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Modern concurrency

In this chapter, we’ll begin with basic concepts and a whistle-stop tour of block-
structured concurrency. This was the only game in town prior to Java 5, and it’s
still worth understanding. Next, we’ll cover what every working developer should
know about java.util.concurrent and how to use the basic concurrency building
blocks it provides.

 We’ll conclude with a look at the new fork/join framework, so that by the end of
the chapter, you’ll be ready to start applying these new concurrency techniques in your
own code. You’ll also have enough theory to fully grasp the different views of concur-
rency that we’ll discuss in later parts of the book, when we meet non-Java languages.

 This chapter isn’t intended to be a complete statement of everything you’ll ever
need to know about concurrency—it’s enough to get you started and give you an

This chapter covers
■ Concurrency theory
■ Block-structured concurrency
■ The java.util.concurrent libraries
■ Lightweight concurrency with the 

fork/join framework
■ The Java Memory Model (JMM)
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appreciation of what you’ll need to learn more about, and to stop you being danger-
ous when writing concurrent code. But you’ll need to know more than we can cover
here if you’re going to be a truly first-rate developer of multithreaded code. There are
a number of excellent books about nothing but Java concurrency—two of the best are
Concurrent Programming in Java, second edition, by Doug Lea (Prentice Hall, 1999),
and Java Concurrency in Practice by Brian Goetz and others (Addison-Wesley Profes-
sional, 2006).

 The aim of this chapter is to make you aware of the underlying platform mecha-
nisms that explain why Java’s concurrency works the way it does. We’ll also cover
enough general concurrency theory to give you the vocabulary to understand the
issues involved, and to teach you about both the necessity and the difficulty involved
in getting concurrency right. In fact, that’s where we’re going to start.

4.1 Concurrency theory—a primer
To make sense of Java’s approach to concurrent programming, we’re going to start
off by talking about theory. First, we’ll discuss the fundamentals of the Java thread-
ing model. 

 After that, we’ll discuss the impact that “design forces” have in the design and imple-
mentation of systems. We’ll talk about the two most important of these forces, safety and
liveness, and mention some of the others. After that we’ll turn to why the forces are often
in conflict, and look at some reasons for overhead in concurrent systems. 

 We’ll conclude this section by looking at an example of a multithreaded system,
and illustrate how java.util.concurrent is a very natural way to write code.

4.1.1 Explaining Java’s threading model

Java’s threading model is based on two fundamental concepts: 

■ Shared, visible-by-default mutable state
■ Preemptive thread scheduling 

But I already know about Thread!
It’s one of the most common (and potentially deadly) mistakes a developer can
make—to assume that an acquaintance with Thread, Runnable, and the language-
level basic primitives of Java’s concurrency mechanism is enough to be a competent
developer of concurrent code. In fact, the subject of concurrency is a very large one,
and good multithreaded development is difficult and continues to cause problems for
even the best developers with years of experience under their belts.

One other point you should be aware of is that the area of concurrency is undergoing
a massive amount of active research at present—research that will certainly have an
impact on Java and the other languages you’ll use over the course of your career. If
we were to pick one fundamental area of computing that’s likely to change radically
in terms of industry practice over the next five years, it would be concurrency.
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Let’s consider some of the most important aspects of these ideas:

■ Objects can be easily shared between all threads within a process.
■ Objects can be changed (“mutated”) by any threads that have a reference

to them.
■ The thread scheduler can swap threads on and off cores at any time, more

or less.
■ Methods must be able to be swapped out while they’re running (otherwise a

method with an infinite loop would steal the CPU forever). 
This, however, runs the risk of an unpredictable thread swap leaving a method
“half-done” and an object in an inconsistent state. There is also the risk of
changes made in one thread not being visible in other threads when they need
to be. To mitigate these risks, we come to the last point.

■ Objects can be locked to protect vulnerable data.

Java’s thread- and lock-based concurrency is very low-level, and often hard to work with.
To cope with this, a set of concurrency libraries, known as java.util.concurrent,
was introduced in Java 5. This provided a set of tools for writing concurrent code
that many programmers find easier to use than the classic block-structured concur-
rency primitives.

As developers become more experienced with writing concurrent code, they find
themselves running up against recurring concerns that are important to their systems.
We call these concerns “design forces.” They’re high-level forces that exist (and often
conflict) in the design of practical concurrent OO systems. 

 We’re going to spend a little bit of time looking at some of the most important of
these forces in the next couple of sections.

Lessons learned
Java was the first mainstream programming language to have built-in support for mul-
tithreaded programming. This represented a huge step forward at the time, but now,
15 years later, we’ve learned a lot more about how to write concurrent code.

It turns out that some of Java’s initial design decisions are quite difficult for most
programmers to work with. This is unfortunate, because the increasing trend in hard-
ware is toward processors with many cores, and the only good way to take advan-
tage of those cores is with concurrent code. We’ll discuss some of the difficulties of
concurrent code in this chapter. The subject of modern processors naturally requir-
ing concurrent programming is covered in some detail in chapter 6 where we dis-
cuss performance.
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4.1.2 Design concepts

The most important design forces were catalogued by Doug Lea as he was doing his
landmark work producing java.util.concurrent:

■ Safety (also known as concurrent type safety)
■ Liveness
■ Performance
■ Reusability

Let’s look at each of these forces now.

SAFETY AND CONCURRENT TYPE SAFETY

Safety is about ensuring that object instances remain self-consistent regardless of any
other operations that may be happening at the same time. If a system of objects has
this property, it’s said to be concurrently type-safe.

 As you might guess from the name, one way to think about concurrency is in terms
of an extension to the regular concepts of object modeling and type safety. In noncon-
current code, you want to ensure that regardless of what public methods you call on
an object, it’s in a well-defined and consistent state at the end of the method. The
usual way to do this is to keep all of an object’s state private and expose a public API of
methods that only alter the object’s state in a self-consistent way.

 Concurrent type safety is the same basic concept as type safety for an object, but
applied to the much more complex world in which other threads are potentially oper-
ating on the same objects on different CPU cores at the same time.

LIVENESS

A live system is one in which every attempted activity eventually either progresses
or fails.

 The key word in the definition is eventually—there is a distinction between a tran-
sient failure to progress (which isn’t that bad in isolation, even if it’s not ideal) and a
permanent failure. Transient failures could be caused by a number of underlying
problems, such as:

■ Locking or waiting to acquire a lock
■ Waiting for input (such as network I/O)
■ Temporary failure of a resource
■ Not enough CPU time available to run the thread

Staying safe
One strategy for safety is to never return from a non-private method in an inconsistent
state, and to never call any non-private method (and certainly not a method on any
other object) while in an inconsistent state. If this is combined with a way of protect-
ing the object (such as a synchronization lock or critical section) while it’s inconsis-
tent, the system can be guaranteed to be safe.
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Permanent failures could be due to a number of causes. These are some of the
most common:

■ Deadlock
■ Unrecoverable resource problem (such as if the NFS goes away)
■ Missed signal

We’ll discuss locking and several of these other problems later in the chapter,
although you may already be familiar with some or all of them.

PERFORMANCE

The performance of a system can be quantified in a number of different ways. In
chapter 6, we’ll talk about performance analysis and techniques for tuning, and we’ll
introduce a number of other metrics you should know about. For now, think of per-
formance as being a measure of how much work a system can do with a given amount
of resources.

REUSABILITY

Reusability forms a fourth design force, because it isn’t really covered by any of the
other considerations. A concurrent system that has been designed for easy reuse is
sometimes very desirable, although this isn’t always easy to implement. One approach
is to use a reusable toolbox (like java.util.concurrent) and build non-reusable
application code on top of it.

4.1.3 How and why do the forces conflict?

The design forces are often in opposition to each other, and this tension can be
viewed as a central reason why designing good concurrent systems is difficult.

■ Safety stands in opposition to liveness—safety is about ensuring that bad things
don’t happen, whereas liveness requires progress to be made.

■ Reusable systems tend to expose their internals, which can cause problems
with safety.

■ A naïvely written safe system will typically not be very performant, as it usually
resorts to the heavy use of locking to provide safety guarantees.

The balance that you should ultimately try to achieve is for the code to be flexible
enough to be useful for a wide range of problems, closed enough to be safe, and still
reasonably live and performant. This is quite a tall order, but, fortunately, there are
some practical techniques to help with this. Here are some of the most common in
rough order of usefulness:

■ Restrict the external communication of each subsystem as much as possible.
Data hiding is a powerful tool for aiding with safety.

■ Make the internal structure of each subsystem as deterministic as possible. For
example, design in static knowledge of the threads and objects in each subsys-
tem, even if the subsystems will interact in a concurrent, nondeterministic way.
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■ Apply policy approaches that client apps must adhere to. This technique is pow-
erful, but relies on user apps cooperating, and it can be hard to debug if a badly
behaved app disobeys the rules.

■ Document the required behavior. This is the weakest of the alternatives, but it’s
sometimes necessary if the code is to be deployed in a very general context.

The developer should be aware of each of these possible safety mechanisms and
should use the strongest possible technique, while being aware that there are circum-
stances in which only the weaker mechanisms are possible.

4.1.4 Sources of overhead

There are many aspects of a concurrent system that can contribute to the inher-
ent overhead:

■ Locks and monitors
■ Number of context switches
■ Number of threads
■ Scheduling
■ Locality of memory
■ Algorithm design

This should form the basis of a checklist in your mind. When developing concurrent
code, you should ensure that you have thought about everything on this list, before
considering the code “done.”

We’ll mention many of these sources of overhead in this chapter (and in chapter 6,
about performance).

4.1.5 A transaction processor example

To round off this rather theoretical section, let’s apply some of this theory to the
design of an example concurrent application. We’ll see how we might approach it
using a high-level view of the classes from java.util.concurrent.

 Consider a basic transaction processing system. A simple and standard way to con-
struct such an application is to have different phases of the application correspond to
different parts of the business process. Each phase is then represented by a thread

Algorithm design
This is an area in which developers can really distinguish themselves—learning about
algorithm design will make you a better programmer in any language. Two of the best
books are Introduction to Algorithms by Thomas H. Corman et al. (MIT, 2009)—don’t
be deceived by the title, this is a serious work—and The Algorithm Design Manual,
second edition, by Steven Skiena (Springer-Verlag, 2008). For both single-threaded
and concurrent algorithms, these are excellent choices for further reading.
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pool that takes in work items one by one, does an amount of processing on each item,
and hands off the item to the next thread pool. In general, it’s good design to have
each thread pool concentrate on processing that is pertinent to one specific func-
tional area. You can see an example application in figure 4.1.

 If you design applications like this, you can improve throughput because you can
have several work items in flight at once. One work item can be in processing in the
Credit Check phase at the same time as another is in Stock Check. Depending on the
details of the application, there can even be multiple different orders in Stock Check
at the same time.

 Designs of this type are very well-suited to being implemented using the classes
found in java.util.concurrent. The package contains thread pools for execution
(and a nice set of factory methods in the Executors class to create them) and queues
for handing work off between pools. There are also concurrent data structures (for
building shared caches and other use cases) and many other useful low-level tools.

 But, you might ask, what would we have done before the advent of Java 5, when
we didn’t have these classes available? In many cases, application groups would come
up with their own concurrent programming libraries—they’d end up building com-
ponents similar in aims to the ones found in java.util.concurrent. But many of
these bespoke components would have design problems, and subtle (or not-so-
subtle) concurrency bugs. If java.util.concurrent didn’t exist, application devel-
opers would end up reinventing much of it for themselves (probably in a buggy,
badly tested form). 

Figure 4.1 An example multithreaded application
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With this example in mind, let’s turn to our next subject—a review of Java’s “classic”
concurrency and a close look at why programming with it can be difficult.

4.2 Block-structured concurrency (pre-Java 5)
Much of this chapter is taken up with discussing alternatives to the block-synchronization-
based approach to concurrency. But to get the most out of the discussion of the alter-
natives, it’s important to have a firm grasp of what’s good and bad about the classic
view of concurrency.

 To that end, we’ll discuss the original, quite low-level way of tackling multithreaded
programming using Java’s concurrency keywords—synchronized, volatile, and so
on. This discussion will take place in the context of the design forces and with an eye
to what will come in the next sections.

 Following on from that, we’ll briefly consider the lifecycle of a thread, and then
discuss common techniques (and pitfalls) of concurrent code, such as fully synchro-
nized objects, deadlocks, the volatile keyword, and immutability. 

 Let’s get started with a review of synchronization.

4.2.1 Synchronization and locks
As you already know, the synchronized keyword can be applied either to a block or
to a method. It indicates that before entering the block or method, a thread must
acquire the appropriate lock. For a method, that means acquiring the lock belong-
ing to the object instance (or the lock belonging to the Class object for static
synchronized methods). For a block, the programmer should indicate which object’s
lock is to be acquired.

 Only one thread can be progressing through any of an object’s synchronized
blocks or methods at once; if other threads try to enter, they’re suspended by the JVM.
This is true regardless of whether the other thread is trying to enter either the same or
a different synchronized block on the same object. In concurrency theory, this type of
construct is referred to as a critical section.

NOTE Have you ever wondered why the Java keyword used for a critical sec-
tion is synchronized? Why not “critical” or “locked”? What is it that’s being
synchronized? We’ll return to this in section 4.2.5, but if you don’t know or
have never thought about it, you may want to take a couple of minutes to pon-
der it before continuing.

We’re really focusing on some of the newer concurrency techniques in this chapter. But
as we’re talking about synchronization, let’s look at some basic facts about synchroniza-
tion and locks in Java. Hopefully you already have most (or all) of these at your fingertips:

■ Only objects—not primitives—can be locked.
■ Locking an array of objects doesn’t lock the individual objects.
■ A synchronized method can be thought of as equivalent to a synchronized

(this) { ... } block that covers the entire method (but note that they’re repre-
sented differently in bytecode).



84 CHAPTER 4 Modern concurrency

■ A static synchronized method locks the Class object, because there’s no
instance object to lock.

■ If you need to lock a class object, consider carefully whether you need to do so
explicitly, or by using getClass(), because the behavior of the two approaches
will be different in a subclass.

■ Synchronization in an inner class is independent of the outer class (to see why
this is so, remember how inner classes are implemented).

■ synchronized doesn’t form part of the method signature, so it can’t appear on
a method declaration in an interface.

■ Unsynchronized methods don’t look at or care about the state of any locks, and
they can progress while synchronized methods are running.

■ Java’s locks are reentrant. That means a thread holding a lock that encounters a
synchronization point for the same lock (such as a synchronized method calling
another synchronized method in the same class) will be allowed to continue.

WARNING Non-reentrant locking schemes exist in other languages (and can
be synthesized in Java—see the Javadoc for ReentrantLock in java.util
.concurrent.locks if you want the gory details) but they’re generally painful to
deal with, and they’re best avoided unless you really know what you’re doing.

That’s enough review of Java’s synchronization. Now let’s move on to discuss the states
that a thread moves through during its lifecycle.

4.2.2 The state model for a thread

In figure 4.2, you can see how a thread lifecycle progresses—from creation to run-
ning, to possibly being suspended, before running again (or blocking on a resource),
and eventually completing.

 A thread is initially created in the Ready state. The scheduler will then find a core
for it to run upon, and some small amount of waiting time may be involved if the
machine is heavily loaded. From there, the thread will usually consume its time alloca-
tion and be placed back into the Ready state to await further processor time slices.
This is the action of the forcible thread scheduling that we mentioned in section 4.1.1.

 As well as the standard action by the scheduler, the thread itself can indicate that it
isn’t able to make use of the core at this time. This can be because the program code indi-
cates that the thread should pause before continuing (via Thread.sleep()) or because
the thread must wait until notified (usually that some external condition has been met).
Under these circumstances, the thread is removed from the core and releases all its locks.
It can only run again by being woken up (after sleeping for the right length of time, or
because it has received the appropriate signal) and placed back in the Ready state.

 The thread can be blocked because it’s waiting on I/O or to acquire a lock held by
another thread. In this case, the thread isn’t swapped off the core but is kept busy,
waiting for the lock or data to become available. If this happens, the thread will con-
tinue to execute until the end of its timeslice.
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Let’s move on to talk about one well-known way to solve the synchronization problem.
This is the idea of fully synchronized objects.

4.2.3 Fully synchronized objects

Earlier in this chapter, we introduced the concept of concurrent type safety and men-
tioned one strategy for achieving this (in the “Staying Safe” sidebar). Let’s look at a
more complete description of this strategy, which is usually called fully synchronized
objects. If all of the following rules are obeyed, the class is known to be thread-safe and
will also be live.

 A fully synchronized class is a class that meets all of these conditions: 

■ All fields are always initialized to a consistent state in every constructor.
■ There are no public fields.
■ Object instances are guaranteed to be consistent after returning from any non-

private method (assuming the state was consistent when the method was called).
■ All methods provably terminate in bounded time.
■ All methods are synchronized.
■ There is no calling of another instance’s methods while in an inconsistent state.
■ There is no calling of any non-private method while in an inconsistent state.

Listing 4.1 shows an example of such a class from the backend of an imaginary distrib-
uted microblogging tool. The ExampleTimingNode class will receive updates by having
its propagateUpdate() method called and can also be queried to see if it has received
a specific update. This situation provides a classic conflict between a read and a write
operation, so synchronization is used to prevent inconsistency.

Figure 4.2 The state model of a Java thread
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public class ExampleTimingNode implements SimpleMicroBlogNode {

  private final String identifier;                  

  private final Map<Update, Long> arrivalTime 
  ➥ = new HashMap<>();                        

  public ExampleTimingNode(String identifier_) {    
    identifier = identifier_;
  }

  public synchronized String getIdentifier() {        
    return identifier;
  }

  public synchronized void propagateUpdate(
  ➥ Update update_) {                                
    long currentTime = System.currentTimeMillis();
    arrivalTime.put(update_, currentTime);
  }

  public synchronized boolean confirmUpdateReceived(
  ➥ Update update_) {                                 
    Long timeRecvd = arrivalTime.get(update_);
    return timeRecvd != null;
  }
}

This seems fantastic at first glance—the class is both safe and live. The problem comes
with performance—just because something is safe and live doesn’t mean it’s necessar-
ily going to be very quick. You have to use synchronized to coordinate all the accesses
(both get and put) to the arrivalTime map, and that locking is ultimately going to
slow you down. This is a central problem of this way of handling concurrency.

4.2.4 Deadlocks

Another classic problem of concurrency (and not just Java’s take on it) is the deadlock.
Consider listing 4.2, which is a slightly extended form of the last example. In this ver-
sion, as well as recording the time of the last update, each node that receives an
update informs another node of that receipt.

Listing 4.1 A fully synchronized class

Code fragility
In addition to the performance problems, the code in listing 4.1 is quite fragile. You
can see that you never touch arrivalTime outside of a synchronized method (and
in fact there’s only get and put access), but this is only possible because of the
small amount of code in play. In real, larger systems, this would not be possible due
to the amount of code. It’s very easy for bugs to creep into larger codebases that use
this approach, which is another reason that the Java community began to look for
more robust approaches.

No public 
fields

All fields initialized 
in constructor

All methods are 
synchronized
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 This is a naïve attempt to build a multithreaded update handling system. It’s
designed to demonstrate deadlocking—you shouldn’t use this as the basis for real code.

public class MicroBlogNode implements SimpleMicroBlogNode {
  private final String ident;

  public MicroBlogNode(String ident_) {
    ident = ident_;
  }

  public String getIdent() {
    return ident;
  }

  public synchronized void propagateUpdate(Update upd_, MicroBlogNode 
backup_) {

    System.out.println(ident +": recvd: "+ upd_.getUpdateText() 
    ➥ +" ; backup: "+backup_.getIdent());
    backup_.confirmUpdate(this, upd_);
  }

  public synchronized void confirmUpdate(MicroBlogNode other_, Update 
update_) {

    System.out.println(ident +": recvd confirm: "+ 
    ➥ update_.getUpdateText() +" from "+other_.getIdent()k);
  }
}

final MicroBlogNode local = 

➥ new MicroBlogNode("localhost:8888");         
final MicroBlogNode other = new MicroBlogNode("localhost:8988");
final Update first = getUpdate("1");
final Update second = getUpdate("2");

new Thread(new Runnable() {
  public void run() {
    local.propagateUpdate(first, other);        
  }
}).start();

new Thread(new Runnable() {
  public void run() {
    other.propagateUpdate(second, local);       
  }
}).start();

At first glance, this code looks sensible. You have two updates being sent to separate
threads, each of which has to be confirmed on backup threads. This doesn’t seem too
outlandish a design—if one thread has a failure, there is another thread that can
potentially carry on.

 If you run the code, you’ll normally see an example of a deadlock—both threads
will report receiving the update, but neither will confirm receiving the update for
which they’re the backup thread. The reason for this is that each thread requires the

Listing 4.2 A deadlocking example

Keyword final 
is required

First update 
sent to first 
thread

Second update 
sent to other 
thread
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other to release the lock it holds before the confirmation method can progress. This is
illustrated in figure 4.3.

 To deal with deadlocks, one technique is to always acquire locks in the same order
in every thread. In the preceding example, the first thread to start acquires them in
the order A, B, whereas the second thread acquires them in the order B, A. If both
threads had insisted on acquiring in order A, B, the deadlock would have been
avoided, because the second thread would have been blocked from running at all
until the first had completed and released its locks.

 In terms of the fully synchronized object approach, this deadlock is prevented
because the code violates the consistent state rule. When a message arrives, the receiv-
ing node calls another object while the message is still being processed—the state isn’t
consistent when it makes this call.

 Next, we’ll return to a puzzle we posed earlier: why the Java keyword for a critical
section is synchronized. This will lead us into a discussion of immutability and then
the volatile keyword.

4.2.5 Why synchronized?

One of the biggest changes in concurrent programming in recent years has been in
the realm of hardware. It wasn’t that many years ago that a working programmer
could go for years on end without encountering a system that had more than one or
at most two processing cores. It was thus possible to think of concurrent program-
ming as being about the timesharing of the CPU—threads swapping on and off a sin-
gle core.

 Today, anything larger than a mobile phone has multiple cores, so the mental
model should be different too, encompassing multiple threads all running on differ-
ent cores at the same physical moment (and potentially operating on shared data).
You can see this in figure 4.4. For efficiency, each thread that is running simultane-
ously may have its own cached copy of data being operated on. With this picture in
mind, let’s turn to the question of the choice of keyword used to denote a locked sec-
tion or method.

Figure 4.3 Deadlocked threads



89Block-structured concurrency (pre-Java 5)

We asked earlier, what is it that’s being syn-
chronized in the code in listing 4.1? The
answer is: The memory representation in differ-
ent threads of the object being locked is what
is being synchronized. That is, after the
synchronized block (or method) has com-
pleted, any and all changes that were made
to the object being locked are flushed back
to main memory before the lock is released,
as illustrated in figure 4.5.

 In addition, when a synchronized block
is entered, then after the lock has been acquired, any changes to the locked object are
read in from main memory, so the thread with the lock is synchronized to main mem-
ory’s view of the object before the code in the locked section begins to execute.

4.2.6 The volatile keyword

Java has had the volatile keyword since the dawn of time (Java 1.0), and it’s used as a
simple way to deal with the synchronization of object fields, including primitives. The
following rules govern a volatile field:

■ The value seen by a thread is always reread from main memory before use.
■ Any value written by a thread is always flushed through to main memory before

the instruction completes.

This can be thought of as acting like a tiny little synchronized block around the oper-
ation. It allows the programmer to write simplified code, but at the cost of the extra
flushes on every access. Notice also that the volatile variable doesn’t introduce any
locks, so you can’t deadlock by using volatile variables.

 One slightly more subtle consequence of volatile variables is that for true thread-
safety, a volatile variable should only be used to model a variable where writes to the
variable don’t depend on the current state (the read state) of the variable. For cases
where the current state matters, you must always introduce a lock to be completely safe.

Figure 4.4 Old and new ways of thinking about concurrency and threads

Figure 4.5 A change to an object propagates 
between threads via main memory
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4.2.7 Immutability

One technique that can be of great value is the use of immutable objects. These are
objects that either have no state, or that have only final fields (which must therefore
be populated in the constructors of the objects). These are always safe and live,
because their state can’t be mutated, so they can never be in an inconsistent state.

 One problem is that any values that are required to initialize a particular object
must be passed into the constructor. This can lead to unwieldy constructor calls, with
many parameters. Alternatively, many coders use a FactoryMethod instead. This can
be as simple as using a static method on the class, instead of a constructor, to pro-
duce new objects. The constructors are usually made protected or private, so that
the static FactoryMethods are the only way of instantiating.

 This still has the problem of potentially needing many parameters to be passed in to
the FactoryMethod. This isn’t always very convenient, especially when you may need
to accumulate state from several sources before creating a new immutable object.

 To solve this, you can use the Builder pattern. This is a combination of two con-
structs: a static inner class that implements a generic builder interface, and a private
constructor for the immutable class itself.

 The static inner class is the builder for the immutable class, and it provides the
only way that a developer can get hold of new instances of the immutable type. One
very common implementation is for the Builder class to have exactly the same fields
as the immutable class, but to allow mutation of the fields. 

 This listing shows how you might use this to model a microblogging update (again,
building on the earlier listings in this chapter).

public interface ObjBuilder<T> {
  T build();                       
}

public class Update {
  private final Author author;                
  private final String updateText;               

  private Update(Builder b_) {
    author = b_.author;
    updateText = b_.updateText;
  }

  public static class Builder 
  ➥ implements ObjBuilder<Update> {     
    private Author author;
    private String updateText;

    public Builder author(Author author_) {      
      author = author_;
      return this;
    }

    public Builder updateText(String updateText_) {

Listing 4.3 Immutable objects and builders

Builder interface

Final fields must be 
initialized in constructor

Builder class 
must be 
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Methods on Builder 
return Builder for 
chain calls
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      updateText = updateText_;
      return this;
    }
    public Update build() {
      return new Update(this);
    }
  }                           

}

With this code, you could then create a new Update object like this:

Update.Builder ub = new Update.Builder();
Update u = ub.author(myAuthor).updateText("Hello").build();

This is a very common pattern and one that has wide applicability. In fact, we’ve
already made use of the properties of immutable objects in listings 4.1 and 4.2.

 One last point about immutable
objects—the final keyword only applies
to the object directly pointed to. As you
can see in figure 4.6, the reference to the
main object can’t be assigned to point at
object 3, but within the object, the refer-
ence to 1 can be swung to point at object 2.
Another way of saying this is that a final
reference can point at an object that has
nonfinal fields.

 Immutability is a very powerful technique, and you should use it whenever feasible.
Sometimes it’s just not possible to develop efficiently with only immutable objects,
because every change to an object’s state requires a new object to be spun up. So we’re
left with the necessity of dealing with mutable objects.

 We’ll now turn to one of the biggest topics in this chapter—a tour of the more mod-
ern and conceptually simple concurrency APIs presented in java.util.concurrent.
We’ll look at how you can start to use them in your own code.

4.3 Building blocks for modern concurrent applications
With the advent of Java 5, a new way of thinking about concurrency in Java emerged.
This was spearheaded by the package java.util.concurrent, which contained a
rich new toolbox for working with multithreaded code. This toolbox has been
enhanced with subsequent versions of Java, but the classes and packages that were
introduced with Java 5 still work the same way and they’re still very valuable to the
working developer.

 We’re going to take a whirlwind tour through some of the headline classes in
java.util.concurrent and related packages, such as the atomic and locks packages.
We’ll get you started using the classes and look at examples of use cases for them.
You should also read the Javadoc for them and try to build up your familiarity with
the packages as a whole—they make programming concurrent classes much easier.

hashCode() and 
equals() methods 
omitted

Figure 4.6 Immutability of value versus 
reference
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Consider this discussion a starter toolkit for concurrent code, not a full workshop.
To get the most out of java.util.concurrent, you’ll need to read more than we can
present here.

4.3.1 Atomic classes—java.util.concurrent.atomic

The package java.util.concurrent.atomic contains several classes that have names
starting with Atomic. They’re essentially providing the same semantics as a volatile,
but wrapped in a class API that includes atomic (meaning all-or-nothing) methods for
suitable operations. This can be a very simple way for a developer to avoid race condi-
tions on shared data.

 The implementations are written to take advantage of modern processor features, so
they can be nonblocking (lock-free) if suitable support is available from the hardware
and OS, which it should be for most modern systems. A common use is to implement
sequence numbers, using the atomic getAndIncrement() method on the Atomic-
Integer or AtomicLong.

 To be a sequence number, the class should have a nextId() method that will
return a number guaranteed to be unique (and strictly increasing) each time it’s
called. This is very similar to the database concept of a sequence number (hence the
name of the variable). 

 Let’s look at a bit of code that replicates sequence numbers:

private final AtomicLong sequenceNumber = new AtomicLong(0);

public long nextId() {
  return sequenceNumber.getAndIncrement();
}

CAUTION Atomic classes don’t inherit from the similarly named classes, so
AtomicBoolean can’t be used in place of a Boolean, and AtomicInteger isn’t
an Integer (but it does extend Number).

Next, we’ll examine how java.util.concurrent models the core of the synchroniza-
tion model—the Lock interface.

Migrating code
If you have existing multithreaded code that is still based on the older (pre-Java 5)
approaches, you should refactor it to use java.util.concurrent. In our experience,
your code will be improved if you make a conscious effort to port it to the newer
APIs—the greater clarity and reliability will be well worth the effort expended to
migrate in almost all cases.
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4.3.2 Locks—java.util.concurrent.locks

The block-structured approach to synchronization is based around a simple notion of
what a lock is. This approach has a number of shortcomings:

■ There is only one type of lock.
■ It applies equally to all synchronized operations on the locked object. 
■ The lock is acquired at the start of the synchronized block or method.
■ The lock is released at the end of the block or method.
■ The lock is either acquired or the thread blocks—no other outcomes

are possible.

If we were going to reengineer the support for locks, there are several things we could
potentially change for the better:

■ Add different types of locks (such as reader and writer locks).
■ Not restrict locks to blocks (allow a lock in one method and unlock in another).
■ If a thread cannot acquire a lock (for example, if another thread has the

lock), allow the thread to back out or carry on or do something else—a try-
Lock() method.

■ Allow a thread to attempt to acquire a lock and give up after a certain amount
of time.

The key to realizing all of these possibilities is the Lock interface in java.util
.concurrent.locks. This ships with a couple of implementations: 

■ ReentrantLock—This is essentially the equivalent of the familiar lock used in
Java synchronized blocks, but it’s slightly more flexible.

■ ReentrantReadWriteLock—This can provide better performance in cases
where there are many readers but few writers. 

The Lock interface can be used to completely replicate any functionality that is
offered by block-structured concurrency. Here is the deadlock example rewritten to
use the ReentrantLock.

private final Lock lock = new ReentrantLock();

public void propagateUpdate(Update upd_, MicroBlogNode backup_) {
  lock.lock();                                  
  try {
    System.out.println(ident +": recvd: "+ 
    ➥ upd_.getUpdateText() +" ; backup: "+
    ➥ backup_.getIdent());      
      backup_.confirmUpdate(this, upd_);  
  } finally {
    lock.unlock();
  }
}

Listing 4.4 Rewriting deadlock example to use ReentrantLock

Each thread locks 
own lock first

Calls confirmUpdate() to 
acknowledge in other thread
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public void confirmUpdate(MicroBlogNode other_, Update upd_) {
  lock.lock();                                       
  try{
    System.out.println(iden +": recvd confirm: "+ 
    ➥ upd_.getUpdateText() +" from "+ other_.getIdentifier());
  } finally {
    lock.unlock();
  }
}

The attempt B to lock the other thread will generally fail, because it’s already locked
(as per figure 4.3). That’s how the deadlock arises.

There are a number of strategies for dealing with deadlocks, but there’s one in partic-
ular that doesn’t work that you should be aware of. Consider the version of the
propagateUpdate() method shown in the next listing (and imagine that the same
change has been made to the confirmUpdate() code). In this example, we’ve
replaced the unconditional lock with tryLock() with a timeout. This is an attempt to
remove the deadlock by giving other threads a chance to get at the lock.

public void propagateUpdate(Update upd_, MicroBlogNode backup_) {
  boolean acquired = false;

  while (!acquired) {
    try {
      int wait = (int)(Math.random() * 10);
      acquired = lock.tryLock(wait, TimeUnit.MILLISECONDS);
      if (acquired) {
        System.out.println(ident +": recvd: "+ 
        ➥ upd_.getUpdateText() +" ; backup: "+backup_.getIdent());
        backup_.confirmUpdate(this, update_);   
      } else {
        Thread.sleep(wait);
      }
    } catch (InterruptedException e) {
    } finally {

Using try ... finally with lock
The pattern of lock() with a try ... finally block, where the lock is released is a
good addition to your toolbox. It works very well if you’re replicating a situation that
is similar to one where you’d have used block-structured concurrency. On the other
hand, if you need to pass around the Lock objects (such as by returning it from a
method), you can’t use this pattern. 

Using Lock objects can be considerably more powerful than a block-structured
approach, but it is still sometimes hard to use them to design a robust lock-
ing strategy.

Listing 4.5 A flawed attempt to fix deadlock

Attempts to lock
other thread  b

Try and 
lock, with 
random 
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Confirm on 
other thread
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      if (acquired) lock.unlock();        
    }
  }
}

If you run the code in listing 4.5, you’ll see that it seems to resolve the deadlock, but
only sometimes. You’ll see the “received confirm of update” text, but only some of
the time.

 In fact, the deadlock hasn’t really been resolved, because if the initial lock is
obtained (in propagateUpdate()) the thread calls confirmUpdate() and never
releases the first lock until completion. If both threads manage to acquire their first
lock before either can call confirmUpdate(), the threads will still be deadlocked.

 The real solution is to ensure that if the attempt to get the second lock fails, the
thread should release the lock it’s holding and wait briefly, as shown in the next list-
ing. This gives the other threads a chance to get a complete set of the locks needed
to progress.

public void propagateUpdate(Update upd_, MicroBlogNode backup_) {
  boolean acquired = false;
  boolean done = false;

  while (!done) {
    int wait = (int)(Math.random() * 10);
    try {
      acquired = lock.tryLock(wait, TimeUnit.MILLISECONDS);
      if (acquired) {
        System.out.println(ident +": recvd: "+ 
        ➥ upd_.getUpdateText() +" ; backup: "+backup_.getIdent());
        done = backupNode_.tryConfirmUpdate(this, update_);
      }
    } catch (InterruptedException e) {
    } finally {
      if (acquired) lock.unlock();
    }
    if (!done) try {
      Thread.sleep(wait);
    } catch (InterruptedException e) { }     
  }
}

public boolean tryConfirmUpdate(MicroBlogNode other_, Update upd_) {
  boolean acquired = false;
  try {
    int wait = (int)(Math.random() * 10);
    acquired = lock.tryLock(wait, TimeUnit.MILLISECONDS);

    if (acquired) {
      long elapsed = System.currentTimeMillis() - startTime;
      System.out.println(ident +": recvd confirm: "+ 
      ➥ upd_.getUpdateText() +" from "+other_.getIdent() 
      ➥ +" - took "+ elapsed +" millis");

Listing 4.6 Fixing deadlock

Only unlock 
if locked
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      return true;
    }
  } catch (InterruptedException e) {
  } finally {
    if (acquired) lock.unlock();
  }

  return false;
}

In this version, you examine the return code of tryConfirmUpdate(). If it returns
false, the original lock will be released. The thread will pause briefly, allowing the
other thread to potentially acquire its lock.

 Run this code a few times, and you should see that both threads are basically always
able to progress—you’ve eliminated the deadlock. You may like to experiment with
some different forms of the preceding versions of the deadlock code—the original,
the flawed solution, and the corrected form. By playing with the code, you can get a
better understanding of what is happening with the locks, and you can begin to build
your intuition about how to avoid deadlock issues.

We’ve only scratched the surface of the possibilities of Lock—there are a number of
ways of producing more complex lock-like structures. One such concept, the latch, is
our next topic.

4.3.3 CountDownLatch

The CountDownLatch is a simple synchronization pattern that allows for multiple
threads to all agree on a minimum amount of preparation that must be done before
any thread can pass a synchronization barrier.

 This is achieved by providing an int value (the count) when constructing a new
instance of CountDownLatch. After that point, two methods are used to control the
latch: countDown() and await(). The former reduces the count by 1, and the latter
causes the calling thread to wait until the count reaches 0 (it does nothing if the count
is already 0 or less). This simple mechanism allows the minimum preparation pattern
to be easily deployed.

 In the following listing, a group of processing threads within a single process want to
know that at least half of them have been properly initialized (assume that initialization

Why does the flawed attempt seem to work sometimes?
You’ve seen that the deadlock still exists, so what is it that causes the code in the
flawed solution to sometimes succeed? The extra complexity in the code is the cul-
prit. It affects the JVM’s thread scheduler and makes it less easy to predict. This
means that it will sometimes schedule the threads so that one of them (usually the
first thread) is able to get into confirmUpdate() and acquire the second lock
before the second thread can run. This is also possible in the original code, but
much less likely.
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of a processing thread takes a certain amount of time) before the system as a whole
starts sending updates to any of them.

public static class ProcessingThread extends Thread {
  private final String ident;
  private final CountDownLatch latch;

  public ProcessingThread(String ident_, CountDownLatch cdl_) {
    ident = ident_;
    latch = cdl_;
  }
  public String getIdentifier() {
    return identifier;
  }
  public void initialize() {     
    latch.countDown();
  }
  public void run() {
    initialize();
  }
}

final int quorum = 1 + (int)(MAX_THREADS / 2);
final CountDownLatch cdl = new CountDownLatch(quorum);

final Set<ProcessingThread> nodes = new HashSet<>();
try {
  for (int i=0; i<MAX_THREADS; i++) {
    ProcessingThread local = new ProcessingThread("localhost:"+ 
    ➥ (9000 + i), cdl);
    nodes.add(local);
    local.start();
  }
  cdl.await();                    
} catch (InterruptedException e) {
} finally {                     
}

In the code, you set up a latch with a quorum value. Once that many threads are initial-
ized, you can start processing. Each thread will cause a countDown() once it has finished
initialization, so the main thread need only wait until the quorum level has been reached
before starting (and sending updates, although we omitted that part of the code).

 The next class we’ll discuss is one of the most useful classes in the multithreaded
developer’s toolkit: the ConcurrentHashMap from java.util.concurrent.

4.3.4 ConcurrentHashMap

The ConcurrentHashMap class provides a concurrent version of the standard HashMap.
This is an improvement on the synchronizedMap() functionality provided in the
Collections class, because those methods return collections that have more locking
than is strictly necessary.

Listing 4.7 Using latches to help with initialization

initialize 
node

Begin sending—
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As you can see from figure 4.7, the classic HashMap uses a function (the hash function)
to determine which “bucket” it will store the key/value pair in. This is where the
“hash” part of the class’s name comes from. This suggests a rather straightforward
multithreaded generalization—instead of needing to lock the whole structure when
making a change, it’s only necessary to lock the bucket that’s being altered.

TIP A well-written implementation of a concurrent HashMap will be essen-
tially lock-free on reads, and for writes will only lock the bucket being modi-
fied. Java basically achieves this, but there are some additional low-level
details that most developers won’t need to worry about too much.

The ConcurrentHashMap class also implements the ConcurrentMap interface, which
contains some new methods to provide truly atomic functionality:

■ putIfAbsent()—Adds the key/value pair to the HashMap if the key isn’t
already present.

■ remove()—Atomically removes the key/value pair only if the key is present and
the value is equal to the current state.

■ replace()—The API provides two different forms of this method for atomic
replacement in the HashMap.

As an example, you can replace the synchronized methods in listing 4.1 with regular,
unsynchronized access if you alter the HashMap called arrivalTime to be a Concurrent-
HashMap as well. Notice the lack of locks in the following listing—there is no explicit
synchronization at all.

public class ExampleMicroBlogTimingNode implements SimpleMicroBlogNode {
  ...    
private final Map<Update, Long> arrivalTime =

➥ new ConcurrentHashMap <>();
  ...    
public void propagateUpdate(Update upd_) {
    arrivalTime.putIfAbsent(upd_, System.currentTimeMillis());

Listing 4.8 Using ConcurrentHashMap

Figure 4.7 The classic view of a HashMap
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  }
  public boolean confirmUpdateReceived(Update upd_) {
    return arrivalTime.get(upd_) != null;
  }
}

The ConcurrentHashMap is one of the most useful classes in java.util.concurrent. It
provides additional multithreaded safety and higher performance, and it has no seri-
ous drawbacks in normal usage. The counterpart to it for List is the CopyOnWrite-
ArrayList, which we’ll discuss next.

4.3.5 CopyOnWriteArrayList

As the name suggests, the CopyOnWrite-
ArrayList class is a replacement for
the standard ArrayList class. CopyOn-
WriteArrayList has been made thread-
safe by the addition of copy-on-write
semantics, which means that any opera-
tions that mutate the list will create a
new copy of the array backing the list
(as shown in figure 4.8). This also means
that any iterators formed don’t have to
worry about any modifications that they didn’t expect.

 This approach to shared data is ideal when a quick, consistent snapshot of data
(which may occasionally be different between readers) is more important than perfect
synchronization (and the attendant performance hit). This is often seen in non-mission-
critical data.

 Let’s look at an example of copy-on-write in action. Consider a timeline of microb-
logging updates. This is a classic example of data that isn’t 100 percent mission-critical
and where a performant, self-consistent snapshot for each reader is preferred over
total global consistency. This listing shows a holder class that represents an individual
user’s view of their timeline. (Then we’ll use that class in listing 4.10 to show exactly
how the copy-on-write behavior works.)

public class MicroBlogTimeline {
  private final CopyOnWriteArrayList<Update> updates;
  private final ReentrantLock lock;
  private final String name;                    
  private Iterator<Update> it;             

  public void addUpdate(Update update_) {
    updates.add(update_);
  }
  public void prep() {                           
    it = updates.iterator();               
  }

Listing 4.9 Copy-on-write example

Figure 4.8 Copy-on-write array

Set up 
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Constructor 
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  public void printTimeline() {
    lock.lock();                       
    try {
      if (it != null) {
        System.out.print(name+ ": ");
        while (it.hasNext()) {
          Update s = it.next();
          System.out.print(s+ ", ");
        }
        System.out.println();
      }
    } finally {
      lock.unlock();
    }
  }
}

This class is specifically designed to illustrate the behavior of an Iterator under copy-
on-write semantics. You need to introduce locking in the print method to prevent the
output being jumbled between the two threads, and to allow you to see the separate
state of the two threads. 

 You can call the MicroBlogTimeline class from the code shown here.

final CountDownLatch firstLatch = new CountDownLatch(1);
final CountDownLatch secondLatch = new CountDownLatch(1);
final Update.Builder ub = new Update.Builder();

final List<Update> l = new CopyOnWriteArrayList<>();
l.add(ub.author(new Author("Ben")).updateText("I like pie").build());
l.add(ub.author(new Author("Charles")).updateText(

➥ "I like ham on rye").build());

ReentrantLock lock = new ReentrantLock();
final MicroBlogTimeline tl1 = new MicroBlogTimeline("TL1", l, lock);
final MicroBlogTimeline tl22 = new MicroBlogTimeline("TL2", l, lock);

Thread t1 = new Thread() {
  public void run() {
    l.add(ub.author(new Author("Jeffrey")).updateText(
    ➥ "I like a lot of things").build());
    tl1.prep();
    firstLatch.countDown();
    try { secondLatch.await(); } 
    ➥ catch (InterruptedException e) {  }           
    tl1.printTimeline();
  }
};

Thread t2 = new Thread(){
  public void run(){
    try {
      firstLatch.await();                                
      l.add(ub.author(new Author("Gavin")).updateText(
      ➥ "I like otters").build());

Listing 4.10 Exposing copy-on-write behavior
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      tl2.prep();
      secondLatch.countDown();            
    } catch (InterruptedException e) { }
    tl2.printTimeline();
}
};
t1.start();
t2.start();

There is a lot of scaffolding in the listing—unfortunately this is difficult to avoid.
There are quite a few things to notice about this code:

■ CountDownLatch is used to maintain close control over what is happening
between the two threads.

■ If the CopyOnWriteArrayList was replaced with an ordinary List (B), the
result would be a ConcurrentModificationException.

■ This is also an example of a Lock object being shared between two threads to
control access to a shared resource (in this case, STDOUT). This code would be
much messier if expressed in the block-structured view.

The output of this code will look like this:

TL2: Update [author=Author [name=Ben], updateText=I like pie, createTime=0], 
Update [author=Author [name=Charles], updateText=I like ham on rye, 
createTime=0], Update [author=Author [name=Jeffrey], updateText=I like a 
lot of things, createTime=0], Update [author=Author [name=Gavin], 
updateText=I like otters, createTime=0],

TL1: Update [author=Author [name=Ben], updateText=I like pie, createTime=0], 
Update [author=Author [name=Charles], updateText=I like ham on rye, 
createTime=0], Update [author=Author [name=Jeffrey], updateText=I like a 
lot of things, createTime=0],

As you can see, the second output line (tagged as TL1) is missing the final update (the
one that mentions otters), despite the fact that the latching meant that mbex1 was
accessed after the list had been modified. This demonstrates that the Iterator con-
tained in mbex1 was copied by mbex2, and that the addition of the final update was invis-
ible to mbex1. This is the copy-on-write property that we want these objects to display.

Performance of CopyOnWriteArrayList
The use of the CopyOnWriteArrayList class does require a bit more thought than
using ConcurrentHashMap, which really is a drop-in concurrent replacement for
HashMap. This is because of performance issues—the copy-on-write property means
that if the list is altered while a read or a traversal is taking place, the entire array
must be copied.

This means that if changes to the list are common, compared to read accesses, this
approach won’t necessarily yield high performance. But as we’ll say repeatedly in
chapter 6, the only way to reliably get well-performing code is to test, retest, and mea-
sure the results.

Enforce strict 
event ordering 
with latches



102 CHAPTER 4 Modern concurrency

The next major common building block of concurrent code in java.util.concurrent
is the Queue. This is used to hand off work elements between threads, and it can be
used as the basis for many flexible and reliable multithreaded designs.

4.3.6 Queues
The queue is a wonderful abstraction (and no, we’re not just saying that because we
live in London, the world capital of queuing). The queue provides a simple and reli-
able way to distribute processing resources to work units (or to assign work units to
processing resources, depending on how you want to look at it).

 There are a number of patterns in multithreaded Java programming that rely heav-
ily on the thread-safe implementations of Queue, so it’s important that you fully under-
stand it. The basic Queue interface is in java.util, because it can be an important
pattern even in single-threaded programming, but we’ll focus on the multithreaded
use cases and assume that you have already encountered queues in basic use cases.

 One very common use case, and the one we’ll focus on, is the use of a queue to
transfer work units between threads. This pattern is often ideally suited for the sim-
plest concurrent extension of Queue—the BlockingQueue.

BLOCKINGQUEUES

The BlockingQueue is a queue that has two additional special properties:

■ When trying to put() to the queue, it will cause the putting thread to wait for
space to become available if the queue is full.

■ When trying to take() from the queue, it will cause the taking thread to block
if the queue is empty.

These two properties are very useful because if one thread (or pool of threads) is out-
stripping the ability of the other to keep up, the faster thread is forced to wait, thus
regulating the overall system. This is illustrated in figure 4.9. 

USING WORKUNIT

The Queue interfaces are all generic—they’re Queue<E>, BlockingQueue<E>, and so
on. Although it may seem strange, it’s sometimes wise to exploit this and introduce an
artificial container class to wrap the items of work. 

 For example, if you have a class called MyAwesomeClass that represents the units of
work that you want to process in a multithreaded way, then rather than having this,

BlockingQueue<MyAwesomeClass>

Two implementations of BlockingQueue
Java ships with two basic implementations of the BlockingQueue interface: the
LinkedBlockingQueue and the ArrayBlockingQueue. They offer slightly different
properties; for example, the array implementation is very efficient when an exact
bound is known for the size of the queue, whereas the linked implementation may be
slightly faster under some circumstances.
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it can be better to have this,

BlockingQueue<WorkUnit<MyAwesomeClass>>

where WorkUnit (or QueueObject, or whatever you want to call the container class) is
a packaging interface or class that may look something like this:

public class WorkUnit<T> {
  private final T workUnit;

  public T getWork(){ return workUnit; }

  public WorkUnit(T workUnit_) {
    workUnit = workUnit_;
  }
}

The reason for doing this is that this level of indirection provides a place to add addi-
tional metadata without compromising the conceptual integrity of the contained type
(MyAwesomeClass in this example). 

 This is surprisingly useful. Use cases where additional metadata is helpful are
abundant. Here are a few examples:

■ Testing (such as showing the change history for an object)
■ Performance indicators (such as time of arrival or quality of service)
■ Runtime system information (such as how this instance of MyAwesomeClass has

been routed)

Figure 4.9 The 
BlockingQueue
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It can be much harder to add in this indirection after the fact. If you find that more
metadata is required in certain circumstances, it can be a major refactoring job to add
in what would have been a simple change in the WorkUnit class.

A BLOCKINGQUEUE EXAMPLE

Let’s see the BlockingQueue in action in a simple example—pets waiting to be seen
by a veterinarian. This example represents a collection of pets that may be seen at a
vet’s surgery.

public abstract class Pet {
  protected final String name;

  public Pet(String name) {
    this.name = name;
  }
  public abstract void examine();
}

public class Cat extends Pet {
  public Cat(String name) {
    super(name);
  }
  public void examine(){
    System.out.println("Meow!");
  }
}

public class Dog extends Pet
  public Dog(String name) {
    super(name);
  }
  public void examine(){
    System.out.println("Woof!");
  }
}

public class Appointment<T> {
  private final T toBeSeen;

  public T getPatient(){ return toBeSeen; }

  public Appointment(T incoming) {
    toBeSeen = incoming;
  }
}

From this simple model, you can see that we can model the veterinarian’s queue as
LinkedBlockingQueue<Appointment<Pet>>, with the Appointment class taking the role
of WorkUnit.

 The veterinarian object is constructed with a queue (where appointments will be
placed, by an object modeling a receptionist) and a pause time, which is the amount
of downtime the veterinarian has between appointments.

Listing 4.11 Modeling pets in Java
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 We can model the veterinarian as shown in the next listing. As the thread runs, it
repeatedly calls seePatient() in an infinite loop. Of course, in the real world, this
would be unrealistic, because the veterinarian would probably want to go home for
evenings and weekends, rather than hanging around the office waiting for sick ani-
mals to show up.

public class Veterinarian extends Thread {
  protected final BlockingQueue<Appointment<Pet>> appts;
  protected String text = "";
  protected final int restTime;
  private boolean shutdown = false;

  public Veterinarian(BlockingQueue<Appointment<Pet>> lbq, int pause) {
    appts = lbq;
    restTime = pause;
  }

  public synchronized void shutdown(){
    shutdown = true;
  }

  @Override
  public void run(){
    while (!shutdown) {
      seePatient();
      try {
        Thread.sleep(restTime);
      } catch (InterruptedException e) {
        shutdown = true;
      }
    }
  }

  public void seePatient() {
    try {
      Appointment<Pet> ap = appts.take();   
      Pet patient = ap.getPatient();
      patient.examine();
    } catch (InterruptedException e) {
      shutdown = true;
    }
  }
}

Inside the seePatient() method, the thread will dequeue appointments and exam-
ine the pets corresponding to each in turn, and will block if there are no appoint-
ments currently waiting on the queue.

FINE-GRAINED CONTROL OF BLOCKINGQUEUE

In addition to the simple take() and offer() API, BlockingQueue offers another way
to interact with the queue that provides even more control, at the cost of a bit of
extra complexity. This is the possibility of putting or taking with a timeout, to allow

Listing 4.12 Modeling a veterinarian

Blocking 
take
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the thread encountering issues to back out from its interaction with the queue and do
something else instead. 

 In practice, this option isn’t often used, but it can be a useful technique on occa-
sion, so we’ll demonstrate it for completeness. You can see it in the following example
from our microblogging scenario.

public abstract class MicroBlogExampleThread extends Thread {
  protected final BlockingQueue<Update> updates;
  protected String text = "";
  protected final int pauseTime;
  private boolean shutdown = false;

  public MicroBlogExampleThread(BlockingQueue<Update> lbq_, int pause_) {
    updates = lbq_;
    pauseTime = pause_;
  }

  public synchronized void shutdown(){
    shutdown = true;                       
  }

  @Override
  public void run(){
    while (!shutdown) {                     
      doAction();
      try {
        Thread.sleep(pauseTime);
      } catch (InterruptedException e) {
        shutdown = true;                   
      }
    }
  }
  public abstract void doAction();           
}

final Update.Builder ub = new Update.Builder();
final BlockingQueue<Update> lbq = new LinkedBlockingQueue<>(100);

MicroBlogExampleThread t1 = new MicroBlogExampleThread(lbq, 10) {
  public void doAction(){
    text = text + "X";
    Update u = ub.author(new Author("Tallulah")).updateText(text).build();
    boolean handed = false;
    try {
      handed = updates.offer(u, 100, TimeUnit.MILLISECONDS);
    } catch (InterruptedException e) {
    }
    if (!handed) System.out.println(
    ➥ "Unable to hand off Update to Queue due to timeout");
  }
};

MicroBlogExampleThread t2 = new MicroBlogExampleThread(lbq, 1000) {
  public void doAction(){
    Update u = null;

Listing 4.13 BlockingQueue behavior example

Allow clean thread-
shutdown

Force subclass to 
implement action



107Building blocks for modern concurrent applications

    try {
      u = updates.take();
    } catch (InterruptedException e) {
      return;
    }
  }
};
t1.start();
t2.start();

Running this example as is shows how the queue will quickly fill, meaning that the
offering thread is outpacing the taking thread. Within a very short time, the message
“Unable to hand off Update to Queue due to timeout” will start to appear.

 This represents one extreme of the “connected thread pool” model—when the
upstream thread pool is running quicker than the downstream one. This can be prob-
lematic, introducing such issues as an overflowing LinkedBlockingQueue. Alterna-
tively, if there are more consumers than producers, the queue can empty. Fortunately
Java 7 has a new twist on the BlockingQueue that can help—the TransferQueue.

TRANSFERQUEUES—NEW IN JAVA 7
Java 7 introduced the TransferQueue. This is essentially a BlockingQueue with an
additional operation—transfer(). This operation will immediately transfer a work
item to a receiver thread if one is waiting. Otherwise it will block until there is a thread
available to take the item. This can be thought of as the “recorded delivery” option—
the thread that was processing the item won’t begin processing another item until it
has handed off the current item. This allows the system to regulate the speed at which
the upstream thread pool takes on new work.

 It would also be possible to regulate this by using a blocking queue of bounded
size, but the TransferQueue has a more flexible interface. In addition, your code may
show a performance benefit by replacing a BlockingQueue with a TransferQueue.
This is because the TransferQueue implementation has been written to take into
account modern compiler and processor features and can operate with great effi-
ciency. As with all discussions of performance, however, you must measure and prove
benefits and not simply assume them. You should also be aware that Java 7 ships with
only one implementation of TransferQueue—the linked version.

 In the next code example, we’ll look at how easy it is to drop in a TransferQueue as
a replacement for a BlockingQueue. Just these simple changes to listing 4.13 will
upgrade it to a TransferQueue implementation, as you can see here.

public abstract class MicroBlogExampleThread extends Thread {
  protected final TransferQueue<Update> updates;
  ...

public MicroBlogExampleThread(TransferQueue<Update> lbq_, int pause_) {
    updates = lbq_;
    pauseTime = pause_;
  }

Listing 4.14 Replacing a BlockingQueue with a  TransferQueue
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  ...
  }

final TransferQueue<Update> lbq = new LinkedTransferQueue<Update>(100);

MicroBlogExampleThread t1 = new MicroBlogExampleThread(lbq, 10) {
  public void doAction(){
    ...      
try {
      handed = updates.tryTransfer(u, 100, TimeUnit.MILLISECONDS);
    } catch (InterruptedException e) {
    }
    ...    
    }
};

This concludes our tour of the main building blocks that provide the raw materials for
developing solid multithreaded applications. The next step is to combine them with
the engines that drive concurrent code—the executor frameworks. These allow tasks
to be scheduled and controlled, which lets you assemble efficient concurrent flows for
handling work items and to build large multithreaded applications.

4.4 Controlling execution
We’ve spent some time in this chapter discussing work as abstract units. There’s a sub-
tlety to this, however. The part that we haven’t mentioned so far is that these units are
smaller than a Thread—they provide a way of running the computations contained in
the work unit without having to spin up a new thread for each unit. This is often a
much more efficient way of working with multithreaded code because it means that the
Thread startup cost doesn’t need to be paid for each unit. Instead, the threads that are
actually executing the code are reused; after they finish processing one task, they will
carry on with a new unit.

 For the cost of a bit of extra complexity, you can access such abstractions as thread
pools, worker and manager patterns and executors—some of the most versatile pat-
terns in the developer’s vocabulary. The classes and interfaces we’ll focus on most
closely are those that model tasks (Callable, Future, and FutureTask) and the execu-
tor classes, in particular ScheduledThreadPoolExecutor.

4.4.1 Modeling tasks

Our ultimate goal is to have tasks (or work units) that can be scheduled without spin-
ning up a new thread for each one. Ultimately, this means that they have to be mod-
eled as code that can be called (usually by an executor), rather than directly as a
runnable thread. 

 We’ll look at three different ways of modeling tasks—the Callable and Future
interfaces and the FutureTask class. 

CALLABLE INTERFACE

The Callable interface represents a very common abstraction. It represents a piece
of code that can be called and that returns a result. Despite being a straightforward
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idea, this is actually a subtle and powerful concept that can lead to some extremely
useful patterns. 

 One typical use of a Callable is the anonymous implementation. The last line of
this snippet sets s to be the value of out.toString():

final MyObject out = getSampleObject();

Callable<String> cb = new Callable<String>() {
  public String call() throws Exception {
    return out.toString();
  }
};
String s = cb.call();

Think of an anonymous implementation of Callable as being a deferred invocation
of the single abstract method, call(), which the implementation must provide. 

 Callable is an example of what is sometimes called a SAM type (short for “single
abstract method”)—this is the closest that Java 7 gets to having functions as first-class
types. We’ll talk more about the concept of functions as values or first-class types in
later chapters, when we encounter them in non-Java languages.

FUTURE INTERFACE

The Future interface is used to represent an asynchronous task, in the sense of a
future result from a task that may not have finished yet. We met these briefly in chap-
ter 2 when we talked about NIO.2 and asynchronous I/O. 

 These are the primary methods on a Future:

■ get()—This gets the result. If the result isn’t yet available, get() will block until
it is. There’s also a version that takes a timeout, which won’t block forever.

■ cancel()—This allows the computation to be canceled before completion.
■ isDone()—This allows the caller to determine whether the computation

has finished.

The next snippet shows a sample use of a Future in a prime number finder:

Future<Long> fut = getNthPrime(1_000_000_000);

Long result = null;
while (result == null) {
  try {
    result = fut.get(60, TimeUnit.SECONDS);
  } catch (TimeoutException tox) { }
  System.out.println("Still not found the billionth prime!");
}
System.out.println("Found it: "+ result.longValue());

In this snippet, you should imagine that getNthPrime() returns a Future that is exe-
cuting on some background thread (or even on multiple threads)—perhaps on one
of the executor frameworks we’ll discuss in the next subsection. Even on modern
hardware, this calculation may be running for a long time—you may need the
Future’s cancel() method after all.
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FUTURETASK CLASS

The FutureTask class is a commonly used implementation of the Future interface,
which also implements Runnable. As you’ll see, this means that a FutureTask can be
fed to executors, which is a crucial point. The interface is basically those of Future
and Runnable combined: get(), cancel(), isDone(), isCancelled(), and run(),
although this last method would be called by the executor, rather than directly.

 Two convenience constructors for FutureTask are also provided: one that takes a
Callable and one that takes a Runnable. The connections between these classes sug-
gest a very flexible approach to tasks, allowing a job to be written as a Callable, then
wrapped into a FutureTask that can then be scheduled (and cancelled if necessary)
on an executor, due to the Runnable nature of FutureTask.

4.4.2 ScheduledThreadPoolExecutor

The ScheduledThreadPoolExecutor (STPE) is the backbone of the thread pool
classes—it’s versatile and as a result is quite common. The STPE takes in work in the
form of tasks and schedules them on a pool of threads.

■ The thread pools can be of a predefined size or adaptive.
■ Tasks can be scheduled to execute periodically or just once.
■ STPE extends the ThreadPoolExecutor class (which is similar, but lacks the peri-

odic scheduling capabilities).

One of the most common patterns for medium- to large-scale multithreaded applications
is of STPE thread pools of executing threads connected by the java.util.concurrent
utility classes that we’ve already met (such as ConcurrentHashMap, CopyOnWrite-
ArrayList, BlockingQueue).

 STPE is only one of a number of related executors that can be obtained very easily by
using factory methods available on the Executors class in java.util.concurrent. These
factory methods are largely convenience methods; they allow the developer to access a
typical configuration easily, while exposing the full available interface if required.

 The next listing shows an example of periodic read. This is a common usage of
newScheduledThreadPool(): the msgReader object is scheduled to poll() the queue,
get the work item from the WorkUnit object on the queue, and then print it.

private ScheduledExecutorService stpe;
private ScheduledFuture<?> hndl;         

private BlockingQueue<WorkUnit<String>> lbq = new LinkedBlockingQueue<>();

private void run(){
  stpe = Executors.newScheduledThreadPool(2);     

  final Runnable msgReader = new Runnable(){
    public void run(){
      String nextMsg = lbq.poll().getWork();
      if (nextMsg != null) System.out.println("Msg recvd: "+ nextMsg);

Listing 4.15 Periodic reads from an STPE

Needed for cancellation

Executors 
factory method
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    }
  };
  hndl = stpe.scheduleAtFixedRate(msgReader, 10, 10, 
  ➥ TimeUnit.MILLISECONDS);
}

public void cancel() {
  final ScheduledFuture<?> myHndl = hndl;

  stpe.schedule(new Runnable() {
    public void run() { myHndl.cancel(true); } 
  }, 10, TimeUnit.MILLISECONDS);
}

In the example, an STPE wakes up a thread every 10 milliseconds and has it attempt to
poll() from a queue. If the read returns null (because the queue is currently empty),
nothing else happens and the thread goes back to sleep. If a work unit was received,
the thread prints out the contents of the work unit.

We’ll now turn to one of the highlights of Java 7—the fork/join framework for light-
weight concurrency. This new framework allows a wide range of concurrent problems
to be handled even more efficiently than the executors we’ve seen in this section can
do (which is no mean feat).

4.5 The fork/join framework
As we’ll discuss in chapter 6, processor speeds (or, more properly, transistor counts on
CPUs) have increased hugely in recent years. This has had the side effect that waiting
for I/O is now a very common situation. This suggests that we could make better use
of the processing capabilities inside our computers. The fork/join framework is an
attempt to do just that—a way that also provides the biggest new additions to the con-
currency arena in Java 7. 

 Fork/join is all about automatic scheduling of tasks on a thread pool that is invisi-
ble to the user. In order to do this, the tasks must be able to be broken up, in a way

Problems representing invocation with callable
There are a number of problems with the simple forms of Callable, FutureTask,
and their relatives—notably that the type system gets in the way.

To see this, consider the case of trying to account for all possible signatures that an
unknown method could have. Callable only provides a model of methods that take
zero arguments. You’d need many different variations of Callable to account for all
the possibilities.

In Java, you can work around this by being prescriptive about what method signatures
exist in the systems you model. But as you’ll see in part 3 of the book, dynamic lan-
guages don’t share this static view of the world. This mismatch between type sys-
tems is a major theme to which we’ll return. For now, just note that Callable, while
useful, is a little too restrictive to build a general framework for modeling execution.

Needed for 
cancellation
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that the user specifies. In many applications, fork/join has a notion of “small” and
“large” tasks that is very natural for the framework. 

 Let’s take a quick look at some of the headline facts and fundamentals related to
fork/join.

■ The fork/join framework introduces a new kind of executor service, called a
ForkJoinPool.

■ The ForkJoinPool service handles a unit of concurrency (the ForkJoinTask)
that is “smaller” than a Thread.

■ The ForkJoinTask is an abstraction that can be scheduled in a more light-
weight manner by the ForkJoinPool.

■ Fork/join usually makes use of two kinds of tasks (although they’re both repre-
sented as instances of ForkJoinTask):
– “Small” tasks are those that can be performed straightaway without consum-

ing too much processor time.
– “Large” tasks are those that need to be split up (possibly more than once)

before they can be directly performed.
■ The framework provides basic methods to support the splitting up of large

tasks, and it has automatic scheduling and rescheduling.

One key feature of the framework is that it’s expected that these lightweight tasks
may well spawn other instances of ForkJoinTask, which will be scheduled by the
same thread pool that executed their parent. This pattern is sometimes called divide
and conquer.

 We’ll start with a simple example of using the fork/join framework, then briefly
touch on the feature called “work-stealing,” and finally discuss the features of prob-
lems that are well suited to parallel-processing techniques. The best way to get started
with fork/join is with an example.

4.5.1 A simple fork/join example

As a simple example of what the fork/join framework can do, consider the following
case: we have an array of updates to the microblogging service that may have arrived
at different times, and we want to sort them by their arrival times, in order to generate
timelines for the users, like the one you generated in listing 4.9.

 To achieve this, we’ll use a multithreaded sort, which is a variant of MergeSort.
Listing 4.16 uses a specialized subclass of ForkJoinTask—the RecursiveAction. This
is simpler than the general ForkJoinTask because it’s explicit about not having any
overall result (the updates will be reordered in place), and it emphasizes the recursive
nature of the tasks.

 The MicroBlogUpdateSorter class provides a way of ordering a list of updates
using the compareTo() method on Update objects. The compute() method (which
you have to implement because it’s abstract in the RecursiveAction superclass) basi-
cally orders an array of microblog updates by the time of creation of an update.
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public class MicroBlogUpdateSorter extends RecursiveAction {
  private static final int SMALL_ENOUGH = 32;           
  private final Update[] updates;
  private final int start, end;
  private final Update[] result;

  public MicroBlogUpdateSorter(Update[] updates_) {
    this(updates_, 0, updates_.length);
  }

  public MicroBlogUpdateSorter(Update[] upds_, 
  ➥ int startPos_, int endPos_) {
    start = startPos_;
    end = endPos_;
    updates = upds_;
    result = new Update[updates.length];
  }

  private void merge(MicroBlogUpdateSorter left_, 
  ➥ MicroBlogUpdateSorter right_) {
    int i = 0;
    int lCt = 0;
    int rCt = 0;
    while (lCt < left_.size() && rCt < right_.size()) {
      result[i++] = (left_.result[lCt].compareTo(right_.result[rCt]) < 0)
        ? left_.result[lCt++]
        : right_.result[rCt++];
    }
    while (lCt < left_.size()) result[i++] = left_.result[lCt++];
    while (rCt < right_.size()) result[i++] = right_.result[rCt++];
  }

  public int size() {
    return end - start;
  }

  public Update[] getResult() {
    return result;
  }

  @Override
  protected void compute() {           
    if (size() < SMALL_ENOUGH) {
      System.arraycopy(updates, start, result, 0, size());
      Arrays.sort(result, 0, size());
    } else {
      int mid = size() / 2;
      MicroBlogUpdateSorter left = new MicroBlogUpdateSorter(
      ➥ updates, start, start + mid);
      MicroBlogUpdateSorter right = new MicroBlogUpdateSorter(
      ➥ updates, start + mid, end);
      invokeAll(left, right);
      merge(left, right)
    }
  }
}

Listing 4.16 Sorting with a RecursiveAction

32 or fewer 
sorted serially

RecursiveAction 
method
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To use the sorter, you can drive it with some code like that shown next, which will gen-
erate some updates (that consist of a string of Xs) and shuffle them, before passing
them to the sorter. The output is the reordered updates.

List<Update> lu = new ArrayList<Update>();
String text = "";
final Update.Builder ub = new Update.Builder();
final Author a = new Author("Tallulah");

for (int i=0; i<256; i++) {
  text = text + "X";
  long now = System.currentTimeMillis();
  lu.add(ub.author(a).updateText(text).createTime(now).build());
  try {
    Thread.sleep(1);
  } catch (InterruptedException e) {
  }
}
Collections.shuffle(lu);
Update[] updates = lu.toArray(new Update[0]);    

MicroBlogUpdateSorter sorter = new MicroBlogUpdateSorter(updates);
ForkJoinPool pool = new ForkJoinPool(4);
pool.invoke(sorter);

for (Update u: sorter.getResult()) {
  System.out.println(u);
}

4.5.2 ForkJoinTask and work stealing

ForkJoinTask is the superclass of RecursiveAction. It’s a generic class in the return
type of an action (so RecursiveAction extends ForkJoinTask<Void>). This makes
ForkJoinTask very suitable for map-reduce approaches that return a result from boil-
ing down a dataset.

 ForkJoinTasks are scheduled on a ForkJoinPool, which is a new type of executor
service designed specifically for these lightweight tasks. The service maintains a list of

Listing 4.17 Using the recursive sorter

TimSort
With the arrival of Java 7, the default sort algorithm for arrays has changed. Previ-
ously it had been a form of QuickSort, but with Java 7 it has become “TimSort”—a
version of MergeSort that has been hybridized with an insertion sort. TimSort was
originally developed for Python by Tim Peters, and it has been the default sort in
Python since version 2.3 (2002).

Want to see evidence of TimSort’s presence in Java 7? Just pass a null array of
Update objects into listing 4.16. The comparisons inside the array sorting routine
Arrays.sort() will fail with a null pointer exception, and you’ll see the TimSort
classes in the stack trace.

Pass zero-sized 
array, save 
allocation
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tasks for each thread, and if one task finishes, the service can reassign tasks from a
fully loaded thread to an idle one.

 The reason for this “work-stealing” algorithm is that without it, there could be
scheduling problems related to the two sizes of tasks. In general, the two sizes of tasks
will take very different lengths of time to run. For example, one thread may have a run
queue consisting only of small tasks, whereas another may have only large tasks. If the
small tasks run five times faster than large tasks, the thread with only small tasks may
well find itself idle before the large-task thread finishes.

 Work-stealing has been implemented precisely to work around this problem and
allow all the pool threads to be utilized throughout the lifecycle of the fork/join job.
It’s completely automatic and you don’t need to do anything specific to get the bene-
fits of work-stealing. It’s another example of the runtime environment doing more to
help developers manage concurrency, rather than making it a manual task.

4.5.3 Parallelizing problems

The promise of fork/join is tantalizing, but in practice, not every problem is easily
reduced to as simple a form as the multithreaded MergeSort in section 4.5.1. 

 These are some examples of problems well suited to the fork/join approach:

■ Simulating the motion of large numbers of simple objects (such as particle effects)
■ Log file analysis
■ Data operations where a quantity is calculated from inputs (such as map-

reduce operations)

Another way of looking at this is to say that a good problem for fork/join is one that
can be broken up as in figure 4.10.

 One practical way of determining whether a problem is likely to reduce well is to
apply this checklist to the problem and its subtasks:

■ Can the problem’s subtasks work without explicit cooperation or synchroniza-
tion between the subtasks?

■ Do the subtasks calculate some value from their data without altering it (are
they what a functional programmer would call “pure” functions)?

■ Is divide-and-conquer natural for the subtasks? Is one outcome of a subtask the
creation of more subtasks (which could be finer-grained than the task that
spawned them)?

Figure 4.10 Fork and join
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If the answer to the preceding questions is “Yes!” or “Mostly, but with edge cases,” your
problem may well be amenable to a fork/join approach. If, on the other hand, the
answer to those questions is “Maybe” or “Not Really,” you may well find that fork/join
performs poorly, and a different synchronization approach may pay off better.

NOTE The preceding checklist could be a useful way of testing to see if a
problem (such as one of the kind often seen in Hadoop and NoSQL data-
bases) could be well handled by fork/join. 

Designing good multithreaded algorithms is hard, and fork/join doesn’t work in
every circumstance. It’s very useful within its own domain of applicability, but in the
end, you have to decide whether your problem fits within the framework, and if not,
you must be prepared to develop your own solution, building on the superb toolbox
of java.util.concurrent.

 In the next section, we’ll discuss the often-misunderstood details of the Java Mem-
ory Model (JMM). Many Java programmers are aware of the JMM and have been cod-
ing to their own understanding of it without ever being formally introduced to it. If
that sounds like you, this new understanding will build upon your informal awareness
and place it onto firm foundations. The JMM is quite an advanced topic, so you can
skip it if you’re in a hurry to get on to the next chapter.

4.6 The Java Memory Model (JMM)
The JMM is described in section 17.4 of the Java Language Specification (JLS). This is
quite a formal part of the spec, and it describes the JMM in terms of synchronization
actions and the mathematical construct known as a partial order. This is great from the
point of view of language theorists and implementers of the Java spec (compiler and
VM makers), but it’s worse for application developers who need to understand the
details of how their multithreaded code will execute.

 Rather than repeat the formal details, we’ll list the most important rules here in
terms of a couple of basic concepts: the Synchronizes-With and Happens-Before relation-
ships between blocks of code.

■ Happens-Before—This relationship indicates that one block of code fully com-
pletes before the other can start.

■ Synchronizes-With—This means that an action will synchronize its view of an
object with main memory before continuing.

If you’ve studied formal approaches to OO programming, you may have heard the
expressions Has-A and Is-A used to describe the building blocks of object orientation.
Some developers find it useful to think of Happens-Before and Synchronizes-With as basic
conceptual building blocks for understanding Java concurrency. This is by analogy
with Has-A and Is-A, but there is no direct technical connection between the two sets
of concepts.

 In figure 4.11 you can see an example of a volatile write that Synchronizes-With a
later read access (for the println).
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The JMM has these main rules:

■ An unlock operation on a monitor Synchronizes-With later lock operations.
■ A write to a volatile variable Synchronizes-With later reads of the variable.
■ If an action A Synchronizes-With action B, then A Happens-Before B.
■ If A comes before B in program order, within a thread, then A Happens-Before B.

The general statement of the first two rules is that “releases happen before acquires.”
In other words, the locks that a thread holds when writing are released before the
locks can be acquired by other operations (including reads). 

 There are additional rules, which are really about sensible behavior:

■ The completion of a constructor Happens-Before the finalizer for that object
starts to run (an object has to be fully constructed before it can be finalized).

■ An action that starts a thread Synchronizes-With the first action of the new thread.
■ Thread.join() Synchronizes-With the last (and all other) actions in the thread

being joined.
■ If X Happens-Before Y and Y Happens-Before Z then X Happens-Before Z (transitivity).

These simple rules define the whole of the platform’s view of how memory and syn-
chronization works. Figure 4.12 illustrates the transitivity rule.

NOTE In practice, these rules are the minimum guarantees made by the JMM.
Real JVMs may behave much better in practice than these guarantees suggest.
This can be quite a pitfall for the developer because it’s easy for the false
sense of safety given by the behavior of a particular JVM to turn out to be just
a quirk hiding an underlying concurrency bug.

From these minimum guarantees, it’s easy to see why immutability is an important
concept in concurrent Java programming. If objects can’t be changed, there are no
issues related to ensuring that changes are visible to all threads.

Figure 4.11 A Synchronizes-
With example
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4.7 Summary
Concurrency is one of the most important features of the Java platform, and a good
developer will increasingly need a solid understanding of it. We’ve reviewed the
underpinnings of Java’s concurrency and the design forces that occur in multi-
threaded systems. We’ve discussed the Java Memory Model and low-level details of
how the platform implements concurrency.

 More important to the modern Java developer, we’ve addressed the classes in
java.util.concurrent, which should be your preferred toolkit for all new multi-
threaded Java code. We’ve updated you with details of some of the brand new classes
in Java 7, such as LinkedTransferQueue and the fork/join framework.

 We hope we’ve prepared the ground for you to begin using the classes of
java.util.concurrent in your own code. This is the single most important takeaway
from this chapter. Although we’ve looked at some great theory, the most important
part is the practical examples. Even if you just start with ConcurrentHashMap and the
Atomic classes, you’ll be using well-tested classes that can immediately provide real
benefit to your code.

 It’s time to move on to the next big topic that will help you stand out as a Java
developer. In the next chapter, you’ll gain a firm grounding in another fundamental area
of the platform—classloading and bytecode. This topic is at the heart of many of the plat-
form’s security and performance features, and it underpins many of the advanced tech-
niques in the ecosystem. This makes it an ideal subject of study for the developer who
wishes to gain an edge.

Figure 4.12 Transitivity of Happens-Before
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“How to become a well-
grounded Java developer—
and how to stay that way.” 

—From the Foreword by 
Dr. Heinz Kabutz 
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“At the cutting edge of 
Java development … learn 

to speak Java 7 and 
next-gen languages.”—Paul Benedict 
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“Buy this book for what’s 
new in Java 7. Keep it open 
for lessons in expert Java.”—Stephen Harrison, PhD

FirstFuel Soft ware
       

“A great collection of 
  knowledge on the 
    JVM platform.”—Rick Wagner, Red Hat
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