left the SCO [1].
This value is used to indicate the reason that the SCO was last exited.

Dot-Notation Binding Details

cmi.exit Data Model Element Implementation Requirements:
• Data Type: state (timeout, suspend, logout, normal, _nil_)
• Value Space: The IEEE draft defines five state values. SCORM binds

these state values to the following restricted vocabulary tokens:
o “time-out”: The SCO terminated because the time limit specified

by max_time_allowed had been exceeded [1].
o “suspend”: The learner exited the SCO with the intent of

returning to it at the point of exit [1].
o “logout”: The SCO signaled a desire to terminate the entire

learning activity of which the SCO is part [1].
o “normal”: The SCO exited normally [1].
o “” empty characterstring: The exit conditions are undetermined

[1]. The default value.
LMS Behavior Requirements:

• The data model element is mandatory and shall be implemented by an LMS
as write-only.

• The value is completely controlled by the SCO. The SCO is responsible for
setting this value. If the SCO does not set the cmi.exit data model element,
then the default value (empty characterstring – “”) shall be used. If the
LMS receives a request to get the cmi.exit value, then the LMS shall adhere
to the requirements listed below for API Implementation Requirements.

Sequencing Impacts:
• If the SCO sets cmi.exit to “time-out”, the LMS shall process an “Exit All”

navigation request when the SCO is taken away, instead of any pending
(from the learner or LMS) navigation request.

• If the SCO sets cmi.exit to “suspend”, the LMS shall set the Activity is
Suspended value of the learning activity associated with the SCO to true.

• If the SCO sets cmi.exit to “logout”, the LMS shall process an “Suspend
All” navigation request when the SCO is taken away, instead of any pending
(from the learner or LMS) navigation request.

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as write-

only. The SCO is only permitted to store the value of the cmi.exit data
model element.

API Implementation Requirements:
• GetValue(): If the SCO invokes a request to get the cmi.exit, then the LMS

shall set the error code to “405” – Data Model Element Is Write Only and
return and empty characterstring (“”).

• SetValue(): This request sets the cmi.exit to the supplied value. The value
must match one of the restricted vocabularies declared for this data model
element. If the value supplied matches one of the tokens listed above, then
the LMS shall set the value, return “true” and set the error code to “0” -
No error.

o If the value supplied is not equivalent to one of the tokens listed
above, then the LMS shall set the error code to “406” - Data
Model Element Type Mismatch and return “false”. The LMS
shall not alter the state of the data model element based on the
request.

Additional Behavior Requirements:
For each leaner attempt on a SCO, it is the responsibility of the LMS to make

RTE-4-40 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

available a cmi.entry value of “ab-initio” on the first learner session of that learner
attempt. This value indicates that this is the first time the learner is experiencing the
SCO during this learner attempt on the SCO – it also indicates that a default (clean)
data-model is being accessed by the SCO. The cmi.entry value shall be implemented
by the LMS as read-only. Since the data model element shall be implemented as read-
only, an LMS is responsible for managing this value (the SCO does not directly affect
this value – cannot call SetValue() on cmi.entry). The LMS is responsible for reacting
to other run-time interactions in determining this value. The following explanation is
provided for further clarification:

The cmi.entry value is directly affected by the cmi.exit data model element. The SCO
is responsible for setting, if so desired, the cmi.exit value. Depending on the value of
the cmi.exit, the LMS shall react as follows:

1. If the SCO set the cmi.exit to “time-out”, it is assumed that the learner
attempt is ending. Since the learner attempt has ended, the next time the
SCO is launched the LMS shall supply a “clean” set of data model values.
In addition, the LMS shall end the attempt on the content organization for
the learner. This behavior shall be exhibited when a Terminate(“”) request
is received from the SCO that set the cmi.exit to “time-out” or the learner
navigates away.

2. If the SCO set the cmi.exit to “suspend”, then the LMS should set the
cmi.entry to “resume”. By setting the cmi.exit to “suspend”, the SCO is
indicating that the learner has exited the SCO with the intent of returning to
the SCO at a later time. Since the learner attempt was suspended, once the
learner attempt is resumed, the SCO shall have the same set of data that was
acquired during the previously suspended learner attempt.

3. If the SCO set the cmi.exit to “logout”, then the LMS shall set the cmi.entry
to “resume”. In addition, the LMS shall suspend the attempt on the content
organization for the learner. Since the learner attempt was suspended,
once the learner attempt is resumed, the SCO shall have the same set of data
that was acquired during the previously suspended learner attempt. This
value does not indicate to log the learner out of the LMS and force the
learner to reauthenticate in any manner. This behavior shall be exhibited
when a Terminate(“”) request is received from the SCO that set the cmi.exit
to “logout” or the learner navigates away.

4. If the SCO set the cmi.exit to “normal”, then this indicates that the SCO has
been exited normally (as determined by the SCO developer) and that learner
attempt on the SCO ended normally. A subsequent learner attempt on the
SCO will involve a new set of run-time data.

5. If the SCO set the cmi.exit to “”, then this indicates that the exit state is
undetermined and the learner attempt on the SCO ended. A subsequent
learner attempt on the SCO will involve a new set of run-time data.

Note: How or when the cmi.entry is set by the LMS is implementation specific.
However, this value shall be available during the next learner session within the
learner attempt
Example:

• SetValue(“cmi.exit”,”suspend”).

Table 4.2.8a: Dot-notation Binding for the Exit Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-41
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.9. Interactions

The interactions data model element defines a set of learner responses that can be passed
from the SCO to the LMS. Interactions are intended to be responses to individual
questions or tasks that the SCO developer wants to record. There is no implied behavior
an LMS shall have when interactions are requested to be set, other than storage of the
data.

Interactions can be thought of as a collection of information (interaction data). The
interaction data is depicted in Figure 4.2.9a. As defined by the IEEE draft standard an
LMS is required to support (i.e., store) at least 250 sets of interaction data [1]. An LMS
can elect to provide support for more than 250, however the requirement is to support at
least 250 sets of interaction data.

Figure 4.2.9a: Interactions and Interaction Data

There are two important pieces of data that are required to be in the set of interaction
data, an identifier (cmi.interactions.n.id) and the type of interaction
(cmi.interactions.n.type). The cmi.interactions.n.type data model element is
required if the Interaction includes data pertaining to either the Correct Response or
Learner Response. These two pieces of information are what distinguish the interaction
data from other interaction data found in the set of interactions (considered the
dependencies of the interaction data). The identifier uniquely identifies one interaction
from another. The type uniquely identifies the type of interaction (true-false, matching,
etc.).

The Interactions data model element can be used for two primary means by the SCO:
journaling and status.

A journaling scheme requires the SCO to record interaction data every time the learner is
engaged with the interaction (i.e., new interaction data is appended to the array of
interactions). By applying this scheme for recording interactions, information can be
gathered to study the learners experience with the interactions found in the SCO. For
example, reports can be generated that state how many times the learner responded to the
interaction, what was the latency for each interaction, what the learner’s response was

RTE-4-42 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

and the result of the response. This data can be gathered and used to potentially update
the interaction for future use.

A status scheme requires the SCO to record interaction data and keep the interaction
updated based on the learner’s experience with the SCO. For example, if the learner
responds to an interaction, information can be set. If the learner then corrects his/her
response, the same interaction data is updated to reflect the change (versus a new entry
being added to the interactions array). In this scheme the set of interaction data contains
the last recorded state of the interaction. Also in this scheme, the ability to track how
many times the learner updated the response to the interaction is lost.

There are pros and cons for using one particular scheme over another. SCO developers
should be aware of the two schemes and use the one they desire. From the LMS
perspective the journaling scheme provides more burden on storage requirements. But
then again, the only requirement for the amount of interaction data to store is 250. SCO
developers need to understand the smallest permitted maximum of 250 indicates that the
LMS is only required to support 250 sets of interaction data.

As with any data model element stored in arrays the index position (n) is not what sets
the uniqueness of the data being stored. The identifier of the interaction should be used
to uniquely identify each record. The implementation requirements defined in the
standard states that the arrays should be implemented as a bag [12]. This data structure
allows the same object (interaction data) to be repeated in the array (unlike a set that
requires the items in the set to be unique). It is recommended that SCOs be built, if using
the interaction data model elements, not to rely on the index position for the uniqueness.
Depending on the learner and the learning session, the same interaction data may not be
stored at the same position in the array. It is highly recommended that the SCO be built
to search throughout the interaction data looking for given identifiers, prior to updating
(status scheme described above) the interaction data. If using the journaling scheme
described above, then this recommendation does not need to be followed since every time
a learner interacts a new entry in the array is created.

Dot-Notation Binding Details

cmi.interactions._children The cmi.interactions._children data model element represents a listing of
supported data model elements. This data model element is typically used
by a SCO to determine which data model elements are supported by the
LMS. The characterstring returned may be used by the SCO to
dynamically build parameters for the GetValue() and SetValue() requests.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data model

elements in the Interaction parent data model element that are
supported by the LMS. Since all data model elements are
required to be supported by the LMS, the characterstring shall
represent the following data model elements:

o id
o type
o objectives
o timestamp
o correct_responses

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-43
© 2004 Advanced Distributed Learning. All Rights Reserved.

o weighting
o learner_response
o result
o latency
o description

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by an LMS as read-only.
• The LMS is responsible for returning a comma-separated list of

all of the data model elements (Refer to Data Model Element
Implementation Requirements above).

SCO Behavior Requirements:
• This data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.interactions._children data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return a comma-separated list of

data model elements supported by the LMS (Refer to Data Model
Element Implementation Requirements above) and set the error
code to “0” – No error. The ordering of data model elements is
not important. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.interactions._children, the LMS shall set the error code to
“404” – Data Model Element Is Read Only and return “false”.

Example:
• GetValue(“cmi.interactions._children”)

cmi.interactions._count The cmi.interactions._count keyword is used to describe the current
number of interactions being stored by the LMS. The total number of
entries currently being stored by the LMS shall be returned.
Data Model Element Implementation Requirements:

• Data Type: integer
• Value Space: Non-negative integer
• Format: The characterstring representing the number of

interactions that the LMS is currently persisting.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by the LMS as read-only.
• If the LMS receives a request to get the cmi.interactions._count

value prior to any interaction data being set, then the LMS shall
adhere to the requirements listed below for API Implementation
Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.interactions._count data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the number of interactions

currently stored by the LMS and set the error code to “0” – No
error.

o Until interaction data is available for the SCO, the
LMS shall return “0”, which indicates that there is no
interaction data currently being stored.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.interactions._count, then the LMS shall set the error code to

RTE-4-44 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

“404” – Data Model Element Is Read Only and return “false”.
Example:

• GetValue(“cmi.initeractions._count”)

cmi.interactions.n.id The cmi.interactions.n.id data model element is a label for the interaction.
This label shall be unique at least within the scope of the SCO per
interaction record.[1].
Data Model Element Implementation Requirements:

• Data Type: long_identifier_type
• Value Space: A characterstring (SPM: 4000) that represents a

valid URI as per RFC 2396 [6]. It is recommended that the URI
be a URN as per RFC 2141 [3].

• Format: Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the
long_identifier_type data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by an LMS as read/write.
• The LMS is only responsible for storage and retrieval of this data

model element along with any additional requirements stated in
the API Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.id data model element.

• SCOs have the responsibility of setting interaction data in a
sequential order. All arrays are implemented as packed arrays.
Packed arrays are implemented with no array positions being
skipped.

• The cmi.interactions.n.id is required to be set first for each
interaction that needs to be tracked by the SCO.

• It is recommended that a SCO not alter (set) existing interaction
ids during a learner attempt. If the SCO alters an
cmi.interactions.n.id during a learner attempt, this could corrupt
interaction data that has been collected in previous learner
sessions and provide inconsistent information about the
interaction.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.id currently stored by the LMS for the learner
and set the error code to “0” – No error. The characterstring
returned shall adhere to the requirements identified in the Data
Model Element Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the cmi.interactions.n.id
and the record of data has been created but the id data
model element has not been set by the SCO, then the
LMS shall set the error code to “403” Data Model
Element Value Not Initialized and return an empty
characterstring (“”).

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-45
© 2004 Advanced Distributed Learning. All Rights Reserved.

• SetValue(): The LMS shall set the cmi.interactions.n.id to the
supplied value in the SetValue() request, set the error code to “0”
– No error and return “true”.

o If the supplied value of the SetValue() does not meet
the requirements of the Data Model Element
Implementation Requirements, then the LMS shall set
the error code to “406” – Data Model Element Type
Mismatch and return “false”. The LMS shall not
alter the state of the data model element based on the
request .

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

Additional Behavior Requirements: The SCO is responsible for making
sure that new interaction information is inserted (SetValue()) in the index
list in a sequential order. The interaction’s identifier is a required field that
shall be set by the SCO if interaction data is will be requested to be tracked
by the SCO.
Example:

• GetValue(“cmi.interactions.0.id”)
• SetValue(“cmi.interactions.0.id”,”obj1”)

cmi.interactions.n.type The cmi.interactions.n.type data model element indicates which type of
interaction is recorded in an instance of an interaction. It is also used to
determine how the interaction response should be interpreted [1].
Data Model Element Implementation Requirements:

• Data Type: state (true_false, multiple_choice, fill_in,
long_fill_in, matching, performance, sequencing, likert, numeric,
other)

• Value Space: The IEEE draft defines ten state values. SCORM
binds these state values to the following restricted vocabulary
tokens:

o “true-false”: The interaction has two possible
responses [1]. SCORM requires that the two possible
responses be either “true” or “false”. No abbreviated
versions or alternative forms (i.e., t,f,1,0) shall be
permitted.

o “choice”: The interaction has a set of two or more
predefined responses from which the learner may select
[1].

o “fill-in”: The interaction requires the learner to supply
a short response in the form of one or more strings of
characters. Typically, the correct response consists of
part of a word, one word or a few words [1].

o “long-fill-in”: The interaction requires the learner to
supply a response in the form of a long string of
characters.

o “likert”: The interaction asks the learner to select from
a discrete set of choices on a scale [1].

o “matching”: The interaction consists of two sets of
items. Members of the first set are related to zero or
more members of the second set.

o “performance”: The interaction requires the learner to

RTE-4-46 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

perform a task that requires multiple steps [1].
o “sequencing”: The interaction requires the learner to

identify a logical order for members of a list [1].
o “numeric”: The interaction requires a numeric

response from the learner. The response is a simple
number with an optional decimal point [1].

o “other”: Any other type of interaction not defined by
the IEEE draft standard [1].

• Format: The format of the data model value shall be one of the
restricted tokens listed above (“true-false”, “choice”, “fill-in”,
“long-fill-in”, “matching”, “performance”, “sequencing”,
“likert”, “numeric” or “other”).

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by an LMS as read/write.
• The LMS is only responsible for storage and retrieval of this data

model element along with any additional requirements stated in
the API Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.type data model element.

• SCOs have the responsibility of setting interaction data in a
sequential order. All arrays are implemented as packed arrays.
Packed arrays are implemented with no array positions being
skipped.

• The cmi.interactions.n.type is required to be set for each
interaction that needs to be tracked by the SCO in which a
correct_response and/or learner_response is also being tracked.
The cmi.interactions.n.type shall be set prior to setting the
correct_response or learner_response. If the
cmi.interactions.n.type is not set prior to the correct_response or
learner_response, then a data model dependency is not being met.

• It is recommended that a SCO does not alter (set) existing
interaction types during a learner attempt. If the SCO alters an
interaction type during a learner attempt, this could corrupt
interaction data that has been collected in previous learner
sessions reflective of that type. By altering the type of the
interaction, correct_response and learner_response data may
become invalid.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.type currently stored by the LMS for the
learner and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.type and the record of data has been
created but the type data model element has not been

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-47
© 2004 Advanced Distributed Learning. All Rights Reserved.

set by the SCO, then the LMS shall set the error code
to “403” Data Model Element Value Not Initialized
and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.interactions.n.id to the
supplied value in the SetValue() request, set the error code to “0”
– No error and return “true”.

o If the SCO invokes a request to set the
cmi.interactions.n.type and the value is not a member
of the restricted vocabulary tokens described above,
then the LMS shall set the error code to “406” – Data
Model Element Type Mismatch and return “false”.
The LMS shall not alter the state of the data model
element based on the request .

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

Example:
• GetValue(“cmi.interactions.0.type”)
• SetValue(“cmi.interactions.0.type”,”true-false”)

objectives

cmi.interactions.n.objectives._count The cmi.interactions.n.objectives._count keyword is used to describe the
current number of objectives (i.e., objective identifiers) being stored by the
LMS. The total number of entries currently being stored by the LMS shall
be returned.
Data Model Element Implementation Requirements:

• Data Type: integer
• Value Space: Non-negative integer
• Format: The characterstring representing the number of

objective identifiers that the LMS is currently persisting. Refer
to Section 4.1.1.7: Data Types for more information on the
requirements for the format of the integer data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by the LMS as read-only.
• If the LMS receives a request to get the

cmi.interactions.n.objectives._count value prior to any interaction
objective identifiers being set, then the LMS shall adhere to the
requirements listed below for API Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.interactions.n.objectives._count data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the number of objective

identifiers for the interactions currently stored by the LMS and
set the error code to “0” – No error.

o Until objective identifiers are requested to be stored by
the SCO, the LMS shall return “0”, which indicates

RTE-4-48 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

that there is no objective identifiers for the interaction
data currently being stored. If no objective identifiers
are requested to be stored by the SCO, the LMS shall
return “0”, if requested by the SCO.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.interactions.n.objectives._count, then the LMS shall set the
error code to “404” – Data Model Element Is Read Only and
return “false”.

Example:
• GetValue(“cmi.interactions.0.objectives._count”)

cmi.interactions.n.objectives.n.id The cmi.interactions.n.objectives.n.id data model element is a label for
objectives associated with the interaction. The label shall be unique at least
within the scope of the SCO [1].
The objective identifiers may or may not correspond to the objective
identifiers found in the Objectives data model element
(cmi.objectives.n.id). Whether or not there is a relationship to the objective
identifiers is implementation specific. The SCO may be designed to track
this information and relationship.
The cmi.interactions.n.objectives.n.id is an array of objective identifiers.
The LMS shall maintain an array of at a least 10 (required SPM) of
objective identifiers. The LMS may extend the ability to store more,
however, this is implementation specific.
Data Model Element Implementation Requirements:

• Data Type: long_identifier_type
• Value Space: A characterstring (SPM: 4000) that represents a

valid URI as per RFC 2396 [6]. It is recommended that the URI
be a URN as per RFC 2141 [3].

• Format: Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the
long_identifier_type data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by an LMS as read/write.
• The LMS is only responsible for storage and retrieval of this data

model element along with any additional requirements stated in
the API Implementation Requirements.

• The LMS shall make be capable of storing at least 10 objective
identifiers (SPM requirement).

SCO Behavior Requirements:
• The data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.objectives.n.id data model
element.

• SCOs have the responsibility of setting interaction data in a
sequential order. All arrays are implemented as packed arrays.
Packed arrays are implemented with no array positions being
skipped.

• Prior to setting any associated objective identifiers, the SCO is
required to have set the cmi.interactions.n.id.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.objectives.n.id currently stored by the LMS for
the interaction and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-49
© 2004 Advanced Distributed Learning. All Rights Reserved.

as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
objective identifiers in the array), then the LMS shall
set the error code to “301” – General Get Failure and
return an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.objectives.n.id and the record of data
has been created but the objective identifier data model
element has not been set by the SCO, then the LMS
shall set the error code to “403” Data Model Element
Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): The LMS shall set the
cmi.interactions.n.objectives.n.id to the supplied value in the
SetValue() request, set the error code to “0” – No error and
return “true”.

o If the supplied value of the SetValue() does not meet
the requirements of the Data Model Element
Implementation Requirements, then the LMS shall set
the error code to “406” – Data Model Element Type
Mismatch and return “false”. The LMS shall not
alter the state of the data model element based on the
request .

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of objectives being
stored (can be determined by requesting the
cmi.interactions.n.objectives._count) or the current
number of interactions being stored (can be determined
by requesting the cmi.interactions._count), then the
LMS shall set the error code to “351” – General Set
Failure and return “false”. Refer to Section 3.1.7.6:
SCORM Extension Error Conditions.

o If the cmi.interactions.n.id has not set prior to the
request to set the cmi.interactions.n.objectives.n.id,
then the LMS shall set the error code to “408” – Data
Model Dependency Not Established, return “false”
and not change the current state of the data model
element.

Example:
• GetValue(“cmi.interactions.0.objectives.0.id”)
• SetValue(“cmi.interactions.0.objectives.0.id”,“urn:ADL:objectiv
e-id-0001”)

cmi.interactions.n.timestamp The cmi.interactions.n.timestamp data model element is the point in time at
which the interaction was first made available to the learner for learner
interaction and response [1]. The value of the timestamp is represented as
a point in time. If several interactions are presented at the same time, they
have the same timestamp value. If an interaction was never available for
response, such as an interaction that is not used in an adaptive test, no
timestamp value is available for that interaction. If a timestamp value is
available for an interaction but no learner response data is available, it
should be assumed the interaction has been available to the learner but the
learner did not respond to the interaction.

RTE-4-50 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Data Model Element Implementation Requirements:
• Data Type: time(second,10,2)
• Value Space: The data type denotes that the value for time is a

number expressed as a real data type with values that are accurate
to one hundredth of a second (0.01). The number of seconds in
the time value is the number of seconds since 00:00 on January 1,
1970 [1].

• Format: Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the
time(second,10,2) data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by an LMS as read/write.
• The LMS is only responsible for storage and retrieval of this data

model element along with any additional requirements stated in
the API Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.timestamp data model
element.

• SCOs have the responsibility of setting interaction data in a
sequential order. All arrays are implemented as packed arrays.
Packed arrays are implemented with no array positions being
skipped.

• Prior to setting any associated interaction timestamp, the SCO is
required to have set the cmi.interactions.n.id.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated interaction

timestamp currently stored by the LMS for the interaction and set
the error code to “0” – No error. The characterstring returned
shall adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.timestamp and the record of data has
been created but the timestamp data model element has
not been set by the SCO, then the LMS shall set the
error code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.interactions.n.timestamp
to the supplied value in the SetValue() request, set the error code
to “0” – No error and return “true”.

o If the supplied value of the SetValue() does not meet
the requirements of the Data Model Element
Implementation Requirements, then the LMS shall set
the error code to “406” – Data Model Element Type
Mismatch and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-51
© 2004 Advanced Distributed Learning. All Rights Reserved.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

o If the cmi.interactions.n.id has not set prior to the
request to set the cmi.interactions.n.timestamp, then the
LMS shall set the error code to “408” – Data Model
Dependency Not Established, return “false” and not
change the current state of the data model element.

Example:
• GetValue(“cmi.interactions.0.timestamp”)
• SetValue(“cmi.interactions.0.timestamp“2003-07-25T03:00:00”)

correct_responses

cmi.interactions.n.correct_responses
._count

The cmi.interactions.n.correct_responses._count keyword is used to
describe the current number of correct responses being stored by the LMS.
The total number of entries currently being stored by the LMS shall be
returned.
Data Model Element Implementation Requirements:

• Data Type: integer
• Value Space: Non-negative integer
• Format: The characterstring representing the number of correct

responses that the LMS is currently persisting. Refer to Section
4.1.1.7: Data Types for more information on the requirements for
the format of the integer data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented

by the LMS as read-only.
• If the LMS receives a request to get the

cmi.interactions.n.correct_responses._count value prior to any
correct responses for the interaction being set, then the LMS shall
adhere to the requirements listed below for API Implementation
Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.interacatins.n.correct_responses._count data
model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the number of correct

responses for the interactions currently stored by the LMS and
set the error code to “0” – No error.

o Until correct_responses are requested to be stored by
the SCO, the LMS shall return “0”, which indicates
that there is no correct responses for the interaction
data currently being stored. If no correct responses are
requested to be stored by the SCO, the LMS shall
return “0”, if requested by the SCO.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.interactions.n.correct_responses._count, then the LMS shall
set the error code to “404” – Data Model Element Is Read Only
and return “false”.

RTE-4-52 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Example:
• GetValue(“cmi.interactions.0.correct_responses._count”)

cmi.interactions.n.correct_responses
.n.pattern

The cmi.interactions.n.correct_responses.n.pattern data model element
defines the correct responses to the interaction. The format of the pattern
value depends on the type (cmi.interactions.n.type) of interaction.

The cmi.interactions.n.correct_responses.n.pattern is an array of correct
responses. Depending on the type (cmi.interactions.n.type) of interaction,
the number of correct responses required to be supported varies. Refer to
Section 4.2.9.1: Correct Responses Data Model Element Specifics for more
details on each type.

Data Model Element Implementation Requirements:
• The data type for the pattern varies depending on the type

(cmi.interactions.n.type) of interaction. Section 4.2.9.1: Correct
Responses Data Model Element Specifics defines the data model
element implementation requirements and format for each type
of interaction.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate. The

LMS cannot make any judgments of what the correct responses
are for the interaction. If an LMS receives a GetValue() request
prior to the value being set by the SCO, then the LMS shall set
the appropriate error code (Refer to API Implementation
Requirements).

SCO Behavior Requirements:
• The data model element is implemented by an LMS as

read/write. The SCO is permitted to retrieve and store the value
of the cmi.interactions.n.correct_responses.n.pattern data model
element. The data model element requirements and format for
the correct responses are described in detail in Section 4.2.9.1:
Correct Responses Data Model Element Specifics.

• Prior to setting any associated interaction correct response, the
SCO is required to have set the cmi.interactions.n.id and
cmi.interactions.n.type.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.correct_responses.n.pattern currently stored
by the LMS for the learner and set the error code to “0” – No
error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
correct_responses in the array), then the LMS shall set
the error code to “301” – General Get Failure and
return an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

• SetValue(): The LMS shall set the
cmi.interactions.n.correct_responses.n.pattern data model
element to the parameter passed as parameter_2 of the SetValue()
call, set the error code to “0” - No error and return “true”.

o If the SCO tries to set the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-53
© 2004 Advanced Distributed Learning. All Rights Reserved.

cmi.interactions.n.correct_responses.n.pattern to a
value that does not meet the requirements defined in
Section 4.2.9.1: Correct Responses Data Model
Element Specifics, then the LMS shall set the error
code to “406” - Data Model Element Type Mismatch,
return “false”. The LMS shall not alter the state of
the data model element based on the request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count) or correct response patterns
being stored (can be determined by requesting the
cmi.interactions.n.correct_responses._count), then the
LMS shall set the error code to “351” – General Set
Failure and return “false”. Refer to Section 3.1.7.6:
SCORM Extension Error Conditions.

o If the cmi.interactions.n.id and cmi.interactions.n.type
are not set prior to the request to set the
cmi.interactions.n.correct_responses.n.pattern, then
the LMS shall set the error code to “408” – Data
Model Dependency Not Established, return “false”
and not change the current state of the data model
element.

Example:

• GetValue(“cmi.interactions.0.correct_responses.1.pattern”)
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”true”)

cmi.interactions.n.weighting The cmi.interactions.n.weighting data model element is the weight used by
the SCO to compute a total score. The interaction weights typically are
used to explain the effect of an interaction on a total score but are not
intended to be used by systems other than the SCO to compute the score
[1]. How this value or any calculation of a total score is computed by the
SCO is outside the scope of SCORM.

Data Model Element Implementation Requirements:
• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to

seven significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real (10,7)
data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate. The

LMS cannot make any judgments of the weighting of the
interaction unless reported otherwise from the SCO. If an LMS
receives a GetValue() request prior to the value being set by the
SCO, then the LMS shall set the appropriate error code (Refer to
API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.weighting data model
element.

• Prior to setting any associated interaction weighting, the SCO is
required to have set the cmi.interactions.n.id

RTE-4-54 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.weighting currently stored by the LMS for the
learner and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.weighting and the record of data has
been created but the weighting data model element has
not been set by the SCO, then the LMS shall set the
error code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.interactions.n.weighting
data model element to the parameter passed as parameter_2 of
the SetValue() call, set the error code to “0” - No error and return
“true”.

o If the SCO tries to set the cmi.interactions.n.weighting
to a value that is not a real number, then the LMS shall
set the error code to “406” - Data Model Element Type
Mismatch, return “false”. The LMS shall not alter
the state of the data model element based on the
request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

o If the cmi.interactions.n.id has not set prior to the
request to set the cmi.interactions.n.weighting, then the
LMS shall set the error code to “408” – Data Model
Dependency Not Established, return “false” and not
change the current state of the data model element.

Example:
• GetValue(“cmi.interactions.0.weighting”)
• SetValue(“cmi.interactions.0.weighting”,”1.0”)

cmi.interactions.n.learner_response The cmi.interactions.n.learner_response data model element consists of
the data generated when a learner responds to an interaction [1]. The
learner’s response shall have one of ten possible variants. Each variant
depends on the type (i.e., cmi.interactions.n.type) of interaction.

Refer to Section 4.2.9.2: Learner Response Data Model Element Specifics
for more details on each type.

Data Model Element Implementation Requirements:
• The data type for the value varies depending on the type

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-55
© 2004 Advanced Distributed Learning. All Rights Reserved.

(cmi.interactions.n.type) of interaction. Section 4.2.9.2: Learner
Response Data Model Element Specifics defines the data model
element implementation requirements and format for each type
of interaction.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate. The

LMS is not responsible for making any judgments of whether or
not the learner response is correct. If an LMS receives a
GetValue() request prior to the value being set by the SCO, then
the LMS shall set the appropriate error code (Refer to API
Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.learner_response data model
element. The data model element requirements and format for
the learner response are described in detail in Section 4.2.9.2:
Learner Response Data Model Element Specifics.

• Prior to setting any associated interaction learner response, the
SCO is required to have set the cmi.interactions.n.id and
cmi.interactions.n.type.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.learner_response currently stored by the LMS
for the learner and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.learner_response and the record of
data has been created but the learner_response data
model element has not been set by the SCO, then the
LMS shall set the error code to “403” Data Model
Element Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): The LMS shall set the
cmi.interactions.n.learner_response data model element to the
parameter passed as parameter_2 of the SetValue() call, set the
error code to “0” - No error and return “true”.

o If the SCO tries to set the
cmi.interactions.n.learner_response to a value that
does not meet the requirements defined in Section
4.2.9.2: Learner Response Data Model Element
Specifics, then the LMS shall set the error code to
“406” - Data Model Element Type Mismatch, return
“false”. The LMS shall not alter the state of the data
model element based on the request.

RTE-4-56 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

o If the cmi.interactions.n.id and cmi.interactions.n.type
are not set prior to the request to set the
cmi.interactions.n.learner_response, then the LMS
shall set the error code to “408” – Data Model
Dependency Not Established, return “false” and not
change the current state of the data model element.

Example:

• GetValue(“cmi.interactions.0.learner_response”)
• SetValue(“cmi.interactions.0.learner_response”,”true”)

cmi.interactions.n.result The cmi.interactions.n.result data model element is a judgment of the
correctness of the learner response [1].

Data Model Element Implementation Requirements:
• Data Type: state (correct, wrong, unanticipated, neutral, real

(10,7))
• Value Space: The IEEE draft defines five state values. SCORM

binds these state values to the following restricted vocabulary
tokens:

o “correct”: The learner response was correct [1].
o “incorrect”: The learner response was incorrect [1].
o “unanticipated”: The learner response was not

expected [1].
o “neutral”: The learner response was neither correct nor

incorrect [1].
o real (10,7): A real number. This result provides the

capability of reporting a numeric estimate of the
correctness of the learner response [1].

• Format: The format of the data model value shall be one of the
restricted tokens listed above (“correct”, “wrong”,
“unanticipated”, “neutral”) or a real number with values that is
accurate to seven significant decimal figures real.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate. The

LMS cannot make any judgments of the result for the learner
response of the interaction unless reported otherwise from the
SCO. If an LMS receives a GetValue() request prior to the value
being set by the SCO, then the LMS shall set the appropriate
error code (Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interacations.n.result data model element.

• Prior to setting any associated interaction result, the SCO is
required to have set the cmi.interactions.n.id.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-57
© 2004 Advanced Distributed Learning. All Rights Reserved.

cmi.interactions.n.result currently stored by the LMS for the
learner and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.result and the record of data has
been created but the result data model element has not
been set by the SCO, then the LMS shall set the error
code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.interactions.n.result data
model element to the parameter passed as parameter_2 of the
SetValue() call, set the error code to “0” - No error and return
“true”.

o If the SCO tries to set the cmi.interactions.n.result to a
value that does not meet the Data Model
Implementation Requirements, then the LMS shall set
the error code to “406” - Data Model Element Type
Mismatch, return “false”. The LMS shall not alter
the state of the data model element based on the
request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

o If the cmi.interactions.n.id has not set prior to the
request to set the cmi.interactions.n.result, then the
LMS shall set the error code to “408” – Data Model
Dependency Not Established, return “false” and not
change the current state of the data model element.

Example:

• GetValue(“cmi.interactions.0.result”)
• SetValue(“cmi.interactions.0.result”,”1.0”)
• SetValue(“cmi.interactions.0.result”,”correct”)

cmi.interactions.n.latency The cmi.interactions.n.latency data element is the time elapsed between the
time the interaction was made available to the learner for response and the
time of the first response. The latency information is not available for an
interaction if the learner did not respond. The latency is, in effect, the time
difference between the cmi.interactions.n.timestamp of the interaction and
the time of the first response [1].

Data Model Element Implementation Requirements:
• Data Type: timeinterval (second,10,2) - a time interval with

RTE-4-58 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

resolution to 0.01 seconds
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
timeinterval (second,10,2) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate. The

LMS cannot make any judgments of the latency for the
interaction unless reported otherwise from the SCO. If an LMS
receives a GetValue() request prior to the value being set by the
SCO, then the LMS shall set the appropriate error code (Refer to
API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.latency data model element.

• Prior to setting any associated interaction latency, the SCO is
required to have set the cmi.interactions.n.id.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.latency currently stored by the LMS for the
learner and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.latency and the record of data has
been created but the latency data model element has
not been set by the SCO, then the LMS shall set the
error code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.interactions.n.latency
data model element to the parameter passed as parameter_2 of
the SetValue() call, set the error code to “0” - No error and return
“true”.

o If the SCO tries to set the cmi.interactions.n.latency to
a value that does not meet the Data Model
Implementation Requirements, then the LMS shall set
the error code to “406” - Data Model Element Type
Mismatch, return “false”. The LMS shall not alter
the state of the data model element based on the
request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-59
© 2004 Advanced Distributed Learning. All Rights Reserved.

error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

o If the cmi.interactions.n.id has not set prior to the
request to set the cmi.interactions.n.latency, then the
LMS shall set the error code to “408” – Data Model
Dependency Not Established, return “false” and not
change the current state of the data model element.

Example:

• GetValue(“cmi.interactions.0.latency”)
• SetValue(“cmi.interactions.0.latency”,” PT5M”) – A period of

time of 5 minutes

cmi.interactions.n.description The cmi.interactions.n.description data model element is a brief
informative description of the interaction.

Data Model Element Implementation Requirements:
• Data Type: localized_string_type (SPM: 250)
• Value Space: A characterstring that represents a localized

characterstring.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
localized_string_type data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate. The

LMS cannot make any judgments on the description for the
interaction unless reported otherwise from the SCO. If an LMS
receives a GetValue() request prior to the value being set by the
SCO, then the LMS shall set the appropriate error code (Refer to
API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.interactions.n.description data model
element.

• Prior to setting any associated interaction description, the SCO is
required to have set the cmi.interactions.n.id.

• During a SetValue() request, the SCO should be aware the
delimiter is optional. If the delimiter is not part of the
characterstring, the LMS will assume that the default language is
“en”.

• During a GetValue() request, the SCO should be aware that the
delimiter may be part of the characterstring returned by the LMS
(depending on the LMS implementation). What the SCO does
with the characterstring returned by the LMS is dependent on the
implementation of the SCO. If the characterstring does not
contain the delimiter, then the SCO can assume that the language
is “en”.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.interactions.n.description currently stored by the LMS for
the interaction and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()

RTE-4-60 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only 3
interactions in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section 3.1.7.6:
SCORM Extension Error Conditions for further
recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.interactions.n.description and the record of data
has been created but the description data model
element has not been set by the SCO, then the LMS
shall set the error code to “403” Data Model Element
Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): The LMS shall set the
cmi.interactions.n.description data model element to the
parameter passed as parameter_2 of the SetValue() call, set the
error code to “0” - No error and return “true”.

o If the SCO tries to set the
cmi.interactions.n.description to a value that does not
meet the Data Model Implementation Requirements,
then the LMS shall set the error code to “406” - Data
Model Element Type Mismatch, return “false”. The
LMS shall not alter the state of the data model element
based on the request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number that
is greater than the current number of interactions being
stored (can be determined by requesting the
cmi.interactions._count), then the LMS shall set the
error code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM Extension
Error Conditions.

o If the cmi.interactions.n.id has not set prior to the
request to set the cmi.interactions.n.description, then
the LMS shall set the error code to “408” – Data
Model Dependency Not Established, return “false”
and not change the current state of the data model
element.

Example:

• GetValue(“cmi.interactions.0.description”)
• SetValue(“cmi.interactions.0.description”,”Which of the

following are red?”) - default language of en is used.

Table 4.2.9a: Dot-notation Binding for the Interactions Data Model Element

4.2.9.1 Correct Responses Data Model Element Specifics

The cmi.interactions.n.correct_responses.n.pattern data model element holds
values that vary depending on the interaction type (cmi.interactions.n.type). This
section defines the requirements of the data model value for the characterstring value
defined by the pattern.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-61
© 2004 Advanced Distributed Learning. All Rights Reserved.

Interaction
Type

Characterstring Pattern

true-false The IEEE draft defines the true_false data value as:

true_false:
 state(true, false)
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1
• Format: The IEEE draft defines two state values. SCORM binds these state

values to the following restricted vocabulary tokens:
o “true”: Indicates that the correct response is true
o “false”: Indicates that the correct response is false.

LMS Behavior Requirements:
• There is only one correct response for this type of interaction. If a SCO tries to

invoke a SetValue() to store an additional pattern, the LMS shall set the error
code to “351” – General Set Failure and return “false”. The LMS shall not
add the new value to the valid list of patterns nor should the LMS alter the state
of the currently stored pattern.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”, “true”)

choice The IEEE draft defines the multiple choice data value as:

multiple_choice:
 bag of set of short_identifier_type
 // bag SPM: 10 sets, each set SPM: 36 short_identifier_type

This indicates that the characterstring value for multiple-choice correct responses needs to
be a representation of a bag of a set of identifiers (where the short_identifier_type defines
the format of the identifiers). The bag contains one or more sets, any of which satisfies the
requirement for a correct response. Each set contains one or more short_identifier_types,
all of which are required for a correct response. Each of the short_identifier_types
represents an expected choice.

The use of the index position (n) for the pattern
(cmi.interactions.n.correct_responses.n.pattern) represents the number of sets in the bag
(correct responses). The LMS shall maintain the array of at least 10 (required SPM)
patterns for the correct response. The LMS may extend the ability to store more, however,
this is implementation specific. The LMS is only responsible for managing the SPM of 10.

The set is represented by the format of the characterstring that is stored in each of the
correct_responses array positions. The special reserved token “[,]”shall be used as the
delimiter for separating short_identifier_types in the set. The characterstring that is built
shall support the SPM of 36 short_identifier_types. This indicates that a LMS only has to
support the SPM of 36 short_identifier_types. The LMS may extend the ability to support
more, however, this is implementation specific. The LMS is only responsible for managing
the SPM of 36 short_identifier_types.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Value Space: A characterstring that represents sets of short_identifier_types

separated by a special reserved token (“[,]”). The characterstring has an SPM of
36 short_identifier_types. Each short_identifier_type shall be a valid URI. Refer
to Section 4.1.1.7: Data Types for more information on the requirements for the
format of the short_identifier_type data type.

• Format: The format of the characterstring shall be:
o short_identifier_type“[,]”short_identifier_type

The following requirements shall be adhered to in building the characterstring:
• The set shall contain at least one short_identifier_type. If the set contains more

RTE-4-62 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

than one short_identifier_type (interaction has multiple correct answers – all of which
are required) each shall be separated by the special reserved token “[,]”.
• If the interaction contains multiple sets of correct responses, each set shall stored in
a separate position in the pattern array (n.pattern).
• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the correct_response. How the LMS and or SCO handles and
processes the correct_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to display
the value to a learner.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,“

choice1[,]choice2[,]choice3”)
• SetValue(“cmi.interactions.0.correct_responses.1.pattern”,” choice1[,]choice2”)

The above SetValue() examples indicates that the correct response for the interaction stored
at position 0, is either

• “choice1”, “choice2” and “choice3” or,
• “choice1” and “choice2”

fill-in The IEEE draft defines the fill_in data value as:

fill_in:
 bag of record
 {
 case_matters:
 boolean,
 order_matters:
 boolean,
 match_text:
 array (0..9) of localized_string_type(250),
 // 250 parameter value is a SPM
 // array dimension is an SPM
 }// bag SPM: 5

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The format of the characterstring shall be the following:

o {case_matters=<boolean>}{order_matters=<boolean>}{lang=<langua
ge_type>}<fill-in correct response>[,]{lang=<language_type>}<fill-in
correct response>

The following requirements shall be adhered to in building the characterstring:

• The {case_matters=<boolean>} indicates whether or not the case matters
for judgment of correct responses. The {case_matters=<boolean>} is a
special reserved delimiter that shall be the first set of characters found in the
characterstring. The <boolean> value shall be either “true” or “false”.
The default value for case_matters is “false”. If case does not matter, the
characterstring can opt to not include this special reserved delimiter. The
case_matters value shall be applied to all of the characterstrings in the array of
matching text.

• The {order_matters=<boolean>} indicates whether the order of the
inputs for a correct response matters. The {order_matters=<boolean>}
is a special reserved delimiter that shall be the set of characters found after the
{case_matters=<boolean>} delimiter. The <boolean> value shall be
either “true” or “false”. The default value for order_matters is “true”. If
the order_matters is set to true, then order matters and the learner must
provide each input in the exact order as defined by the correct response. If the
value of the order_matters is set to “false”, then order does not matter
and the learner may provide inputs in any order.

• The {lang=<language_type>} indicates the language of the
characterstring. The {lang=<language_type>} is a special reserved

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-63
© 2004 Advanced Distributed Learning. All Rights Reserved.

delimiter that shall be either:
o The first set of characters in the characterstring if the

{case_matters=<boolean>} and
{order_matters=<boolean>} special reserved delimiters are
not used or,

o The second set of characters in the characterstring if the
{case_matters=<boolean>} special reserved delimiter is not
used or,

o The third set of characters in the characterstring if both the
{case_matters=<boolean>} and
{order_matters=<boolean>} special reserved delimiters are
used

• The default language_type shall be “en” (English). The
{lang=<language_type>} is optional. If not supplied the default language
of the characterstring is “en”. Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the localized_string_type data
type.

• If the interaction has multiple correct answers (e.g., car and automobile are
acceptable), then each of these correct responses shall be stored in a separate
position in the pattern array (n.pattern).

• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the correct_response. How the LMS and or SCO handles and
processes the correct_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,

“{case_matters=true}{lang=en}car”)
• SetValue(“cmi.interactions.0.correct_responses.1.pattern”,

“{case_matters=true}{lang=en}automobile”
This is an example of a fill_in where the correct response is two choices. The API
method calls indicate that the correct response is “car” or “automobile”. The correct
response has to be all lowercase and the language of the characterstring is English.

• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”{lang=en}car”)
This is an example of a fill_in where the correct response is one choice. The API
method call indicates that the correct response is “car”. The case does not matter,
however, the language of the characterstring is English.

• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”car”)
This is an example of a fill_in where the correct response is one choice. The API
method call indicates that the correct response is “car”. Since neither of the special
reserved delimiters are not used the default value for these reserved delimiters are used
(case matters is false and language is English.

• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”{case_matters=true}{
order_matters=true}car[,]automobile”)

This is an example of a fill_in where the given interaction contains two fill-in
responses. The API method call indicates that the correct response to the fill-in is car
and automobile, the case does not matter, the order of input does matter and the
default language of English applies.

long-fill-in The IEEE draft defines the long_fill_in data value as:

fill_in:
 bag of record
 {
 case_matters:
 boolean,

RTE-4-64 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

 match_text:
 localized_string_type(4000),
 // 4000 parameter value is a SPM
 }// bag SPM: 5

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The format of the characterstring shall be the following:

o {case_matters=<boolean>}{lang=<language_type>}<long-fill-in
correct response>

The following requirements shall be adhered to in building the characterstring:

• The {case_matters=<boolean>} indicates whether or not the case matters
for judgment of correct responses. The {case_matters=<boolean>} is a
special reserved delimiter that shall be the first set of characters found in the
characterstring. The <boolean> value shall be either “true” or “false”.
The default value for case_matters is “false”. If case does not matter, the
characterstring can opt to not include this special reserved delimiter.

• The {lang=<language_type>} indicates the language of the
characterstring. The {lang=<language_type>} is a special reserved
delimiter that shall be either:

o The first set of characters in the characterstring if the
{case_matters=<boolean>} and
{order_matters=<boolean>} special reserved delimiters are
not used or,

o The second set of characters in the characterstring if the
{case_matters=<boolean>} special reserved delimiter is not
used or,

o The third set of characters in the characterstring if both the
{case_matters=<boolean>} and
{order_matters=<boolean>} special reserved delimiters are
used

• The default language_type shall be “en” (English). The
{lang=<language_type>} is optional. If not supplied the default language
of the characterstring is “en”. Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the localized_string_type data
type.

• If the interaction has multiple correct answers (e.g., The Gettysburg Address or
the Emancipation Proclamation are acceptable), then each of these correct
responses shall be stored in a separate position in the pattern array (n.pattern).

• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the correct_response. How the LMS and or SCO handles and
processes the correct_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
The following examples do not include the entire Gettysburg Address. They are written to
save space and to describe the data type only. A practical use would include the entire text
of the Gettysburg Address.

• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,
“{case_matters=true}{lang=en}Four score and seven years ago…”)

Indicates that the correct response is the Gettysburg Address where case matters (as
identified by the <long-fill-in correct response> value). The language
of the characterstring is English.

• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”{lang=en}Four score
an seven years ago…”)

Indicates that the correct response is the Gettysburg Address where case does not
matter. Since the {case_matters=<boolean>} special reserved delimiter was
not used, the default value of “false” is used to indicate that case does not matter.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-65
© 2004 Advanced Distributed Learning. All Rights Reserved.

The language of the characterstring is English.

• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”car”)
Indicates that the correct response is “car”. Since neither of the special reserved
delimiters are not used the default value for these reserved delimiters are used (case
matters is false and language is English.

likert The IEEE draft defines the likert data value as:
likert:
 short_identifier_type
The likert is a short identifier that matches a choice on a scale. Although a correct response
for likert interactions can be specified, likert interactions typically do not have correct
responses [1].

Data Model Element Implementation Requirements:
• Data Type: short_identifier_type
• Value Space: The short_identifier_type shall be bound as a characterstring. The

short_identifier_type shall be a valid URI as per RFC 2396 [6].
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the short_identifier_type data type.

LMS Behavior Requirements:
• There is only one correct response for this type of interaction. If a SCO tries to

invoke a SetValue() to store an additional pattern, the LMS shall set the error
code to “351” – General Set Failure and return “false”. The LMS shall not
add the new value to the valid list of patterns nor should the LMS alter the state
of the currently stored pattern.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,“a”)
Indicates that the correct response for the likert interaction is “a”. The SCO is
responsible for understanding the identifier value.

• SetValue(“cmi.interactions.1.correct_responses.0.pattern”,” likert_1”)
Indicates that the correct response for the likert interaction is “likert_1”. The SCO is
responsible for understanding the identifier value.

matching The IEEE draft defines the matching data value as:

matching:
 bag of bag of record
 {
 source:
 short_identifier_type,
 target:
 short_identifier_type,
 } // outer bag SPM: 5, inner bag SPM: 36

The matching data type represents a bag of bag of records. The outer bag contains 1 or
more inner bags, any of which satisfies the requirement for a correct response. Each inner
bag contains one or more records. If more than one inner bags exists, any of the inner bags
satisfies the requirement for a correct response. If more than one record is contained by an
inner bag, all the records are required for the correct response specified by the inner bag.
Each of the records is a pair of short_identifier_types representing an expected matching
input [1].

The use of the of the index position (n) for the pattern
(cmi.interactions.n.correct_responses.n.pattern) represents the outer bag. The LMS shall
maintain the array of at least 5 (required SPM) patterns for the correct response. The LMS
may extend the ability to store more, however, this is implementation specific. The LMS is
only responsible for managing the SPM of 5.

The inner bag is represented by the format of the characterstring that is stored in each of the
pattern array positions. The special reserved token “[,]”shall be used as the delimiter for

RTE-4-66 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

separating short_identifier_types (source/target pairs) in the inner bag. The characterstring
that is built shall support the SPM of 36 short_identifier_types. This indicates that a LMS
only has to support the SPM of 36 short_identifier_types. The LMS may extend the ability
to support more, however, this is implementation specific. The LMS is only responsible for
managing the SPM of 36 short_identifier_types.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Value Space: A characterstring that represents collection of matching pairs

representing correct responses.
• Format: The characterstring shall have the following format:

o <target> “[.]“<source>

The following requirements shall be adhered to in building the characterstring:
• The <target> is represented as a short_identifier_type
• The <source> is represented as a short_identifier_type
• Refer to Section 4.1.1.7: Data Types for more information on the requirements

for the format of the short_identifier_type data type.
• The “[.]” is the special reserved token to delimit the <target> and <source>.
• The “[,]” is the special reserved token to delimit multiple <target>/<source>

pairs.
• If the interaction has multiple correct answers (e.g., “1[.]a[,]2[.]b[,]3[.]c” and

“1[.]b[,]2[.]a[,]3[.]c” are acceptable), then each of these correct responses shall
be stored in a separate position in the pattern array (n.pattern).

• At least one <target>/<source> pair is required, other pairs are optional.
• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware

of the format of the correct_response. How the LMS and or SCO handles and
processes the correct_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”, “1[.]a[,]2[.]c[,]3[.]b”)
Indicates that the correct response for the matching interaction is:

Source Target
1 a
2 c
3 b

The SCO is responsible for understanding the meaning of the short identifier values.

performance The IEEE draft defines the performance data value as:

performance:
 bag of record
 (
 order_matters:
 boolean,
 answers:
 array(0..124) of record
 // array dimension is an SPM,
 (
 step_name :
 short_identifier_type,
 step_answer :
 choice
 (
 state(literal, numeric)
)
 of
 (
 literal :

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-67
© 2004 Advanced Distributed Learning. All Rights Reserved.

 characterstring (iso-10646-1),
 // SPM 250
 numeric :
 record
 (
 min :
 real (10,7),
 max :
 real (10,7),
)
)
)
) // bag SPM: 5

The performance correct response is a bag of records. The bag contains 1 or more records,
any of which satisfies the requirement for a correct response.

Each record consists of a flag and an array. The array represents a set of inputs for a
correct response. The flag indicates whether the order of the inputs matters for a correct
response. If the order matters, the learner must provide each input in the exact order as
defined by the array. If the order does not matter, the learner may provide the inputs in any
order. The default value (if order_matters is not specified) is “true” (order matters)

Each input consists of a name and either a single literal value or a numeric range. If an
input is expressed as a literal value, the interaction implementation determines how to use
the value to evaluate the corresponding response. If an input is expressed as a numeric
range, the learner is required to provide an input within that range.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The characterstring shall have the following format:

o {order_matters=<boolean>}<step_name>”[.]”<step_
answer>

The following requirements shall be adhered to in building the characterstring:
• The {order_matters=<boolean>} is a special reserved delimiter that

indicates whether the order matters. The delimiter is optional. If the delimiter is
omitted, then the default value of “true” shall be utilized. No white space shall
appear before this tag.

• The <step_name> shall be a valid short_identifier_type.
• The special delimiter between the <step_name> and <step_answer> shall

be the special reserved token of“[.]”.
• The separator between <step_name> and <step_answer> pairs shall be the special

reserved token of “[,]”. This delimiter can be easily discarded during any parsing
routine.

• The <step_name> may be omitted if there is no step name but only a
<step_answer>. In this case, the special reserved token (“[.]”) shall still be
present before the <step_answer>.

• The <step_answer> may also be omitted. In this case, the special reserved
token (“[.]”) shall still be present after the <step_name>.

• If the <step_answer> consists entirely of a single space character, the
<step_answer> shall still be preceded by the special reserved token (“[.]”).

• If the interaction has multiple correct answers, then each of these correct
responses shall be stored in a separate position in the pattern array (n.pattern).

• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the correct_response. How the LMS and or SCO handles and
processes the correct_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,

RTE-4-68 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

“{order_matters=true}step_1[.]remove safety[,]step_2[.]fire weapon”)
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,”First step[.]inspect

wound[,]Second step[.]clean wound[,]Third step[.]apply bandage”)

sequencing The IEEE draft defines the sequencing data value as:

sequencing:
 bag of array (0..35) of short_identifier_type,
 // bag SPM: 5, array dimension is an SPM

The sequencing correct response is a bag of arrays of short_identifier_types.

The use of the index position (n) for the pattern
(cmi.interactions.n.correct_responses.n.pattern) represents the bag. The bag contains 1 or
more arrays, any of which satisfies the requirement for a correct response. The LMS shall
maintain the array of at least 5 (required SPM) patterns for the correct response. The LMS
may extend the ability to store more, however, this is implementation specific. The LMS is
only responsible for managing the SPM of 5.

Each array represents a sequence of short_identifier_types for a correct response. The
sequence of short_identifier_types are represented as one characterstring. Each short
identifier shall be separated by the following special reserved token “[,]”.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The characterstring shall have the following format:

o <sequence_value>“[,]”<sequence_value>

The following requirements shall be adhered to in building the characterstring:
• The <sequence_value>is represented as a short_identifier_type
• If numerous correct responses are acceptable, then each of these correct

responses shall be stored in a separate position in the pattern array (n.pattern).
• Refer to Section 4.1.1.7: Data Types for more information on the requirements

for the format of the short_identifier_type data type.
• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware

of the format of the correct_response. How the LMS and or SCO handles and
processes the correct_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.correct_responses.0.pattern”,“a[,]b[,]c[:]b[,]c[,]a”)
• SetValue(“cmi.interaction.0.correct_response.1.pattern”,”

buildHouse/buyMaterials[,]buildHouse/buildFoundation[,]buildHouse/buildFirst
Floor[,]buildHouse/buildSecondFloor”)

In the first example, the correct response is the sequence of a then b then c, or b then c then
a. The SCO is responsible for understanding and managing the values used for the
short_identifier_types.

numeric The IEEE draft defines the numeric data value as:

numeric:
 record
 (
 min:
 real (10,7),
 max:
 real (10,7)
)
The numeric correct response is represented as two numbers with an optional decimal
point. The numbers may be used to express an inclusive range for the correct response. If

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-69
© 2004 Advanced Distributed Learning. All Rights Reserved.

the numbers are the same, then a single number is specified as the correct response [1].

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The characterstring shall have the following format:

o <minimum>“[:]”<maximum>

The following requirements shall be adhered to in building the characterstring:
• The <minimum> and <maximum> can be optionally used. However at least

one shall be present.
• <minimum>[:]<maximum> Indicates that the correct response is greater than

the minimum value supplied and less than the maximum value supplied. If the
<minimum> and the <maximum> are identical numbers, then the correct
response is that number.

• [:]<maximum> Indicates that there is no lower bound for the correct response,
only an upper bound.

• <minimum>[:] Indicates that there is no upper bound for the correct response,
only a lower bound.

• Refer to Section 4.1.1.7: Data Types for more information on the requirements
for the format of the real (10,7) data type.

LMS Behavior Requirements:
• There is only one correct response for this type of interaction. If a SCO tries to

invoke a SetValue() to store an additional pattern, the LMS shall set the error
code to “351” – General Set Failure and return “false”. The LMS shall not
add the new value to the valid list of patterns nor should the LMS alter the state
of the currently stored pattern.

Examples:

• SetValue(“cmi.interactions.0.correct_response.0.pattern”,“4[:]10”)
• SetValue(“cmi.interactions.0.correct_response.0.pattern”, “[:]10”)
• SetValue(“cmi.interactions.0.correct_response.0.pattern”, “4[:]”)
• SetValue(“cmi.interactions.0.correct_response.0.pattern”, “3.14159[:]3.14159”)

other The IEEE draft defines the other data value as:

other:
 characterstring (iso-10646-1) // SPM 4000
The other correct response is used to support other types of interactions not defined by the
standard. The value of the string is left to the implementer of the interaction.

Table 4.2.9.1a: Correct Response Format Requirements

4.2.9.2 Learner Response Data Model Element Specifics

The cmi.interactions.n.learner_response data model element holds values that
vary depending on the interaction type (cmi.interactions.n.type). This section
defines the requirements of the data model value for characterstring defined by the
learner_response.

Interaction
Type

Characterstring Pattern

true-false The IEEE draft defines the true_false data value as:

true_false:
 state(true, false)

The learner_response is a state that contains the values of “true” or “false”.

Data Model Element Implementation Requirements:

RTE-4-70 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• Data Type: characterstring
• Value Space: ISO-10646-1
• Format: The IEEE draft defines two state values. SCORM binds these state

values to the following restricted vocabulary tokens:

o “true”: Indicates that the learner response is true or a synonym of true
(e.g., agree, yes)

o “false”: Indicates that the learner response is false or a synonym of
false (e.g., disagree, no)

Example:
• SetValue(“cmi.interactions.0.learner_response”,“true”)

choice The IEEE draft defines the multiple choice data value as:

multiple_choice:
 bag of short_identifier_type

A bag of short_identifier_types. If the interaction allowed only one choice, the bag
contains only one short identifier. If the interaction allowed more than one choice or more
than one combination of choices, the combination of choices made by the learner is
represented by the short_identifier_types in the bag. The values of the identifiers in the bag
represent the choices made by the learner.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Value Space: The characterstring represents the bag of short_identifier_types.

Each short_identifier_type (representing the learner’s response) shall be
delimited by the special reserved token “[,]”. Each short_identifier_type shall
have a SPM of 250 characters.

• Format: Refer to Section 4.1.1.7: Data Types for more information on the
requirements for the format of the short_identifier_type data type.

During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware of the
format of the learner_response. How the LMS and or SCO handles and processes the
learner_response is outside the scope of SCORM. For example, the SCO may need to
parse the characterstring returned from the LMS in order to display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.learner_response”, “choice1[,]choice2[,]choice3”)

The above SetValue() examples indicates that the learner response for the interaction
stored at position 0, where the “[,]” acts as the delimiter for items in the set, is:
“choice1, choice2, choice3”

fill-in The IEEE draft defines the fill_in data value as:

fill_in:
{
 array (0..9) of localized_string_type(250),
 // array dimension is an SPM
 // 250 parameter value is a SPM
}

The learner response for the fill_in interaction type is a localized characterstring.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The format of the characterstring shall be the following:

o {lang=<language_type>}<fill-in learner
response>[,]{lang=<language_type>}<fill-in learner response>

The characterstring is a set of {lang=<language_type>}<fill-in learner
response> values separated by the reserved delimiter: [,]. The

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-71
© 2004 Advanced Distributed Learning. All Rights Reserved.

{lang=<language_type>} delimiter is optional. If not provided in the
characterstring the default value of “en” shall be assumed. The SPM for the
number of fill-in responses represented in the characterstring is 10.

The following requirements shall be adhered to in building the characterstring:
• The {lang=<language_type>} indicates the language of the

characterstring. The {lang=<language_type>} is a special reserved
delimiter that shall be the first set of characters in the characterstring

• The default language_type shall be “en” (English). The
{lang=<language_type>} is optional. If not supplied the default language
of the characterstring is “en”. Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the localized_string_type data
type.

• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the learner_response. How the LMS and or SCO handles and
processes the learner_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:

• SetValue(“cmi.interactions.0.learner_response”, “{lang=en}car”)
Indicates that the learner response is “car”. The language of the characterstring is
English.

• SetValue(“cmi.interactions.0.learner_response”,”car”)
Indicates that the learner response is “car”. Since the language was not indicated in
the characterstring the default value for the reserved delimiter is used (language is
English.

• SetValue(“cmi.interactions.0.learner_response”,”car[,]automobile”)
The fill-in interaction presented to the learner had two entries for the learner to fill in a
response to. This call indicates that the learner responded with “car” for the first fill-
in and “automobile” for the second fill-in. Since the language was not indicated in the
characterstring the default value for the reserved delimiter is used (language is
English.

long-fill-in The IEEE draft defines the long_fill_in data value as:

fill_in:
{
 localized_string_type(4000),
 // 4000 parameter value is a SPM
}

The learner response for the long_fill_in interaction type is a localized characterstring.

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The format of the characterstring shall be the following:

o {lang=<language_type>}<long-fill-in learner response>

The following requirements shall be adhered to in building the characterstring:

• The {lang=<language_type>} indicates the language of the
characterstring. The {lang=<language_type>} is a special reserved
delimiter that shall be the first set of characters in the characterstring

• The default language_type shall be “en” (English). The
{lang=<language_type>} is optional. If not supplied the default language
of the characterstring is “en”. Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the localized_string_type data
type.

RTE-4-72 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware of the
format of the learner_response. How the LMS and or SCO handles and processes the
learner_response is outside the scope of SCORM. For example, the SCO may need to
parse the characterstring returned from the LMS in order to display the value to a learner.

Example:
The following examples do not include the entire Gettysburg Address. They are written to
save space and to describe the data type only. A practical use would include the entire text
of the Gettysburg Address.

• SetValue(“cmi.interactions.0.learner_response”, “{lang=en}Four score and seven
years ago…”)

Indicates that the learner response is the Gettysburg Address. The language of the
characterstring is English.

• SetValue(“cmi.interactions.0.learner_response”,”Four score and seven years
ago…”)

Indicates that the learner response is the Gettysburg Address. Since the language was
not indicated in the characterstring the default value for the reserved delimiter is used
(language is English).

likert The IEEE draft defines the likert data value as:

likert:
 short_identifier_type

The likert is a short identifier that represents the choice made by a learner [1].

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Value Space: A characterstring represents the short_identifier_type. The

short_identifier_type shall be a valid URI as per RFC 2396 [6].
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the short_identifier_type data type.

Example:
• SetValue(“cmi.interactions.0.learner_response”, “a”)
Indicates that the learner response for the likert interaction is “a”. The SCO is
responsible for understanding the identifier value.

• SetValue(“cmi.interactions.1.learner_response”,”likert_1”)
Indicates that the learner response for the likert interaction is “likert_1”. The SCO is
responsible for understanding the identifier value.

matching The IEEE draft defines the matching data value as:

matching:
 bag of record
 {
 source:
 short_identifier_type,
 target:
 short_identifier_type,
 } // bag SPM: 36

The learner response for the matching interaction type is a bag that contains zero or more
pairs of short_identifier_types. Each pair represents a match made by the learner [1]. The
“[,]” is the special reserved delimiter for separating pairs of short_identifier_types in the
bag. The characterstring that is built shall support the SPM of 36 short_identifier_types.
This indicates that a LMS only has to support the SPM of 36 short_identifier_types. The
LMS may extend the ability to support more, however, this is implementation specific. The
LMS is only responsible for managing the SPM of 36 short_identifier_types.

Data Model Element Implementation Requirements:

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-73
© 2004 Advanced Distributed Learning. All Rights Reserved.

• Data Type: characterstring
• Format: The characterstring shall have the following format:

o <target>“[.]”<source>

The following requirements shall be adhered to in building the characterstring:

• The target is represented as a short_identifier_type
• The source is represented as a short_identifier_type
• Refer to Section 4.1.1.7: Data Types for more information on the requirements

for the format of the short_identifier_type data type.
• The special reserved token “[.]” shall be used to separate the target from the

source.
• If more than one <target> <source> pairs are provided as the learner’s response

to the interaction, then the different sets of pairs shall be delimited by the special
reserved token (“[,]”).

• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the learner_response. How the LMS and or SCO handles and
processes the learner_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.learner_response”, “1[.]a[,]2[.]c[,]3[.]b”)
Indicates that the learner response for the matching interaction is:

Source Target
1 a
2 C
3 b

The SCO is responsible for understanding the meaning of the short identifier values.

performance The IEEE draft defines the performance data value as:

performance:
 array(0..249) of record
 (
 step_name :
 short_identifier_type,
 step_answer :
 choice
 (
 state(literal, numeric)
)
 of
 (
 literal :
 characterstring (iso-10646-1),
 // SPM 250
 numeric :
 real (10,7),
)
)

The learner response for the performance interaction type is an array of responses in the
order they were provided by the learner in response to the interaction. Each response
consists of a step name and either a single literal value or a number. The step names and
types of the responses shall match those provided in the
cmi.interactions.n.correct_response for the interaction, but the response in the
learner_response may be in a different order [1].

Data Model Element Implementation Requirements:

• Data Type: characterstring

RTE-4-74 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• Format: The characterstring shall have the following format:
o <step_name>”[.]”<step_answer>

The following requirements shall be adhered to in building the characterstring:
• The <step_name> shall be a valid short_identifier_type.
• The special delimiter between the <step_name> and <step_answer> shall

be the special reserved token of “[.]”.
• The separator between <step_name> and <step_answer> pairs shall be the special

reserved token of “[,]”. This delimiter can be easily discarded during any parsing
routine.

• The <step_name> may be omitted if there is no step name but only a
<step_answer>. In this case, the special reserved token (“[.]”) shall still be
present before the <step_answer>.

• The <step_answer> may also be omitted. In this case, the special reserved
token (“[.]”) shall still be present after the <step_name>.

• If the <step_answer> consists entirely of a single space character, the
<step_answer> shall still be preceded by the special reserved token (“[.]”).

• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware
of the format of the learner_response. How the LMS and or SCO handles and
processes the learner_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.learner_response”, “step_1[.]remove

safety[,]step_2[.]fire weapon”)
• SetValue(“cmi.interactions.0.learner_response”,”First step[.]inspect

wound[,]Second step[.]clean wound[,]Third step[.]apply bandage”)

sequencing The IEEE draft defines the sequencing data value as:

sequencing:
 array (0..35) of short_identifier_type,
 // array dimension is an SPM

The learner response for the sequencing interaction type is an array of short identifiers.
The sequence determined by the learner is represented by the order of the elements in the
array. Each short identifier identifies one element that was available to be sequenced [1].

Data Model Element Implementation Requirements:
• Data Type: characterstring
• Format: The characterstring shall have the following format:

o <sequence_value>“[,]”<sequence_value>

The following requirements shall be adhered to in building the characterstring:
• The <sequence_value>is represented as a short_identifier_type.
• Refer to Section 4.1.1.7: Data Types for more information on the requirements

for the format of the short_identifier_type data type.
• The <sequence_value> values shall be separated by the special reserved token

“[,]”
• During SetValue() and GetValue() processing, LMSs and SCOs, need to be aware

of the format of the learner_response. How the LMS and or SCO handles and
processes the learner_response is outside the scope of SCORM. For example, the
SCO may need to parse the characterstring returned from the LMS in order to
display the value to a learner.

Example:
• SetValue(“cmi.interactions.0.learner_response”, “a[,]b[,]c”)
• SetValue(“cmi.interaction.0.learner_response”,”b[,]c[,]a”)

This first example indicates that the learner’s response to the interaction was the sequence
of a then b then c. The second example indicates that the learner’s response to the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-75
© 2004 Advanced Distributed Learning. All Rights Reserved.

interaction was the sequence of b then c then a. The SCO is responsible for understanding
and managing the values used for the short_identifier_types.

numeric The IEEE draft defines the numeric data value as:

numeric:
 real (10,7)

The numeric learner response is represented as a number with an optional decimal point.

Data Model Element Implementation Requirements:

• Data Type: characterstring
• Format: The real number shall be represented as a characterstring. Refer to

Section 4.1.1.7: Data Types for more information on the requirements for the
format of the real (10,7) data type.

Examples:

• SetValue(“cmi.interactions.0.learner_response”,“4”)
• SetValue(“cmi.interactions.0.learner_response”, “3.14159”)

other The IEEE draft defines the other data value as:

other:
 characterstring (iso-10646-1) // SPM 4000

The other learner response is used to support other types of interactions not defined by the
standard. The value of the string is left to the implementer of the interaction.

Table 4.2.9.2a: Learner Response Format Requirements

RTE-4-76 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.10. Launch Data

During the learning experience, there may be a need to provide the SCO associated with a
learning activity with some launch information. This is information that cannot be
represented using parameters to the SCO prior to the launch. The cmi.launch_data data
model element provides the content designer a means to supply this information.

The cmi.launch_data data model element provides data specific to a SCO that the SCO
can use for initialization. The value of this data model element is not specified [1].

The allowable values for this data model element are defined by the implementer of the
SCO. Typically, the documentation for the SCO would specify what data can or has to
be provided [1].

This is information that typically cannot be passed as launch parameters to the SCO.
This is information that is needed for every use of the SCO, in a certain context.

Dot-Notation Binding Details

cmi.launch_data Data Model Element Implementation Requirements:
• Data Type: characterstring (SPM: 4000)
• Value Space: ISO-10646-1
• Format: The format of this characterstring is left to the discretion of the SCO

developer. The LMS simply returns the data, if requested to by the SCO (
GetValue()). Refer to Section 4.1.1.7: Data Types for more information on
the requirements for the format of the characterstring data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by an LMS as

read-only.
• If launch data is required to operate the SCO, the designers shall provide this

launch data using the mechanisms described in SCORM Content Aggregation
Model. The ADL Content Package extension namespace provides an element
(<adlcp:datafromlms>) that is responsible for storing this information. The
element can be associated with an <imscp:item> for which the SCO resource is
referenced by. The LMS shall initialize the cmi.launch_data value using the
value supplied in the <adlcp:datafromlms> element. If no element or value is
present, then the LMS should not make any assumption on how to initialize
this value. If an LMS receives a GetValue() request and no information is
defined in the manifest, then the LMS shall set the appropriate error code
(Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as read-

only. The SCO is only permitted to retrieve the value of the cmi.launch_data
data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for the cmi.launch_data

data model element and set the error code to “0” - No error. The
characterstring returned shall adhere to the requirements identified in the Data
Model Element Implementation Requirements.

o If there is no defined <adlcp:datafromlms> for the <imscp:item> in
which the SCO resource is referenced, then the LMS is not
responsible for making an assumption of the initial value for the
cmi.launch_data. If the SCO requests (GetValue()) the
cmi.launch_data in these cases, then the LMS shall set the error code
to “403” - Data Model Element Value Not Initialized and return an

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-77
© 2004 Advanced Distributed Learning. All Rights Reserved.

empty characterstring (“”).
• SetValue(): If the SCO attempts to call SetValue() on the cmi.launch_data

data model element, then the LMS shall set the error code to “404”” - Data
Model Element Is Read Only and return “false”. The LMS shall not alter
the state of the data model element based on the request.

Additional Behavior Requirements:
• The SCO developer is responsible for defining the cmi.launch_data. The

Content Package Manifest contains an element (<adlcp:datafromlms>) that
shall be used by the SCO developer for declaring this data. The element is
placed in the manifest as a sub-element of the <imscp:item> that references the
SCO resource. The LMS is responsible for initializing the cmi.launch_data for
the referenced SCO with the value defined in the element. The
cmi.launch_data is permitted to be any valid representation of a characterstring
(as defined by the above Data Model Element Implementation Requirements).
The LMS shall at least provide the smallest permitted maximum of 4000
characters. A characterstring that is greater than 4000 characters is not
guaranteed to be stored in its entirety by an LMS. If no data is defined by the
SCO developer in the manifest and the SCO requests the cmi.launch_data,
then the LMS shall return an empty characterstring (“”) and set the appropriate
API Implementation error code.

Example:
• GetValue(“cmi.launch_data”)

Table 4.2.10a: Dot-notation Binding for the Launch Data Data Model Element

RTE-4-78 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.11. Learner Id

The cmi.learner_id data model element identifies the learner on behalf of whom the
SCO was launched. The cmi.learner_id shall be unique at least within the scope of the
SCO [1]. How the cmi.learner_id is assigned is outside the scope of SCORM. One
typical case on how learner_ids are assigned is through some learner registration process
defined by the LMS. The cmi.learner_id identifies the learner in a given LMS.

Dot-Notation Binding Details

cmi.learner_id Data Model Element Implementation Requirements:
• Data Type: long_identifier_type
• Value Space: A characterstring (SPM: 4000) that represents a valid

Universal Resource Identifier (URI) as per RFC 2396 [6]. It is recommended
that the URI be a Universal Resource Name (URN) as per RFC 2141 [3].

• Format: Refer to Section 4.1.1.7: Data Types for more information on the
requirements for the format of the long_identifier_type data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by an LMS

as read-only.
• The LMS shall be responsible for initializing the cmi.learner_id. How this is

done is currently outside the scope of SCORM (e.g., this is typically handled
via a learner registration system within the LMS).

SCO Behavior Requirements:
• This data model element is required to be implemented by an LMS as read-

only. The SCO is only permitted to retrieve the value of the cmi.learner_id
data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated learner identifier currently

stored by the LMS for the learner and set error code to “0” – No error. The
characterstring returned shall adhere to the requirements identified in the
Data Model Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.learner_id, then the LMS shall set the error code to “404” – Data Model
Element Is Read Only and return “false”. The LMS shall not alter the state of
the data model element based on the request.

Example:
• GetValue(“cmi.learner_id”)

Table 4.2.11a: Dot-notation Binding for the Learner ID Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-79
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.12. Learner Name

The cmi.learner_name data model element is the name provided for the learner by the
LMS [1]. How the cmi.learner_name is assigned or created is outside the scope of
SCORM. The cmi.learner_name may come from some LMS learner registration
system or through some learner profile information. There may be other mechanisms for
creation and assignment of the cmi.learner_name, however there is no restriction on
how this process is accomplished.

How the LMS or SCO interprets and processes the delimiter for the characterstring is
outside the scope of SCORM. The SCO may be built to parse out the language
information prior to utilizing the characterstring returned by the LMS.

Dot-Notation Binding Details

cmi.learner_name Data Model Element Implementation Requirements:
• Data Type: localized_string_type (SPM: 250)
• Value Space: A characterstring that represents a localized characterstring.
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the localized_string_type data type.
LMS Behavior Requirements:

• The data model element is mandatory and shall be implemented by an LMS
as read-only.

• The LMS is responsible for initializing cmi.learner_name. How this function
is performed is currently outside the scope of SCORM. This function is
typically handled by various mechanisms, some of which are described
above.

SCO Behavior Requirements:
• This data model element is required to be implemented by an LMS as read-

only. The SCO is only permitted to retrieve the value of the
cmi.learner_name data model element.

• During a GetValue() request, the SCO should be aware that the delimiter may
be part of the characterstring returned by the LMS (depending on the LMS
implementation). What the SCO does with the characterstring returned by
the LMS is dependent on the implementation of the SCO. If no delimiter is
provided by the LMS, the SCO shall assume that the characterstring is using
the default value (“en”)

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.learner_name

currently stored by the LMS for the learner and set the error code to “0” No
error. The characterstring returned shall adhere to the requirements identified
in the Data Model Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.learner_name, the LMS shall set the error code to “404” – Data Model
Element Is Read Only and return “false”. The LMS shall not alter the state of
the data model element based on the request.

Example:
• GetValue(“cmi.learner_name”)

Table 4.2.12a: Dot-notation Binding for the Learner Name Data Model Element

RTE-4-80 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.13. Learner Preference

The Learner preference data specifies learner preferences associated with the learner’s
use of the SCO [1]. There is no restriction on how this learner preference data is
determined. For example, the LMS may provide some interface that permits a learner to
set this data or some sort of profiling system that captures information about the learner.
If such a mechanism is in place, this globally defined data should be used to initialize the
set of data model elements defined in this section. Depending how this mechanism is
implemented, the data may apply to all of the SCOs in a given content organization, a
subset of SCOs or a single SCO.

If a mechanism exists to determine and set the learner preference information before run-
time execution of a SCO, then certain obligations and requirements need to be adhered to.
Since this data is considered global to the SCOs that are impacted (i.e., may apply to all
of the SCOs in a content organization), the data should not be altered if a SCO sets a
learner preference via a SetValue() call during a learner attempt. If learner preference
data is set during a learner attempt, this data is only available for that attempt on the SCO
(i.e., temporarily, for the learner attempt, overrides the globally defined preference). If a
new attempt is underway any SCO set learner preferences are lost from the previous
learner attempt . The values are initialized back to default values as defined below or
default to the global values acquired by another means.

If no such mechanism exists to determine the learner preference information before run-
time execution of a SCO, default values or a default behavior have been defined for each
data model element. The same requirements apply dealing with the persistence of the
data, if set by the SCO. The data should only exist for the learner attempt on the SCO.

Dot-Notation Binding Details

cmi.learner_preference._children The cmi.learner_preference._children data model element represents a
listing of supported data model elements. This data model element is
typically used by a SCO to determine which data model elements are
supported by the LMS. The characterstring returned may be used by the
SCO to dynamically build parameters for the GetValue() and SetValue()
requests.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data model

elements in the Learner Preference parent data model element
that are supported by the LMS. Since all data model elements
are required to be supported by the LMS, the characterstring
shall represent the following data model elements:

o audio_level
o language
o delivery_speed
o audio_captioning

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read-only.
• The LMS is responsible for returning a comma-separated list of

all of the data model elements (Refer to Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-81
© 2004 Advanced Distributed Learning. All Rights Reserved.

Implementation Requirements above).

SCO Behavior Requirements:
• This data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
cmi.learner_preference._children data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return a comma-separated list of

data model elements supported by the LMS (Refer to Data
Model Element Implementation Requirements above) and set
the error code to “0” – No error. The ordering of data model
elements is not important. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.learner_preference._children, then the LMS shall set the
error code to “404” – Data Model Element Is Read Only and
return “false”.

Example:
• GetValue(“cmi.learner_preference._children”)

cmi.learner_preference.audio_level The cmi.learner_preference.audio_level data model element is a
multiplier value that specifies an intended change in perceived audio
level, with 1 meaning “no change”. For example, the value 0 specifies
infinite attenuation, the value of 0.5 specifies an attenuation of 10
decibels and the value of 2 specifies an amplification of 10 decibels [1].
Data Model Element Implementation Requirements:

• Data Type: real(10,7), range (0..*)
• Value Space: A real number greater than 0.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real (10,7)
data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read/write.

SCO Behavior Requirements:
• This data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.learner_preference.audio_level data model
element.

• If a SCO sets the cmi.learner_preference.audio_level during a
learner attempt, this value is only persisted by the LMS for that
learner attempt.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.learner_preference.audio_level value currently being
stored by the LMS for the learner and set the API
Implementation’s error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o If the SCO invokes a request to get the
cmi.learner_preference.audio_level prior to the value
being set, then the LMS shall set the error code to
“403” – Data Model Element Value Not Initialized
and return an empty characterstring (“”).

• SetValue(): The LMS shall set the
cmi.learner_preference.audio_level data model element to the

RTE-4-82 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

parameter passed as parameter_2 of the SetValue() call, set the
error code to “0” - No error and return “true”.

o If the SCO tries to set the
cmi.learner_preference.audio_level to a value that is
not a real number, then the LMS shall set the error
code to “406” - Data Model Element Type
Mismatch, return “false”. The LMS shall not alter
the state of the data model element based on the
request.

o If the SCO tries to set the
cmi.learner_preference.audio_level to a value that is
a real number however the value is not greater than 0
(outside the range), then the LMS shall set the error
code to “407” Data Model Element Value Out Of
Range. The LMS shall not alter the state of the data
model element based on the request.

Example:

• GetValue(“cmi.learner_preference.audio_level”)
• SetValue(“cmi.learner_preference.audio_level”,”3”)

cmi.learner_preference.language The cmi.learner_preference.language data model element is the learner’s
preferred language for SCOs with multilingual capability [1].
Data Model Element Implementation Requirements:

• Data Type: language_type (SPM 250)
• Value Space: iso-646 [4]
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
language_type data type. The default language shall be “”
(empty characterstring).

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by the LMS as read/write.
• If an LMS does not provide a mechanism for initializing the

learner preferences, then the default value for the
cmi.learner_preference.language should be an empty
characterstring “”.

SCO Behavior Requirements:
• This data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.learner_preference.language data model
element.

• Since the default value for the cmi.learner_preference.language
is an empty characterstring, the meaning of this value shall be
determined by the SCO. For example, an empty characterstring
could mean that the default value is English. An empty
characterstring could mean that there is no preferred language
and the SCO could be built to determine if the learner has a
preferred language.

• If a SCO sets the cmi.learner_preference.language during a
learner attempt, this value is only persisted by the LMS for that
learner attempt.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.learner_preference.language value currently being stored
by the LMS for the learner and set the API Implementation’s
error code to “0” – No error. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o If the SCO invokes a request to get the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-83
© 2004 Advanced Distributed Learning. All Rights Reserved.

cmi.learner_preference.language prior to the value
being set by the SCO or initialized by the LMS, then
the LMS shall set the error code to “0” – No error and
return the default value of “” (empty characterstring).

• SetValue(): The LMS shall set the
cmi.learner_preference.language data model element to the
parameter passed as parameter_2 of the SetValue() call, set the
error code to “0” - No error and return “true”.

o If the SCO tries to set the
cmi.learner_preference.language to a value that does
not meet the Data Model Element Implementation
Requirements, then the LMS shall set the error code
to “406” - Data Model Element Type Mismatch,
return “false”. The LMS shall not alter the state of
the data model element based on the request.

Example:

• GetValue(“cmi.learner_preference.language”)
• SetValue(“cmi.learner_preference.language”,”fr-CA”)

cmi.learner_preference.delivery_speed The cmi.learner_preference.delivery_speed data model element is the
learner’s preferred relative pace of content delivery. The value is a
multiplier of the default pace. For example, 2 is twice as fast as the
default delivery pace and 0.5 is one half the default pace. The default
value shall be 1 [1].
Data Model Element Implementation Requirements:

• Data Type: real(10,7), range (0..*)
• Value Space: A real number greater than or equal to 0.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real (10,7)
data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by the LMS as read/write.

• If an LMS does not provide a mechanism for initializing the
learner preferences, then the default value for the
cmi.learner_preference.delivery_speed should be “1”.

SCO Behavior Requirements:
• This data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.learner_preference.delivery_speed data
model element.

• If a SCO sets the cmi.learner_preference.delivery_speed during
a learner attempt, this value is only persisted by the LMS for
that learner attempt.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.learner_preference.delivery_speed value currently being
stored by the LMS for the learner and set the API
Implementation’s error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements.

o If the SCO invokes a request to get the
cmi.learner_preference.delivery_speed prior to the
value being set by the SCO, then the LMS shall return
the default value of “1” and set the error code to “0” –
No error and return an empty characterstring (“”).

RTE-4-84 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• SetValue(): The LMS shall set the
cmi.learner_preference.delivery_speed data model element to
the parameter passed as parameter_2 of the SetValue() call, set
the error code to “0” - No error and return “true”.

o If the SCO tries to set the
cmi.learner_preference.delivery_speed to a value that
is not a real number, then the LMS shall set the error
code to “406” - Data Model Element Type
Mismatch, return “false”. The LMS shall not alter
the state of the data model element based on the
request.

o If the SCO tries to set the
cmi.learner_preference.delivery_speed to a value that
is a real number, however the value is less than 0
(outside the range), then the LMS shall set the error
code to “407” Data Model Element Value Out Of
Range. The LMS shall not alter the state of the data
model element based on the request.

Additional Behavior Requirements: The SCO is responsible for setting
the speed value based on a learner’s preference. How this value is
collected, determined or applied to the SCO is outside the scope of
SCORM.

Example:

• GetValue(“cmi.learner_preference.delivery_speed”)
• SetValue(“cmi.learner_preference.delivery_speed”,”0.5”)

cmi.learner_preference.audio_captioning The cmi.learner_preference.audio_captioning data model element
specifies whether captioning text corresponding to audio is displayed [1].
Data Model Element Implementation Requirements:

• Data Type: state (off, no_change, on)
• Value Space: The IEEE draft defines three state values.

SCORM binds these state values to the following restricted
vocabulary tokens:

o “-1”: Represents the “off” state. The captioning is
off and text corresponding to audio is not displayed
[1].

o “0”: Represents the “no_change” state. The current
default captioning setting is maintained [1]. This is
the default value.

o “1”: Represents the “on” state. The captioning is on
and text corresponding to audio is displayed [1].

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented

by the LMS as read/write.

SCO Behavior Requirements:
• This data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.learner_preference.audio_captioning data
model element.

• If a SCO sets the cmi.learner_preference.audio_captioning
during a learner attempt, this value is only persisted by the LMS
for that learner attempt.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.learner_preference.audio_captioning value currently being
stored by the LMS for the learner and set the API
Implementation’s error code to “0” – No error. The
characterstring returned shall adhere to the requirements

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-85
© 2004 Advanced Distributed Learning. All Rights Reserved.

identified in the Data Model Element Implementation
Requirements.

o If the SCO invokes a request to get the
cmi.learner_preference.audio_captioning prior to the
value being set by the SCO, then the LMS shall return
the default value of “0” and set the error code to “0”
– No error..

• SetValue(): If the SCO invokes a request to set the
cmi.learner_preference.audio_captioning and the value is not a
member of the restricted vocabulary tokens described above,
then the LMS shall set the API Error Code to “406” – Data
Model Element Type Mismatch and return “false”. The
LMS shall not alter the state of the data model element based on
the request.

Additional Behavior Requirements: How this data model element is
initialized is outside the scope of SCORM. The value may be initialized
in a number of ways. For example:

• SCO may be built to set the initial audio captioning value based
on a learner’s preference, or
• the value may be initialized by some learner preference or
profile data collected by the LMS.

How this value is collected, determined or applied to the SCO is outside
the scope of SCORM.
Example:

• GetValue(“cmi.learner_preference.audio_captioning”)
• SetValue(“cmi.learner_preference.audio_captioning”,”-1”)

Table 4.2.13a: Dot-notation Binding for the Learner Preference Data Model Element

RTE-4-86 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.14. Location

The cmi.location data model element is a location in the SCO. Its value and meaning
are defined by the SCO. The first time the learner attempts the SCO or if there is no
preferred initial location, the value shall be an empty characterstring (“”) [1].

The LMS should not interpret or change this data. The data is opaque to the LMS. The
format of the cmi.location is only understood by the SCO setting the value. If the SCO
communicates a cmi.location, this data model element may be used to indicate a
“bookmark” or “checkpoint” within the SCO. This data model element may be used as a
starting point upon re-entry into the SCO after a suspended learner session. In this case,
the cmi.location data model element corresponds to the SCO exit point the last time the
learner experienced the SCO. The behavior and use of this data model element are
managed by the SCO.

Dot-Notation Binding Details

cmi.location Data Model Element Implementation Requirements:
• Data Type: characterstring (SPM: 1000)
• Value Space: ISO-10646-1 [5]
• Format: The format of this characterstring is left to the discretion of the

SCO developer. The LMS simply stores the data, if requested to by the
SCO (SetValue()), and returns the data, if requested by the SCO (
GetValue()). Refer to Section 4.1.1.7: Data Types for more information on
the requirements for the format of the characterstring data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by an LMS

as read/write.
• This data model element is controlled by the SCO. No initialization steps

are required by the LMS. If a GetValue() request is made prior to the value
being set by the SCO, then the LMS shall behave according to the API
Implementation Requirements defined below.

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as

read/write. The SCO is permitted to retrieve and store the value of the.
cmi.location data model element.

• If storing the data model element, then the value is SCO-implementation
defined and the format of the characterstring shall adhere to ISO 10646-1.
The LMS is responsible for simply storing this data and then returning the
data when requested by the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.location currently

stored by the LMS for the learner and set the error code to “0”-No error.
The characterstring returned shall adhere to the requirements identified in
the Data Model Element Implementation Requirements.

o If the SCO requests the cmi.location prior to the value being
initialized by the SCO, then the LMS shall return an empty
characterstring (“”) and set the error code to “403” – Data Model
Element Value Not Initialized.

• SetValue(): If the SCO invokes a SetValue() request to set the cmi.location
and the supplied value meets the requirements defined in the Data Model
Element Implementation Requirements, then the LMS shall store the
supplied value for cmi.location, set the error code to “0” – No error and
return “true”.

Example:

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-87
© 2004 Advanced Distributed Learning. All Rights Reserved.

• GetValue(“cmi.location”)
• SetValue(“cmi.location”,”chkPt1.p3.f5”)

Table 4.2.14a: Dot-notation Binding for the Location Data Model Element

RTE-4-88 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.15. Maximum Time Allowed

The cmi.max_time_allowed data model element is the amount of accumulated time the
learner is allowed to use a SCO in the learner attempt. [1]. The learner attempt begins
with the beginning of the first learner session and continues until the activity terminates.

Dot-Notation Binding Details

cmi.max_time_allowed Data Model Element Implementation Requirements:
• Data Type: timeinterval (second,10,2) - a time interval with

resolution to 0.01 seconds
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
timeinterval (second,10,2) data type.

LMS Behavior Requirements:
• This data model element is mandatory and the LMS shall be

implemented by the LMS as read-only.
• The LMS is responsible for initializing this value based on the

value provided by the SCO developer. This value can be
provided in the Content Package Manifest associated with the
content organization. The LMS shall use the
<imsss:attemptAbsoluteDurationLimit> element, if defined for
the <imscp:item> referencing the SCO Resource in the
manifest, to initialize this value.

SCO Behavior Requirements:
• This data model element is required to be implemented by the

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.max_time_allowed data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for the

cmi.max_time_allowed data model element and set the error
code to “0” – No error. The characterstring returned shall
adhere to the requirements identified in the Data Model Element
Implementation Requirements.

o If there is no maximum time allowed defined in the
manifest and the SCO requests the value for this data
model element, then the LMS shall set the error code
to “403” – Data Model Element Value Not Initialized
and return an empty characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.max_time_allowed, then the LMS shall set the error code to
“404” – Data Model Element Is Read Only and return
“false”. The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.max_time_allowed”)

Table 4.2.15a: Dot-notation Binding for the Max Time Allowed Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-89
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.16. Mode

The cmi.mode data model element identifies one of three possible modes in which the
SCO may be presented to the learner [1]. This value can be used to indicate a SCOs
behavior after launch. Many SCOs have a single “behavior”. Some SCOs, however, can
present different amounts of information, present information in different sequences,
present information reflecting different training strategies or store different sets of data
based on the mode that the SCO is currently in.

Dot-Notation Binding Details

cmi.mode Data Model Element Implementation Requirements:
• Data Type: state (browse, normal, review) [1]
• Value Space: The IEEE draft defines three state values. SCORM binds

these state values to the following restricted vocabulary tokens:
o “browse”: The SCO is presented without the intent of recording

any information about the current learner session [1].
o “normal”: The SCO is presented with the intent of recording

information about the current learner session [1]. This is the
default value if no mechanism is in place to identify the mode.

o “review”: The SCO has previously recorded information about
the learner attempt and is presented without the intent of updating
this information with data from the current learner session [1].

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by the

LMS as read-only.
• There is currently no mechanism in place to determine the mode of a SCO.

This is currently left to the implementation of an LMS. If the LMS wants to
provide a way of previewing (or browsing) a content organization or a way
of reviewing a content organization, then this is one mechanism for
initializing the cmi.mode in which the content (SCO) in the content
organization should be viewed. The “normal” mode shall be the default
mode for all SCOs.

Sequencing Impacts:
• The cmi.mode data model element has not impact on sequencing. The value

of cmi.mode does not impact any sequencing tracking model data model
elements nor does it impact any of the sequencing rules. If the cmi.mode
value is “browse” or “review”, the LMS should treat any data sent by the
SCO as informative (in order to make sequencing decisions). Whether or
not an LMS persists any of the data sent by the SCO, while in a mode of
review or browse, is outside the scope of the SCORM.

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as read-

only. The SCO is only permitted to retrieve the value of the cmi.mode data
model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.mode currently stored

by the LMS for the learner and set the error code to “0” – No error. If a
mechanism is not in place to support different modes, then the LMS shall
only return “normal” for all cases.

• SetValue(): If the SCO invokes a request to set the cmi.mode, then the
LMS shall set the error code to “404” – Data Model Element Is Read Only
and return “false”. The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.mode”)

RTE-4-90 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Table 4.2.16a: Dot-notation Binding for the Mode Data Model Element

4.2.16.1 Mode and Credit Usage Requirements

The cmi.mode and cmi.credit data model elements have a relationship to one
another. The following table describes the relationships:

cmi.mode value cmi.credit value
“browse” “no-credit”
“review” “no-credit”
“normal” “credit” or “no-credit”

Table 4.2.16.1a: Mode and Credit Values

An LMS is required to implement these data model elements as read-only. The SCO is
not permitted to alter the states of these values with a SetValue() API call. The LMS
must guarantee that these values are kept in synch with each other. If credit is “no-
credit” then any information (success_status, interactions, etc.) communicated by the
SCO is informative. Data is used to make sequencing decisions, other than that the LMS
is free to do what it wants with the data.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-91
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.17. Objectives

Instructional designers may wish to associate learning or other types of objectives with a
learning activity and its associated content object. SCORM does not define what an
objective is or place requirements on its use. However, SCORM does define how the
status of objectives, regardless of type, may be tracked during a learner experience, and
how tracked objective status may be used to affect sequencing evaluations.

For purposes of a learner experience, objectives are tracked by associating a set of
objective status information with each tracked objective through the use of an identifier.
The identifier used does not have or imply any semantics; it is only used to relate the
results of a learner experience with a content developer defined objective.

The Objectives are treated as a grouping of sets of objective status information for a
given SCO, which are used to track learning or other types of objectives associated with
the SCO. A SCO may have zero or more sets of objective status information.
Information tracked in the Objectives parent data model element is only available to the
SCO, and it is available for the duration of a learner attempt (with the exception of
Persist State). An identifier is required to differentiate between sets of objective status
information. For a given SCO, all objective identifiers must be unique.

Each set of objective status information consists of the following elements:

• Identifier: an identifier for the set of objective status information
• Score: a score (if applicable)
• Success Status: an indication of the success status for the objective (if applicable)
• Completion Status: an indication of the completion status for the objective (if

applicable)
• Description: a brief informative description of the objective

During the learner’s interaction with the SCO, the SCO is permitted to update status
information/score information and not have to create a new entry in the array. The
objectives array should act as a status of the objectives during the learner’s interaction.
The objective identifier is what makes the objective unique, therefore when new
objective status information is needed to be tracked (new objective identifier), then a new
entry in the array should be made.

SCO developers can describe the tracked objectives of the SCO – the significance of
objective identifiers – by using the Classification category of the SCORM meta-data.
The Purpose, Taxonpath and Description elements can also be used to describe and
identify the SCO’s objective(s). However, applying meta-data to a SCO is for
informative purposes only; currently, there is no requirement defined for an LMS to
process the meta-data associated with a SCO and there is no behavior defined for an LMS
to interoperably utilize the Meta-data associated with a SCO (Refer to the SCORM CAM
for more details).

RTE-4-92 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

The LMS shall support at least the SPM of 100 objective status information. The LMS is
free to support more than the SPM.

4.2.17.1 Associating Objective Status Information to SCOs
More than one set of objective status information may be associated with a given SCO.
The mechanism defined to access multiple sets of objective status information is an
indexed list (Refer to Section 4.1.1.3: Handling Collections). When setting (
SetValue()) objective status information the SCO is responsible for inserting objective
status information in sequential order.

Incorrect Correct

cmi.objectives.0.id = “ID1”
cmi.objectives.2.id = “ID3”
cmi.objectives.1.id = “ID2”

cmi.objectives.0.id = “ID1”
cmi.objectives.1.id = “ID2”
cmi.objectives.2.id = “ID3”

Table 4.2.17.1a: Scenarios for Storing Collection Data

To avoid the incorrect scenario shown above, in Table 4.2.17.1a, the SCO can invoke
GetValue() on cmi.objectives._count to retrieve the next available position in the
indexed list. The LMS is responsible for managing this list as a zero-based indexed list.
When a SCO requests the cmi.objectives._count the LMS shall return the total
number of objectives currently being managed by the LMS. For example if the LMS
returns “2” from the GetValue(“cmi.objectives._count”) request, the SCO shall use
this value in inserting the next set of objective information. The “2” indicates that the
SCO has already set (SetValue()) cmi.objectives.0 and cmi.objectives.1
objective information.

The order of the sets of objective status information in the indexed list does not define a
significant relationship between the objectives and the order may change between learner
sessions. The recommended method of accessing sets of objective status information is
to search the indexed list for the desired objective identifier. The index where the
identifier is found should be used to access and modify the other elements of objective
status information.

4.2.17.2 Utilizing Objective Status Information for Sequencing
Instructional designers may wish to use objective status information to make conditional
sequencing decisions; this desire is explicitly represented in the sequencing information
associated with a learning activity (refer to the SCORM CAM book). As a SCO
references sets of objective status information through identifiers, so does the sequencing
information associated with a learning activity. SCORM defines how identifiers are used
to relate objective tracking information obtained at run-time, during the learner
experience with the SCO, to the objectives defined on the activity for sequencing
purposes.

For objectives associated with a learning activity, those that may be affected by the
learning experience are those with identifiers that match identically with an identifier
defined in the Objectives Run-Time Environment Data Model element for the SCO

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-93
© 2004 Advanced Distributed Learning. All Rights Reserved.

associated with that learning activity. When a SCO is launched for a new learner
attempt, the LMS will initialize a set of run-time objectives (cmi.objectives.n.xxx)
for the SCO with the objective status information managed for sequencing the SCO’s
associated learning activity. During the learner experience, the SCO may modify the
status of these sets of objective status information; the updated status information will be
used by the LMS during sequencing evaluations.

Dot-Notation Binding Details

cmi.objectives._children The cmi.objectives._children data model element represents a listing of
supported data model elements. This data model element is typically
used by a SCO to determine which data model elements are supported by
the LMS. The characterstring returned may be used by the SCO to
dynamically build parameters for the GetValue() and SetValue()
requests.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data model

elements in the Objectives parent data model element that are
supported by the LMS. Since all data model elements are
required to be supported by the LMS, the characterstring shall
represent the following data model elements:

o id
o score
o success_status
o completion_status
o description

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read-only.
• The LMS is responsible for returning a comma-separated list

of all of the data model elements (Refer to Data Model
Element Implementation Requirements above).

SCO Behavior Requirements:
• This data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.objectives._children data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return a comma-separated list of

data model elements supported by the LMS (Refer to Data
Model Element Implementation Requirements above) and set
the error code to “0” – No error. The ordering of data model
elements is not important. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.objectives._children, then the LMS shall set the error code
to “404” – Data Model Element Is Read Only and return
“false”.

Example:
• GetValue(“cmi.objectives._children”)

cmi.objectives._count The cmi.objectives._count keyword is used to describe the current
number of objectives being stored by the LMS. The total number of
entries currently being stored by the LMS shall be returned. The LMS is
responsible for supporting the smallest permitted maximum of 100
objectives.

RTE-4-94 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Data Model Element Implementation Requirements:
• Data Type: integer
• Value Space: Non-negative integer
• Format: The characterstring representing the number of

objectives that the LMS is currently persisting.
LMS Behavior Requirements:

• This data model element is mandatory and shall be
implemented by the LMS as read-only.

• If the LMS receives a request to get the cmi.objectives._count
value prior to any objectives being set, then the LMS shall
adhere to the requirements listed below for API
Implementation Requirements.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.objectives._count data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the number of objectives

currently stored by the LMS and set the error code to “0” – No
error.

o Until objective information is available for the SCO,
the LMS shall return “0”, which indicates that there
is no objective information currently being stored.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.objectives._count, then the LMS shall set the error code to
“404” – Data Model Element Is Read Only and return
“false”.

Example:
• GetValue(“cmi.objectives._count”)

cmi.objectives.n.id The cmi.objectives.n.id data model element is an identifier for an
objective and shall be unique at least within the scope of the SCO. The
id data model element shall contain a valid value if either the score or
status data model elements described below is implemented [1]. If a
SCO is requesting to store objective information the SCO is required to
set the identifier first (unless it was initialized by another means), prior
to any other objective information.
Data Model Element Implementation Requirements:

• Data Type: long_identifier_type
• Value Space: A characterstring (SPM: 4000) that represents a

valid Universal Resource Identifier (URI) as per RFC 2396 [6].
It is recommended that the URI be a Universal Resource Name
(URN) as per RFC 2141 [3].

• Format: Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the
long_identifier_type data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read/write.
• If the <imsss:objectives> are defined for <imscp:item>

elements in the Content Package Manifest, then the LMS is
responsible for initializing the objective status information for
the SCO referenced by the <imscp:item>. Each objective
defined (<imsss:primaryObjective> or <imsss:objective>) has
a required objectiveID attribute. This attribute shall be used to
initialize the cmi.objectives.n.id value. The number of
objectives defined in the manifest dictates the number of
objective status information that need to be initialized. The
LMS is also responsible for initializing status and score for the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-95
© 2004 Advanced Distributed Learning. All Rights Reserved.

objective information data if that information is available to
the LMS (for more information refer to the SCORM SN book
– Global objectives).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.id data model element.

• If a SCO is requesting to store objective information, a SCO
shall ensure that an id is set to uniquely distinguish one
objective from another. The identifier shall be set first (unless
it was initialized by another means), prior to any other
objective information.

• It is recommended that a SCO does not alter (set) existing
objective IDs during a learner attempt. If the SCO alters an
objective ID during a learner attempt, this could corrupt
objective data that has been collected in previous learner
sessions and have impact on sequencing decisions made by the
LMS.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated objectives

identifier currently stored by the LMS for the learner and set
the error code to “0” – No error. The characterstring returned
shall adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.objectives.n.id and the record of data has been
created but the cmi.objectives.n.id data model
element has not been set by the SCO, then the LMS
shall set the error code to “403” Data Model
Element Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): The LMS shall set the cmi.objectives.n.id to the
supplied value in the SetValue() request, set the error code to
“0” – No error and return “true”.

o If the supplied value of the SetValue() does not meet
the requirements of the Data Model Element
Implementation Requirements, then the LMS shall
set the error code to “406” – Data Model Element
Type Mismatch and return “false”. The LMS
shall not alter the state of the data model element
based on the request .

o Collection data model elements are required to be set
in sequential order. If a SCO does not set objectives
in a sequential order, then the LMS shall set the error
code to “351” – General Set Failure and return
“false”. Refer to Section 3.1.7.6: SCORM
Extension Error Conditions.

Additional Behavior Requirements:
• The SCO is responsible for making sure that new objective

information is inserted (SetValue()) in the index list in a

RTE-4-96 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

sequential order. The cmi.objectives.n.id is required to be set
first prior to any other objective information.

Example:
• GetValue(“cmi.objectives.0.id”)
• SetValue(“cmi.objectives.0.id”,”obj1”)

score

cmi.objectives.n.score._children The cmi.objectives.n.score._children data model element represents a
listing of supported data model elements. This data model element is
typically used by a SCO to determine which data model elements are
supported by the LMS. The characterstring returned may be used by the
SCO to dynamically build parameters for the GetValue() and SetValue()
requests.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data model

elements in the Score parent data model element that are
supported by the LMS. Since all data model elements are
required to be supported by the LMS, the characterstring shall
represent the following data model elements:

o scaled
o raw
o min
o max

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read-only.
• The LMS is responsible for returning a comma-separated list

of all of the data model elements (Refer to Data Model
Element Implementation Requirements above).

SCO Behavior Requirements:
• This data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.objectives.n.score._children data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return a comma-separated list of

data model elements supported by the LMS (Refer to Data
Model Element Implementation Requirements above) and set
the error code to “0” – No error. The ordering of data model
elements is not important. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.objectives.n.score._children, then the LMS shall set the
error code to “404” – Data Model Element Is Read Only and
return “false”.

Example:
• GetValue(“cmi.objectives.0.score._children”)

cmi.objectives.n.score.scaled The cmi.objectives.n.score.scaled data model element is a number that
reflects the performance of the learner for the objective. The value of the
data model element is scaled to fit the range –1 to 1 inclusive [1].

If there is sequencing information applied to the learning activity
associated with the SCO that relies on measure, the SCO must ensure
score information is accurately sent to the LMS (SetValue()) prior to

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-97
© 2004 Advanced Distributed Learning. All Rights Reserved.

the SCO’s learner session ending. Otherwise, the LMS will use the
value “unknown” as the objective measure for the appropriate objective
(based on objective IDs) of the learning activity associated with the SCO
when processing sequencing information.
Data Model Element Implementation Requirements:

• Data Type: real (10,7) range (-1..1)
• Value Space: A real number with a value that is accurate to

seven significant decimal figures. The value shall be in the
range of -1.0 to 1.0, inclusive.

• Format: Refer to Section 4.1.1.7: Data Types for more
information on the requirements for the format of the real
(10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by the LMS as read/write.
• The SCO is responsible for determining the

cmi.objectives.n.score.scaled. The LMS cannot make any
judgments of the objective’s scaled score unless reported
otherwise from the SCO. If an LMS receives a retrieve (
GetValue()) request prior to the value being set by the SCO,
then the LMS shall set the appropriate error code (Refer to API
Implementation Requirements).

Sequencing Impacts:
• If the SCO does not set cmi.objectives.n.score.scaled for an

objective of the SCO, the Objective Measure Status for the
associated objective (based on objective IDs) of the learning
activity associated with the SCO shall be false.

• If the SCO sets cmi.objectives.n.score.scaled for an objective
of the SCO, the Objective Measure Status for the objective
(based on objective IDs) of the learning activity associated
with the SCO shall be true, and the Objective Normalized
Measure for the objective (based on objective IDs) of the
learning activity associated with the SCO shall equal the value
of score.scaled.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.score.scaled data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.objectives.n.score.scaled currently stored by the LMS for
the learner and set the API Implementation’s error code to “0”
– No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.objectives.n.score.scaled and the record of data
has been created but the scaled data model element
has not been set by the SCO, then the LMS shall set

RTE-4-98 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

the error code to “403” Data Model Element Value
Not Initialized and return an empty characterstring
(“”).

• SetValue(): The LMS shall set the
cmi.objectives.n.score.scaled data model element to the
parameter passed as parameter_2 of the SetValue() call, set the
error code to “0” - No error and return “true”.

o If the SCO tries to set the
cmi.objectives.n.score.scaled to a value that is not a
real number, then the LMS shall set the error code to
“406” - Data Model Element Type Mismatch, return
“false”. The LMS shall not alter the state of the
data model element based on the request.

o If the SCO tries to set the
cmi.objectives.n.score.scaled to a value that is a real
number but the value is not in the range of –1 to 1,
inclusive, then the LMS shall set the error code to
“407” - Data Model Element Value Out Of Range,
return “false”. The LMS shall not alter the state
of the data model element based on the request.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.score.scaled (prior to
setting the identifier) then the LMS shall set the error
code to “408” – Data Model Dependency Not
Established and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number
that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

Example:
• GetValue(“cmi.objectives.0.score.scaled”)
• SetValue(“cmi.objectives.0.score.scaled”,”0.750033”)
• SetValue(“cmi.objectives.0.score.scaled”,”0.75”)

cmi.objectives.n.score.raw The cmi.objectives.n.score.raw data model element is a number that
reflects the performance of the learner, for the objective, relative to the
range bounded by the values of min and max [1].
Data Model Element Implementation Requirements:

• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to

seven significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real
(10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate.

The LMS cannot make any judgments of the objective’s raw
score unless reported otherwise from the SCO. If an LMS
receives a GetValue() request prior to the value being set by
the SCO, then the LMS shall behave in accordance with the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-99
© 2004 Advanced Distributed Learning. All Rights Reserved.

API Implementation Requirements.
SCO Behavior Requirements:

• The data model element is required to be implemented by an
LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.score.raw data model
element. The raw score for the objective may be determined
and calculated in any manner and is controlled by the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.objectives.n.score.raw currently stored by the LMS for the
learner and set the API Implementation’s error code to “0” –
No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.objectives.n.score.raw and the record of data has
been created but the raw data model element has not
been set by the SCO, then the LMS shall set the error
code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.objectives.n.score.raw
data model element to the supplied value passed as
parameter_2 of the SetValue() call, set the error code to “0” -
No error and return “true”.

o If the SCO tries to set the cmi.objectives.n.score.raw
to a value that is not a real number, then the LMS
shall set the error code to “406” - Data Model
Element Type Mismatch, return “false”. The
LMS shall not alter the state of the data model
element based on the request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number
that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.score.raw (prior to
setting the identifier) then the LMS shall set the error
code to “408” – Data Model Dependency Not
Established and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.objectives.0.score.raw”)
• SetValue(“cmi.objectives.0.score.raw”,”75.0033”)
• SetValue(“cmi.objectives.0.score.raw”,”0.75”)

RTE-4-100 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

cmi.objectives.n.score.min The cmi.objectives.n.score.min data model element is the minimum
value, for the objective, in the range for the raw score [1].
Data Model Element Implementation Requirements:

• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to

seven significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real
(10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate.

The LMS cannot make any judgments of the objective’s
minimum score unless reported otherwise from the SCO. If an
LMS receives a GetValue() request prior to the value being set
by the SCO, then the LMS shall set the appropriate error code
(Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.score.min data model element.
The minimum score is determined by the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.objectives.n.score.min currently stored by the LMS for the
learner and set the API Implementation’s error code to “0” –
No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.objectives.n.score.min and the record of data has
been created but the min data model element has not
been set by the SCO, then the LMS shall set the error
code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.objectives.n.score.min
data model element to the parameter passed as parameter_2 of
the SetValue() call, set the error code to “0” - No error and
return “true”.

o If the SCO tries to set the cmi.objectives.n.score.min
to a value that is not a real number, then the LMS
shall set the error code to “406” - Data Model
Element Type Mismatch, return “false”. The
LMS shall not alter the state of the data model
element based on the request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-101
© 2004 Advanced Distributed Learning. All Rights Reserved.

that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.score.min (prior to
setting the identifier) then the LMS shall set the error
code to “408” – Data Model Dependency Not
Established and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.objectives.0.score.min”)
• SetValue(“cmi.objectives.0.score.min”,”1.0”)
• SetValue(“cmi.objectives.0.score.min”,”500”)

cmi.objectives.n.score.max The cmi.objectives.n.score.max data model element is the maximum
value, for the objective, in the range for the raw score [1].
Data Model Element Implementation Requirements:

• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to

seven significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real
(10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by an LMS as read/write.
• The SCO is responsible for setting this value if appropriate.

The LMS cannot make any judgments of the objective’s
maximum score unless reported otherwise from the SCO. If an
LMS receives a GetValue() request prior to the value being set
by the SCO, then the LMS shall set the appropriate error code
(Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.score.max data model
element. The max score is determined by the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.objectives.n.score.max currently stored by the LMS for the
learner and set the API Implementation’s error code to “0” –
No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element
Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.objectives.n.score.max and the record of data has

RTE-4-102 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

been created but the max data model element has not
been set by the SCO, then the LMS shall set the error
code to “403” Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.objectives.n.score.max
data model element to the parameter passed as parameter_2 of
the SetValue() call, set the error code to “0” - No error and
return “true”.

o If the SCO tries to set the cmi.objectives.n.score.max
to a value that is not a real number, then the LMS
shall set the error code to “406” - Data Model
Element Type Mismatch, return “false”. The
LMS shall not alter the state of the data model
element based on the request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number
that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.score.max (prior to
setting the identifier) then the LMS shall set the error
code to “408” – Data Model Dependency Not
Established and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.objectives.0.score.max”)
• SetValue(“cmi.objectives.0.score.max”,”1.0”)
• SetValue(“cmi.objectives.0.score.max”,”500”)

cmi.objectives.n.success_status The cmi.objectives.n.success_status data model element indicates
whether the learner has mastered the objective [1]. How the SCO
determines the cmi.objectives.n.success_status for the objective is
outside the scope of SCORM. The SCO could base this decision on a
certain percentage of interactions being passed that map to the objective,
a total score for a test or quiz, based on the objectives, compared against
a mastery score, etc. This value indicates the overall success status for
the SCO as determined by the SCO developer.
If there is sequencing information applied to the learning activity
associated with the SCO that relies on objective status, the SCO must
ensure objective information is accurately sent to the LMS (SetValue())
prior to the SCO’s learner session ending. Otherwise, the LMS will use
the value “unknown” as the objective status for the appropriate objective
(based on objective IDs) of the learning activity associated with the SCO
when processing sequencing information.
Data Model Element Implementation Requirements:

• Data Type: state (passed, failed, unknown)
• Value Space: The IEEE draft defines three state values.

SCORM binds these state values to the following restricted
vocabulary tokens:

o “passed”: The learner has passed the SCO [1].
Indicates that the necessary number of objectives
was mastered or a necessary score was achieved.

o “failed”: The learner has failed the SCO [1].
Indicates that the learner did not master the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-103
© 2004 Advanced Distributed Learning. All Rights Reserved.

necessary number of objectives or that a required
score was not achieved.

o “unknown”: No assertion is made [1]. This
indicates that no applicable assertion can be made
that indicates the success status.

• Format: The format of the data model value shall be one of
the three restricted values listed above (“passed”, “failed”,
“unknown”).

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by an LMS as read/write.
• Normally the SCO will report its own

cmi.objectives.n.success_status to the LMS, however there is
no requirement in SCORM that mandates a SCO to set
cmi.objectives.n.success_status. If the
cmi.objectives.n.success_status is not reported by the SCO,
then the LMS shall use the default of “unknown” as the value
of the objectives success status.

Sequencing Impacts:
• If the SCO sets cmi.objectives.n.success_status for an objective

of the SCO to “unknown”, the Objective Progress Status for
the objective (based on objective IDs) of the learning activity
associated with the SCO shall be false.

• If the SCO sets cmi.objectives.n.success_status for an objective
of the SCO to “passed”, the Objective Progress Status for the
objective (based on objective IDs) of the learning activity
associated with the SCO shall be true, and the Objective
Satisfied Status for the objective (based on objective IDs) of
the learning activity associated with the SCO shall be true.

• If the SCO sets cmi.objectives.n.success_status for an objective
of the SCO to “failed”, the Objective Progress Status for the
objective (based on objective IDs) of the learning activity
associated with the SCO shall be true, and the Objective
Satisfied Status for the objective (based on objective IDs) of
the learning activity associated with the SCO shall be false.

SCO Behavior Requirements:
• The data model element is required to be implemented by the

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.success_status data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the objectives associated

cmi.objectives.n.success_status currently stored by the LMS
for the learner and set the error code to “0” – No error. The
characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements. Until the cmi.objectives.n.success_status has
been set, the default value of the data model element shall be
“unknown”.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

• SetValue(): If the SCO invokes a SetValue() request to set

RTE-4-104 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

the cmi.objectives.n.success_status and the supplied value
meets the requirements defined in the Data Model Element
Implementation Requirements, then the LMS shall store the
supplied value for cmi.objectives.n.success_status, set the error
code to “0” – No error and return “true”.

o If the SCO invokes a request to set the
cmi.objectives.n.success_status and the value is not a
member of the restricted vocabulary tokens
described above, then the LMS shall set the API
Error Code to “406” – Data Model Element Type
Mismatch and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number
that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.success_status (prior
to setting the identifier) then the LMS shall set the
error code to “408” – Data Model Dependency Not
Established and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.objectives.n.success_status”)
• SetValue(“cmi.objectives.n.success_status”,”passed”)

cmi.objectives.n.completion_status The cmi.objectives.n.completion_status data model element indicates
whether the learner has completed the associated objective [1]. How the
SCO determines the cmi.objectives.n.completion_status for the objective
is outside the scope of SCORM. For example, the SCO could base this
decision on a number of interactions associated with the objective being
completed.
Since the determination of cmi.objectives.n.completion_status is
controlled and managed by the SCO, the LMS cannot imply that the
SCO is completed in any way. If no cmi.objectives.n.completion_status
is reported by the SCO, then the LMS can only rely on the fact that the
cmi.objectives.n.completion_status is “unknown”.
Data Model Element Implementation Requirements:

• Data Type: state (completed, incomplete, not_attempted,
unknown)

• Value Space: The IEEE draft defines four state values.
SCORM binds these state values to the following restricted
vocabulary tokens:

o “completed”: The learner has experienced enough of
the SCO for the associated objective to be considered
complete [1]. How completion is determined is
controlled and managed by the SCO.

o “incomplete”: The learner has not experienced
enough of the SCO for the associated objective to be
considered completed [1]. How completion is
determined is controlled and managed by the SCO.

o “not attempted”: The learner has experienced the
SCO, but the associated objective has not been

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-105
© 2004 Advanced Distributed Learning. All Rights Reserved.

attempted [1]. The SCO is responsible for
determining whether or not the objective was
attempted.

o “unknown”: No assertion is made [1]. This
indicates that no applicable assertion can be made
that indicates the completion status.

• Format: The format of the data model value shall be one of
the four restricted vocabulary tokens listed above
(“completed”, “incomplete”, “not attempted”, “unknown”).

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by the LMS as read/write.
• Normally the SCO will report its own objectives completion

status to the LMS, however there is no requirement in SCORM
that mandates a SCO to set cmi.objectives.n.completion_status.
If the SCO does not set the cmi.objectives.n.completion_status,
then the LMS shall treat the cmi.objectives.n.completion_status
as “unknown”.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.completion_status data model
element.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated

cmi.objectives.n.completion_status currently stored by the
LMS for the learner and set the error code to “0” – No error.
The characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation
Requirements. Until the cmi.objectives.n.completion_status
has been set, the default value of the data model element shall
be “unknown”.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()
request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

• SetValue(): If the data dependency has been met (the
identifier for the objective has been previously set for the given
index n and the supplied value meets the Data Model Element
Implementation Requirements) the LMS shall set the
cmi.objectives.n.completion_status data model element to the
supplied value, set the error code to “0” – No error and return
“true”.

o If the SCO invokes a request to set the
cmi.objectives.n.completion_status and the value is
not a member of the restricted vocabulary tokens
described above, then the LMS shall set the API
Error Code to “406” – Data Model Element Type
Mismatch and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number

RTE-4-106 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.completion_status
(prior to setting the identifier) then the LMS shall set
the error code to “408” – Data Model Dependency
Not Established and return “false”. The LMS
shall not alter the state of the data model element
based on the request.

Example:
• GetValue(“cmi.objectives.0.completion_status”)
• SetValue(“cmi.objectives.0.completion_status”,”incomplete”)

cmi.objectives.n.description The cmi.objectives.n.description data model element provides a brief
informative description of the objective [1].
Data Model Element Implementation Requirements:

• Data Type: localized_string_type (SPM: 250)
• Value Space: A characterstring (defined by ISO-10646-1)

with localization information
• Format Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the
localized_string_type data type.

LMS Behavior Requirements:
• This data model element is mandatory and shall be

implemented by the LMS as read/write.
• This value is currently initialized by the SCO. SCORM does

not define any other way of initializing this value (e.g., through
an extension to the content packaging manifest). The LMS
shall not make any assumption on an initial value for this data
model element. If a GetValue() request is made before the
actual objective description has been set by the SCO, then the
LMS shall behave according to the API Implementation
Requirements below.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read/write. The SCO is permitted to retrieve and store
the value of the cmi.objectives.n.description data model
element.

• During a SetValue() request, the SCO should be aware that the
delimiter is optional. If the delimiter is not provided as part of
the characterstring, the LMS will assume that the default
language is “en”.

• During a GetValue() request, the SCO should be aware that the
delimiter may be part of the characterstring returned by the
LMS (depending on the LMS implementation). What the SCO
does with the characterstring returned by the LMS is
dependent on the implementation of the SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated objective

description currently stored by the LMS for the learner and set
the error code to “0” – No error. The characterstring returned
shall adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a GetValue()

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-107
© 2004 Advanced Distributed Learning. All Rights Reserved.

request where the index (n) is a number larger than
what the LMS is currently maintaining (e.g., the
request indicated an n value of 5 when there are only
3 objectives in the array), then the LMS shall set the
error code to “301” – General Get Failure and return
an empty characterstring (“”). Refer to Section
3.1.7.6: SCORM Extension Error Conditions for
further recommendations on processing this request.

o If the SCO attempts to retrieve the
cmi.objectives.n.description and the record of data
has been created but the description data model
element has not been set by the SCO, then the LMS
shall set the error code to “403” Data Model
Element Value Not Initialized and return an empty
characterstring (“”).

• SetValue(): The LMS shall set the
cmi.objectives.n.description to the supplied value in the
SetValue() request, set the error code to “0” – No error and
return “true”.

o If the supplied value of the SetValue() does not meet
the requirements of the Data Model Element
Implementation Requirements, then the LMS shall
set the error code to “406” – Data Model Element
Type Mismatch and return “false”. The LMS
shall not alter the state of the data model element
based on the request.

o The data model binding for collections is represented
as packed arrays. If the SCO invokes a SetValue()
request where the index (n) provided is a number
that is greater than the current number of objectives
being stored, then the LMS shall set the error code to
“351” – General Set Failure and return “false”.
Refer to Section 3.1.7.6: SCORM Extension Error
Conditions.

o Since the cmi.objectives.n.id is required to be set first
prior to any other objective information, if the SCO
attempts to set cmi.objectives.n.success_status (prior
to setting the identifier) then the LMS shall set the
error code to “408” – Data Model Dependency Not
Established and return “false”. The LMS shall not
alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.objectives.0.description”)
• SetValue(“cmi.objectives.0.description”,”Upon completion of

this unit, the learner shall be able to distinguish between an
apple and an orange”)

Table 4.2.17a: Dot-notation Binding for the Objectives Data Model Element

RTE-4-108 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.18. Progress Measure

The cmi.progress_measure data model element is a measure of the progress the learner
has made toward completing the SCO [1].

cmi.progress_measure cmi.completion_status
0 “not attempted”
1 “completed”
0 > value < 1 “incomplete” (typically, unless a

cmi.completion_threshold is
defined and the
cmi.progress_measure is >= the
cmi.completion_threshold)

Table 4.2.18a: Progress Measure relationship with Completion Status

Table 4.2.1.8a describes the mapping of cmi.progress_measure values to the
cmi.completion_status values. The SCO defines the requirements for determining
the progress measure. This could be based on the completion of a certain number of
objectives related to the SCO, a set number of pages (in a multi-page SCO) presented to
the learner, etc.

Dot-Notation Binding Details

cmi.progress_measure Data Model Element Implementation Requirements:
• Data Type: real (10,7) range (0..1)
• Value Space: A real number with values that is accurate to seven

significant decimal figures. The value shall be in the range of 0.0 to 1.0,
inclusive.

• Format: Refer to Section 4.1.1.7: Data Types for more information on the
requirements for the format of the real (10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by the LMS

as read/write.
• The SCO is responsible for determining the cmi.progress_measure. The

LMS cannot make any judgments of the cmi.progress_measure unless
reported from the SCO. If an LMS receives a retrieve (GetValue()) request
prior to the value being set, then the LMS shall set the appropriate error
code (Refer to API Implementation Requirements).

• If a cmi.completion_threshold is defined and the SCO reports a
cmi.progress_measure, the LMS shall override any value currently being
stored in cmi.completion_status, based on the requirements defined in
Section 4.2.4.1: Completion Status Determination.

Sequencing Impacts:
• At this time there is no direct mapping of the cmi.progress_measure to an

IMS Simple Sequencing Tracking Model element. Nor is there a direct
mapping to a sequencing behavior.

• If a cmi.completion_threshold is defined, and a cmi.progress_measure is set,
the determination of the cmi.completion_status data model element may be
impacted. The cmi.completion_status does impact certain sequencing rules.

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as

read/write. The SCO is permitted to retrieve and store the value of the
cmi.progress_measure data model element.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-109
© 2004 Advanced Distributed Learning. All Rights Reserved.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.progress_measure

currently stored by the LMS for the learner and set the API
Implementation’s error code to “0” – No error. The characterstring returned
shall adhere to the requirements identified in the Data Model Element
Implementation Requirements.

o If the SCO invokes a request to get the cmi.progress_measure
prior to the value being set, then the LMS shall set the error code
to “403” – Data Model Element Value Not Initialized and return
an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.progress_measure data model
element to the parameter passed as parameter_2 of the SetValue() call, set
the error code to “0” - No error and return “true”.

o If the SCO tries to set the cmi.progress_measure to a value that is
not a real number, then the LMS shall set the error code to “406”
- Data Model Element Type Mismatch, return “false”. The LMS
shall not alter the state of the data model element based on the
request.

o If the SCO tries to set the cmi.progress_measure to a value that is
a real number but the value is not in the range of 0 to 1, inclusive,
then the LMS shall set the error code to “407” - Data Model
Element Value Out Of Range, return “false”. The LMS shall not
alter the state of the data model element based on the request.

Example:
• GetValue(“cmi.progress_measure”)
• SetValue(“cmi.progress_measure”,”0.75”)
• SetValue(“cmi.progress_measure”,”1.0”)

Table 4.2.18b: Dot-notation Binding for the Progress Measure Data Model Element

RTE-4-110 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.19. Scaled Passing Score

The cmi.scaled_passing_score data model element is the scaled passing score
required to master the SCO. The value of the data model element is scaled to fit the
range -1 to 1 inclusive [1]. The value indicates the passing scaled score for a SCO.

Dot-Notation Binding Details

cmi.scaled_passing_score Data Model Element Implementation Requirements:
• Data Type: real(10,7) range (-1 .. 1)
• Value Space: -1.0 <= scaled_passing_score <= 1.0
• Format: Refer to Section 4.1.1.7: Data Types for more

information on the requirements for the format of the real
(10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by the LMS as read-only.
• The LMS is responsible for initializing this data model element

based using the IMS Simple Sequencing namespace element
<imsss:minNormalizedMeasure> element associated with an
<imsss:primaryObjective> element for the <imscp:item>
element that references a SCO resource. If the value is not
provided in the manifest, then the LMS shall not make any
assumptions of a scaled passing score.

SCO Behavior Requirements:
• The data model element is required to be implemented by an

LMS as read-only. The SCO is only permitted to retrieve the
cmi.scaled_passing_score data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for the

cmi.scaled_passing_score data model element and set the error
code to “0” – No error. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o If there is no scaled passing score defined in the
manifest and the SCO requests the value for this data
model element, then the LMS shall set the error code
to “403” – Data Model Element Value Not
Initialized and return an empty characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.scaled_passing_score, then the LMS shall set the error
code to “404” – Data Model Element Is Read Only and return
“false”. The LMS shall not alter the state of the data model
element based on the request.

Example:
• GetValue(“cmi.scaled_passing_score”)

Table 4.2.19a: Dot-notation Binding for the Scaled Passing Score Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-111
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.20. Score

The score data model element is the learner’s score for the SCO [1]. The score data
model element is broken into four sub-elements:

• cmi.score.scaled: The scaled data model element is a number that reflects the
performance of the learner. The value of the data model element is scaled to fit
the range –1.0 to 1.0 inclusive [1].

• cmi.score.raw: The raw data model element is a number that reflects the
performance of the learner relative to the range bounded by the values of min and
max [1].

• cmi.score.min: The min data model element is the minimum value in the range
for the raw score [1].

• cmi.score.max: The max data model element is the maximum value in the range
for the raw score [1].

Dot-Notation Binding Details

cmi.score._children The cmi.score._children data model element represents a listing of supported data
model elements. This data model element is typically used by a SCO to determine
which data model elements are supported by the LMS. The characterstring returned
may be used by the SCO to dynamically build parameters for the GetValue() and
SetValue() requests.
Data Model Element Implementation Requirements:

• Data Type: characterstring
• Value Space: ISO-10646-1 [5]
• Format: A comma-separated list of all of the data model elements in the

Score parent data model element that are supported by the LMS. Since all
data model elements are required to be supported by the LMS, the
characterstring shall represent the following data model elements:

o scaled
o min
o max
o raw

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by an LMS

as read-only.
• The LMS is responsible for returning a comma-separated list of all of the

data model elements (Refer to Data Model Element Implementation
Requirements above).

SCO Behavior Requirements:
• This data model element is required to be implemented by an LMS as read-

only. The SCO is only permitted to retrieve the cmi.score._children data
model element.

API Implementation Requirements:
• GetValue(): The LMS shall return a comma-separated list of data model

elements supported by the LMS (Refer to Data Model Element
Implementation Requirements above) and set the error code to “0” – No
error. The ordering of data model elements is not important. The
characterstring returned shall adhere to the requirements identified in the
Data Model Element Implementation Requirements.

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.score_children, then the LMS shall set the error code to “404” – Data

RTE-4-112 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Model Element Is Read Only and return “false”.
Example:

• GetValue(“cmi.score._children”)

cmi.score.scaled Data Model Element Implementation Requirements:
• Data Type: real (10,7) range (-1..1)
• Value Space: A real number with values that is accurate to seven

significant decimal figures. The value shall be in the range of –1.0 to 1.0,
inclusive.

• Format: Refer to Section 4.1.1.7: Data Types for more information on the
requirements for the format of the real (10,7) data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by the LMS

as read/write.
• The SCO is responsible for determining the scaled score. The LMS cannot

make any judgments of the scaled score unless reported from the SCO. If
an LMS receives a retrieve (GetValue()) request prior to the value being
set by the SCO, then the LMS shall set the appropriate error code (Refer to
API Implementation Requirements).

Sequencing Impacts:
• If the SCO does not set cmi.score.scaled, the Objective Measure Status for

the primary objective of the learning activity associated with the SCO shall
be false.

• If the SCO sets cmi.score.scaled, the Objective Measure Status for the
primary objective of the learning activity associated with the SCO shall be
true, and the Objective Normalized Measure for the primary objective of the
learning activity associated with the SCO shall equal the value of
score.scaled.

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as

read/write. The SCO is permitted to retrieve and store the value of the
cmi.score.scaled data model element.

• If there is sequencing information applied to the learning activity associated
with the SCO that relies on measure, the SCO must ensure score
information is accurately sent to the LMS (SetValue()) prior to the SCO’s
learner session ending. Otherwise, the LMS will use the value “unknown”
as the objective measure for the primary objective of the learning activity
associated with the SCO when processing sequencing information.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.score.scaled

currently stored by the LMS for the learner and set the API
Implementation’s error code to “0” – No error. The characterstring returned
shall adhere to the requirements identified in the Data Model Element
Implementation Requirements.

o If the SCO invokes a request to get the cmi.score.scaled prior to
the value being set by the SCO, then the LMS shall set the error
code to “403” – Data Model Element Value Not Initialized and
return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.score.scaled data model element to
the parameter passed as parameter_2 of the SetValue() call, set the error
code to “0” - No error and return “true”.

o If the SCO tries to set the cmi.score.scaled to a value that is not a
real number, then the LMS shall set the error code to “406” -
Data Model Element Type Mismatch, return “false”. The LMS
shall not alter the state of the data model element based on the
request.

o If the SCO tries to set the cmi.score.scaled to a value that is a real
number but the value is not in the range of –1 to 1, inclusive, then
the LMS shall set the error code to “407” - Data Model Element
Value Out Of Range, return “false”. The LMS shall not alter the

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-113
© 2004 Advanced Distributed Learning. All Rights Reserved.

state of the data model element based on the request.
Example:

• GetValue(“cmi.score.scaled”)
• SetValue(“cmi.score.scaled”,”0.750033”)
• SetValue(“cmi.score.scaled”,”0.75”)

cmi.score.raw Data Model Element Implementation Requirements:
• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to seven

significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the real (10,7) data type.
LMS Behavior Requirements:

• The data model element is mandatory and shall be implemented by an LMS
as read/write.

• The SCO is responsible for setting this value if appropriate. The LMS
cannot make any judgments of the raw score unless reported otherwise from
the SCO. If an LMS receives a retrieve (GetValue()) request prior to the
value being set by the SCO, then the LMS shall set the appropriate error
code (Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as

read/write. The SCO is permitted to retrieve and store the value of the
cmi.score.raw data model element.

• The raw score may be determined and calculated in any manner that makes
sense to the SCO. For instance, it could reflect the percentage of objectives
complete, it could be the raw score on a multiple choice test or it could
indicate the number of correct first responses to embedded questions in a
SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.score.raw currently

stored by the LMS for the learner and set the API Implementation’s error
code to “0” – No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element Implementation
Requirements.

o If the SCO invokes a request to get the cmi.score.raw prior to the
value being set by the SCO, then the LMS shall set the error code
to “403” – Data Model Element Value Not Initialized and return
an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.score.raw data model element to the
parameter passed as parameter_2 of the SetValue() call, set the error code to
“0” - No error and return “true”.

o If the SCO tries to set the cmi.score.raw to a value that is not a
real number, then the LMS shall set the error code to “406” -
Data Model Element Type Mismatch, return “false”. The LMS
shall not alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.score.raw”)
• SetValue(“cmi.score.raw”,”75.0033”)
• SetValue(“cmi.score.raw”,”0.75”)

cmi.score.max Data Model Element Implementation Requirements:
• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to seven

significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the real (10,7) data type.
LMS Behavior Requirements:

RTE-4-114 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• The data model element is mandatory and shall be implemented by an LMS
as read/write.

• The SCO is responsible for setting this value if appropriate. The LMS
cannot make any judgments of the maximum score unless reported
otherwise from the SCO. If an LMS receives a GetValue() request prior to
the value being set by the SCO, then the LMS shall set the appropriate error
code (Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as

read/write The SCO is permitted to retrieve and store the value of the
cmi.score.max data model element. The max score is determined by the
SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.score.max currently

stored by the LMS for the learner and set the API Implementation’s error
code to “0” – No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element Implementation
Requirements.

o If the SCO invokes a request to get the cmi.score.max prior to the
value being set by the SCO, then the LMS shall set the error code
to “403” – Data Model Element Value Not Initialized and return
an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.score.max data model element to
the parameter passed as parameter_2 of the SetValue() call, set the error
code to “0” - No error and return “true”.

o If the SCO tries to set the cmi.score.max to a value that is not a
real number, then the LMS shall set the error code to “406” -
Data Model Element Type Mismatch, return “false”. The LMS
shall not alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.score.max”)
• SetValue(“cmi.score.max”,”1.0”)
• SetValue(“cmi.score.max”,”500”)

cmi.score.min Data Model Element Implementation Requirements:
• Data Type: real (10,7)
• Value Space: A real number with values that is accurate to seven

significant decimal figures.
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the real (10,7) data type.
LMS Behavior Requirements:

• The data model element is mandatory and shall be implemented by an LMS
as read/write.

• The SCO is responsible for setting this value if appropriate. The LMS
cannot make any judgments of the minimum score unless reported
otherwise from the SCO. If an LMS receives a GetValue() request prior to
the value being set by the SCO, then the LMS shall set the appropriate error
code (Refer to API Implementation Requirements).

SCO Behavior Requirements:
• The data model element is required to be implemented by an LMS as

read/write. The SCO is permitted to retrieve and store the value of the
cmi.score.min data model element. The max score is determined by the
SCO.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.score.min currently

stored by the LMS for the learner and set the API Implementation’s error
code to “0” – No error. The characterstring returned shall adhere to the
requirements identified in the Data Model Element Implementation

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-115
© 2004 Advanced Distributed Learning. All Rights Reserved.

Requirements.
o If the SCO invokes a request to get the cmi.score.min prior to the

value being set by the SCO, then the LMS shall set the error code
to “403” – Data Model Element Value Not Initialized and return
an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.score.min data model element to the
parameter passed as parameter_2 of the SetValue() call, set the error code to
“0” - No error and return “true”.

o If the SCO tries to set the cmi.score.min to a value that is not a
real number, then the LMS shall set the error code to “406” -
Data Model Element Type Mismatch, return “false”. The LMS
shall not alter the state of the data model element based on the
request.

Example:
• GetValue(“cmi.score.min”)
• SetValue(“cmi.score.min”,”1.0”)
• SetValue(“cmi.score.min”,”500”)

Table 4.2.20a: Dot-notation Binding for the Score Data Model Element

RTE-4-116 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.21. Session Time

The cmi.session_time data model element is the amount of time that the learner has
spent in the current learner session for this SCO. If no learner session is in progress, then
the session time is the time the learner spent in the last learner session for this SCO [1].

If the SCO is going to track cmi.session_time, the SCO determines the value and
meaning of cmi.session_time. Examples:

1. The SCO may not start recording session time until after it has initialized a media
segment.

2. If the learner takes a break in the learner session, then the break time may or may
not be included in the reported cmi.session_time [1].

The SCO should be responsible for tracking any and all times. This includes
implementations of internal time clocks for recording such times.

Dot-Notation Binding Details

cmi.session_time Data Model Element Implementation Requirements:
• Data Type: timeinterval (second,10,2) - a time interval with resolution to

0.01 seconds
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the timeinterval (second,10,2) data type.
LMS Behavior Requirements:

• The data model element is mandatory and shall be implemented by an LMS
as write-only.

• Since this data model element is implemented by the LMS as write-only, the
LMS is not responsible for initializing this data model element. It is the
responsibility of the SCO to manage this value. The LMS is only
responsible for accepting a SetValue() call to this data model element and
perform the accumulation with cmi.total_time.

• Since a SCO is not required to set a value for this data model element (not
required to keep track of the session time), an LMS shall keep track of
session time from the time the LMS launches the SCO. If the SCO reports a
different session time, then the LMS shall use the session time as reported
by the SCO instead of the session time as measure by the LMS.

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as write-

only. The SCO is only permitted to store the value of the cmi.session_time
data model element.

• A SCO is permitted, in a single communication session, to perform multiple
sets of session time (cmi.session_time). SCO developers should be aware of
the fact that when the SCO issues the Terminate(“”) or the user navigates
away, the LMS shall take the last cmi.session_time that the SCO set (if there
was one set) and accumulate this time to the cmi.total_time.

API Implementation Requirements:
• GetValue(): If the SCO invokes a request to get the cmi.session_time, then

the LMS shall set the error code to “405” – Data Model Element Is Write
Only and return and empty characterstring (“”).

• SetValue(): This request sets the cmi.session_time to the supplied value.
The supplied value shall meet the Data Model Element Implementation
Requirements defined above. If the supplied value is correctly formulated,
then the LMS shall set the value, return “true” and set the error code to

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-117
© 2004 Advanced Distributed Learning. All Rights Reserved.

“0” - No error.
o If the supplied value does not meet the Data Model Element

Implementation Requirements identified above, then the LMS
shall set the error code to “406” - Data Model Element Type
Mismatch and return “false”. The LMS shall not alter the state
of the data model element based on the request.

Additional Behavior Requirements:
• This value is used to keep track of the time spent in a SCO for a learner

session. The LMS shall use this value in determining the cmi.total_time. A
SCO is able, in a single learner session, to perform multiple sets (
SetValue()) of the cmi.session_time. When the SCO issues the
Terminate(“”) or the user navigates away, the LMS shall take the last
cmi.session_time that the SCO set (if there was a set) and accumulate this
time to the cmi.total_time. Upon subsequent launch of the SCO in the same
learner attempt, and a GetValue() call for cmi.total_time, the LMS shall
return the accumulated time. LMS’s shall not accumulate the multiple
session times sent via the SetValue() request. If multiple calls to SetValue()
for cmi.session_time are made, then the LMS shall internally keep track of
the various session times and only use the last value set when persisting the
cmi.session_time.

Example:
• SetValue(“cmi.session_time”,”PT1H5M”)

Table 4.2.21a: Dot-notation Binding for the Session Time Data Model Element

RTE-4-118 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.22. Success Status

The cmi.success_status data model element indicates whether the learner has
mastered the SCO [1]. How the SCO determines its cmi.success_status is outside the
scope of SCORM. The SCO could base this decision on a certain percentage of
interactions being passed, a certain percentage of objectives being met, a total score for a
test or quiz compared against a mastery score, etc. This value indicates the overall
success status for the SCO as determined by the SCO developer.

Dot-Notation Binding Details

cmi.success_status Data Model Element Implementation Requirements:
• Data Type: state (passed, failed, unknown)
• Value Space: The IEEE draft defines three state values. SCORM binds

these state values to the following restricted vocabulary tokens:
o “passed”: The learner has passed the SCO [1]. Indicates that the

necessary number of objectives was mastered or a necessary score
was achieved.

o “failed”: The learner has failed the SCO [1]. Indicates that the
learner did not master the necessary number of objectives or that a
required score was not achieved.

o “unknown”: No assertion is made [1]. This indicates that no
applicable assertion can be made that indicates the success status.

• Format: The format of the data model value shall be one of the three
restricted values listed above (“passed”, “failed”, “unknown”).

LMS Behavior Requirements:
• This data model element is mandatory and shall be implemented by an LMS

as read/write.
• Since the determination of cmi.success_status is initially controlled and

managed by the SCO, the LMS cannot imply any value for the
cmi.success_status in any way. There is no requirement in SCORM that
mandates a SCO to set cmi.success_status. If the SCO does not set the
cmi.success_status, the LMS shall use the default value of “unknown” as the
value for cmi.success_status. However, if a cmi.scaled_passing_score is
defined and a cmi.scaled.score is reported by the SCO, then the LMS must
override the cmi.success_status by adhering to the requirements defined in
section 4.2.22.1: Success Status Determination.

• Sequencing Impacts:
• If the SCO or LMS (through the above process) sets cmi.success_status, of

the SCO to “unknown”, the Objective Progress Status for the primary
objective of the learning activity associated with the SCO shall be false.

• If the SCO or LMS (through the above process) sets cmi.success_status, of
the SCO to “passed”, the Objective Progress Status for the primary
objective of the learning activity associated with the SCO shall be true, and
the Objective Satisfied Status for the primary objective of the learning
activity associated with the SCO shall be true.

• If the SCO or LMS (through the above process) sets cmi.success_status, of
the SCO to “failed”, the Objective Progress Status for the primary objective
of the learning activity associated with the SCO shall be true, and the
Objective Satisfied Status for the primary objective of the learning activity
associated with the SCO shall be false.

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as

read/write. The SCO is permitted to retrieve and store the value of the
cmi.success_status data model element.

• The SCO should be aware of the cmi.success_status determination rules that

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-119
© 2004 Advanced Distributed Learning. All Rights Reserved.

shall be adhered to by an LMS. These rules outline how and when an LMS
can override a cmi.success_status reported by the SCO.

• The SCO should be aware that setting the cmi.success_status will affect the
learning activity associated with the SCO, therefore possibly affecting
sequencing.

• If there is sequencing information applied to the learning activity associated
with the SCO that relies on success status, the SCO must ensure success
information is accurately sent to the LMS (SetValue()) prior to the SCO’s
learner session ending. Otherwise, the LMS will use the value “unknown”
as the objective status for the primary objective of the learning activity
associated with the SCO when processing sequencing information.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.success_status

currently stored by the LMS for the learner and set the error code to “0” –
No error. The characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation Requirements.

o Until some determination factor is present, the default value of the
cmi.success_status is “unknown”.

• SetValue(): If the SCO invokes a request to set the cmi.success_status and
the value is not a member of the restricted vocabulary tokens described
above, then the LMS shall set the error code to “406” – Data Model
Element Type Mismatch and return “false”. The LMS shall not alter the
state of the data model element based on the request.

Example:
• GetValue(“cmi.success_status”)
• SetValue(“cmi.success_status”,”passed”)

Table 4.2.22a: Dot-notation Binding for the Success Status Data Model Element

4.2.22.1 Success Status Determination
Typically the success status of the SCO is determined by the SCO. The success status of
the SCO can be designed by the content developer in various ways:

• acquiring a certain performance measure on a set of questions,
• acquiring a certain performance measure on an objective or set of objectives

associated with the SCO,

Regardless of how the determination is made by the SCO, this process involves the SCO
setting the cmi.success_status. SCORM does not require the SCO to track (i.e.,
GetValue() or SetValue() function calls) any SCORM Run-Time Environment Data
Model elements. With this in mind, the LMS may have additional behaviors that are
required in the determination of success status. Under certain circumstances the LMS is
required to behave differently.

The cmi.success_status data model element is impacted by two other SCORM Run-
Time Environment Data Model Elements (Scaled Passing Score –
cmi.scaled_passing_score and a Scaled Score – cmi.score.scaled). The following
table defines the possible states of these values and the defined LMS behavior. The
Scaled Passing Score is defined in the imsmanifest.xml file (refer to Section 4.2.19:
Scaled Passing Score for more details). Both the Scaled Score and Success Status are
determined and set by the SCO. Table 4.2.22.1a defines the LMS behaviors associated
with the combinations of these values being set/defined or not set/defined.

RTE-4-120 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Scaled Passing
Score

Scaled Score Success Status LMS Behavior

None defined No value set by
the SCO

No value set by
the SCO

The cmi.success_status shall be set to
“unknown”

None defined No value set by
the SCO

One of the
defined
vocabularies

No action, the cmi.success_status shall be set
to the value that was set by the SCO.

None defined 0.5 One of the
defined
vocabularies

No action, the cmi.success_status shall be set
to the value that was set by the SCO.

0.8 0.5 One of the
defined
vocabularies

The cmi.success_status shall be overridden
and set to “failed”.

RATIONALE: 0.5 < 0.8. Refer to the requirements
defined by cmi.scaled_passing_score and
cmi.score.scaled.

0.8 0.9 One of the
defined
vocabularies

The cmi.success_status shall be overridden
and set to “passed”.

RATIONALE: 0.9 >= 0.8. Refer to the requirements
defined by cmi.scaled_passing_score and
cmi.score.scaled.

0.8 No value set by
the SCO

No value set by
the SCO.

The cmi.success_status shall be set to
“unknown”

0.8 0.5 No value set by
the SCO.

The cmi.success_status shall be set to
“failed”.

RATIONALE: 0.5 < 0.8. Refer to the requirements
defined by cmi.scaled_passing_score and
cmi.score.scaled.

0.8 0.9 No value set by
the SCO.

The cmi.success_status shall be set to
“passed”.

RATIONALE: 0.9 >= 0.8. Refer to the requirements
defined by cmi.scaled_passing_score and
cmi.score.scaled.

None defined 0.5 No value set by
the SCO

The cmi.success_status shall be set to
“unknown”

0.8 No value set by
the SCO.

One of the
defined
vocabularies

No action, the cmi.success_status shall be set
to the value that was set by the SCO.

Table 4.2.22.1a: Success Status Determination

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-121
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.23. Suspend Data

During a learning experience, the learner or SCO may wish to suspend the learner
attempt on the SCO and resume the learner attempt later. It is the SCO’s responsibility to
provide some mechanism for the learner to suspend the current learner attempt. If the
learner attempt on the SCO is suspended, the state of the SCO’s run-time data will persist
until the next learner session on the SCO (if the cmi.exit is set to “suspend”). The
cmi.suspend_data data model element provides additional space to store and retrieve
suspend data between learner sessions; suspend data may be used by the SCO to resume
the learner attempt.

Note, the use of cmi.suspend_data is closely related to cmi.exit. If cmi.exit is not
set to “suspend” prior to a learner session on the SCO ending, the learner attempt on the
SCO also ends. In this case, with the exception of SCO’s associated learning activity
identified with Persist State, the state of cmi.suspend_data (and all other data model
elements) will not be available to the SCO if the SCO is launched in a future learner
attempt.

The cmi.suspend_data data model element provides information that may be created by
a SCO as a result of a learner accessing or interacting with that SCO. The format of the
content of this data model element is unspecified [1].

The intent is for the SCO to store data for later use in the current learner session or a
subsequent learner session between the SCO and the same learner. The LMS shall not
interpret or change this data [1].

This data model element can typically be used to store information that the SCO may
need upon resumption from a suspended state, for which the cmi.location cannot be
utilized. The data could also be used later on in the same learner session (no suspended
state).

Dot-Notation Binding Details

cmi.suspend_data Data Model Element Implementation Requirements:
• Data Type: characterstring (SPM: 4000)
• Value Space: ISO-10646-1
• Format: The format of this characterstring is left to the discretion of the SCO

developer. The LMS simply stores the data, if requested to by the SCO (
SetValue()) and returns the data, if requested to by the SCO (GetValue()).
Refer to Section 4.1.1.7: Data Types for more information on the requirements
for the format of the characterstring data type.

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by the LMS as

read/write.
• The LMS is not responsible for the initialization of this data. The LMS is only

responsible for storage and retrieval of the data for the SCO. If the SCO
requests the value before any cmi.suspend_data has been set, then the LMS
shall behave according to the API Implementation Requirement behaviors
defined below.

SCO Behavior Requirements:
• The data model element is required to be implemented by the LMS as

read/write. The SCO is permitted to retrieve and store the value of the

RTE-4-122 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

cmi.suspend_data data model element.
API Implementation Requirements:

• GetValue(): The LMS shall return the associated cmi.suspend_data and set
the error code to “0” - No error. The characterstring returned shall adhere to
the requirements identified in the Data Model Element Implementation
Requirements.

o If the SCO has not set the value prior to the get request, then the
LMS shall set the error code to “403” - Data Model Element Value
Not Initialized and return an empty characterstring (“”).

• SetValue(): The LMS shall set the cmi.suspend_data to the data supplied, set
the error code to “0” - No error and return “true”. The value must be a valid
characterstring as defined b the Data Model Element Implementation
Requirements.

Additional Behavior Requirements:
• The SCO is responsible for the information to be stored by the LMS. The data

sent to the LMS is permitted to be any valid representation of a characterstring.
The LMS shall at least provide the smallest permitted maximum of 4000
characters. A characterstring that is greater than 4000 characters is not
guaranteed to be stored in its entirety by an LMS. The intent is for the SCO to
store data for later use in the current learner session or subsequent learner
sessions between the SCO and the same learner. Since the SCO is responsible
for the format of the cmi.suspend_data, the LMS shall not attempt to interpret
or change this data in any way.

• The LMS shall provide this data as set in a previous learning session only if the
SCO as set the value of cmi.exit to “suspend” (a suspended learner session) in
the previous learner session. In other words, the LMS shall keep the
cmi.suspend_data available during the same learner session, regardless of the
value of cmi.exit. However, if a SCO calls Terminate(“”) without having set
cmi.exit to “suspend”, the LMS may discard the value of the cmi.suspend_data
at its convenience and shall not give this data back to the SCO in a later
session. This behavior also applies to any other data that was set during the
previous session.

Example:
• SetValue(“cmi.suspend_data”,”<data><intID>1001</intID><ans>A</ans></d
ata>”)
• SetValue(“cmi.suspend_data”,”A1;B2;C11-3”)

Table 4.2.23a: Dot-notation Binding for the Suspend Data Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-123
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.24. Time Limit Action

The cmi.time_limit_action data model element indicates what the SCO should do
when cmi.max_time_allowed is exceeded [1].

Dot-Notation Binding Details

cmi.time_limit_action Data Model Element Implementation Requirements:
• Data Type: state (exit_message, continue_message,

exit_no_message, continue_no_message)
• Value Space: The IEEE draft defines four state values.

SCORM binds these state values to the following restricted
vocabulary tokens:

o “exit,message”: The learner should be forced to exit
the SCO. The SCO should provide a message to the
learner indicating that the maximum time allowed
for the learner attempt was exceeded [1].

o “continue,message”: The learner should be allowed
to continue in the SCO. The SCO should provide a
message to the learner indicating that the maximum
time allowed for the learner attempt was exceeded
[1].

o “exit,no message”: The learner should be forced to
exit the SCO with no message [1].

o “continue,no message”: Although the learner has
exceeded the maximum time allowed for the learner
attempt, the learner should be given no message and
should not be forced to exit the SCO [1].

LMS Behavior Requirements:
• The data model element is mandatory and shall be

implemented by an LMS as read-only.
• The LMS is responsible for initializing this data model element

using the ADL Content Packaging namespace element
<adlcp:timelimitaction>. This element shall only be placed on
an <imscp:item> element that references a SCO resource,
found in a Content Package Manifest.

SCO Behavior Requirements:
• This data model element is required to be implemented by the

LMS as read-only. The SCO is only permitted to retrieve the
value of the cmi.time_limit_action data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the value stored for the

cmi.time_limit_action data model element and set the error
code to “0” – No error. The characterstring returned shall
adhere to the requirements identified in the Data Model
Element Implementation Requirements.

o If there is no time limit action defined in the manifest
and the SCO requests the value for this data model
element, then the LMS shall set the error code to
“403” – Data Model Element Value Not Initialized
and return an empty characterstring (“”).

• SetValue(): If the SCO invokes a SetValue() request to set the
cmi.time_limit_action, then the LMS shall set the error code to
“404” – Data Model Element Is Read Only and return
“false”. The LMS shall not alter the state of the data model
element based on the request.

Example:

RTE-4-124 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

• GetValue(“cmi.time_limit_action”)

Table 4.2.24a: Dot-notation Binding for the Time Limit Action Data Model Element

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-4-125
© 2004 Advanced Distributed Learning. All Rights Reserved.

4.2.25. Total Time

The value of the cmi.total_time data model element is the sum of all of the learner’s
session times (cmi.session_time) accumulated in the current learner attempt prior to
the current learner session [1]. This data model element is used to track the total time
spent in all of the learner’s sessions for a given learner attempt (Refer to Section 2.1.1:
Run-Time Environment Temporal Model for more details on learner attempts and learner
sessions).

Dot-Notation Binding Details

cmi.total_time Data Model Element Implementation Requirements:
• Data Type: timeinterval (second,10,2) - a time interval with resolution to

0.01 seconds
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the timeinterval (second,10,2) data type.
LMS Behavior Requirements:

• This data model element is mandatory and shall be implemented by the
LMS as read-only.

• Since this data model element is implemented by the LMS as read-only, it is
the responsibility of the LMS to manage this data. Since this value is the
accumulated session times (cmi.session_time), the LMS cannot determine
this value until the SCO sets session times. If the SCO requests the value
before any session times have been set, then the LMS shall behave
according to the API Implementation Requirements behaviors defined
below.

• The value of the cmi.total_time shall not be updated by the LMS while a
learner session is in progress.

• The default value for the cmi.total_time shall be PT0H0M0S.
SCO Behavior Requirements:

• The data model element is required to be implemented by an LMS as read-
only. The SCO is only permitted to retrieve the value of the cmi.total_time
data model element.

API Implementation Requirements:
• GetValue(): The LMS shall return the associated cmi.total_time currently

being stored by the LMS for the learner and set the error code to “0” -No
error. The characterstring returned shall adhere to the requirements
identified in the Data Model Element Implementation Requirements.

o If the SCO has not set any session times (cmi.session_time), then
the LMS cannot determine the cmi.total_time value. In these
cases, the LMS shall return the default value of PT0H0M0S and
set the error code to “0” - No Error.

• SetValue(): If the SCO invokes a request to set the cmi.total_time, then the
LMS shall set the API Error Code to “404” – Data Model Element Is Read
Only and return “false”. The LMS shall not alter the state of the data
model element based on the request.

Additional Behavior Requirements:
• A SCO is permitted, in a single communication session, to perform multiple

sets of session time (cmi.session_time). When the SCO issues the
Terminate(“”) or the user navigates away, the LMS shall take the last
cmi.session_time that the SCO set (if there was one set) and accumulate this
time to the cmi.total_time.

Example:
• GetValue(“cmi.total_time”)

Table 4.2.25a: Dot-notation Binding for the Total Time Data Model Element

RTE-4-126 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

APPENDIX A
Acronym Listing

SCORM ® Run-Time Environment Version 1.3 RTE-A-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-A-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Acronym Listing

ADL Advanced Distributed Learning
AICC Aviation Industry CBT Committee
API Application Programming Interface
ARIADNE Alliance of Remote Instructional Authoring & Distribution

Networks for Europe
CAM Content Aggregation Model
CMI Computer Managed Instructions
DOM Document Object Model
DTD Document Type Definition
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
LMS Learning Management System
LOM Learning Objects Metadata
LTSC Learning Technology Standards Committee
PIF Package Interchange File
RTE Run-Time Environment
RTS Run-Time Service
SCO Sharable Content Object
SCORM Sharable Content Object Reference Model
SN Sequencing and Navigation
SPM Smallest Permitted Maximum
SS Simple Sequencing
URI Universal Resource Identifier
URL Universal Resource Locator
URN Universal Resource Name
W3C World Wide Web Consortium
WWW World Wide Web
XML Extensible Markup Language

SCORM ® Run-Time Environment Version 1.3 RTE-A-3
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-A-4 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

APPENDIX B
References

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-B-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-B-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

References

1. IEEE P1484.11.1 Draft 3 Draft Standard for Learning Technology – Data Model for
Content Object Communication. November 10, 2003.
Available at: http://ltsc.ieee.org/

2. IEEE 1484.11.2-2003 Standard for Learning Technology – ECMAScript Application
Programming Interface for Content to Runtime Services Communication. November
10,2003
Available at: http://ltsc.ieee.org/

3. IETF RFC 2141: 1997, URN Syntax.
Available at: http://www.ietf.org/

4. ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for
information interchange.

5. ISO/IEC 10646-1, Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane.

6. IETF RFC 2396:1998, Universal Resource Identifiers (URI): Generic Syntax.
Available at: http://www.ietf.org/

7. Aviation Industry CBT Committee (AICC) Computer Managed Instruction (CMI)
Guidelines for Interoperability Version 3.5. April 2, 2001
Available at: http://www.aicc.org/

8. W3C, Document Object Model (DOM) Level 3 Core Specification, Version 1.0,
W3C Working Draft 26 February 2003. (See: http://www.w3.org/DOM/)

9. ISO/IEC 16262:1998, Information technology—ECMAScript language specification

10. SCORM 2004 Overview, Advanced Distributed Learning, January 30, 2004
Available at: http://www.adlnet.org/

11. SCORM Sequencing and Navigation Version 1.3, Advanced Distributed Learning,
January 30, 2004
Available at: http://www.adlnet.org/

12. ISO/IEC 11404:1996, Information technology – Programming languages, their
environments and system software interfaces – Language-independent datatypes

13. The Unicode Consortium. The Unicode Standard, Version 4.0.0, defined by: The
Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-
18578-1)

14. ISO 639–1, Code for the representation of names of languages – Pat 1: Alpha-2
code.

15. ISO 639–2, Codes for the representation of names of languages – Part 2: Alpha-3
code.

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-B-3
© 2004 Advanced Distributed Learning. All Rights Reserved.

16. ISO 3166–1, Codes for the representation of names of countries and their
subdivisions – Part 1: Country codes.

17. IMS Simple Sequencing Behavior and Information Model v1.0 Final Specification,
IMS Global Learning Consortium, Inc., March 2003
Available at: http://www.imsproject.org/.

18. IMS Content Packaging Information Model, Version 1.1.3 Final Specification. July,
2003
Available at: http://www.imsglobal.org/

19. SCORM Content Aggregation Model Version 1.3, Advanced Distributed Learning,
January 30, 2004
Available at: http://www.adlnet.org/

RTE-B-4 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

APPENDIX C
Document Revision History

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-C-1
© 2004 Advanced Distributed Learning. All Rights Reserved.

This page intentionally left blank.

RTE-C-2 SCORM ® Run-Time Environment (RTE) Version 1.3
© 2004 Advanced Distributed Learning. All Rights Reserved.

Document Revision History

SCORM
Version

Release Date Description of Change

1.3 Working
Draft 1

20-Oct-2003 Initial Draft

• Changes due to IEEE P1484.11.1 Draft 1/WD 13 Draft
Standard for Learning Technology – Data Model for
Content Object Communication

• Changes due to IEEE P1484.11.2 Draft 4 Standard for
Learning Technology – ECMAScript Application
Programming Interface for Content to Runtime
Services Communication

• Changes reflecting IMS Simple Sequencing Version
1.0

• Changes reflecting IMS Content Packaging Version
1.1.3

RTE
Version 1.3

30-Jan-04 Updates based on:

• Changes due to IEEE P1484.11.1, Draft 3 Draft
Standard for Learning Technology – Data Model for
Content Object Communication.

• Changes due to IEEE 1484.11.2 – Standard for
Learning Technology – ECMAScript Application
Programming Interface for Content to Runtime
Services Communication

SCORM ® Run-Time Environment (RTE) Version 1.3 RTE-C-3
© 2004 Advanced Distributed Learning. All Rights Reserved.

