

An Excerpt
Java Persistence with Hibernate
By Christian Bauer and Gavin King

Excerpt of Chapter 8:

Legacy Databases
and custom SQL

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56
Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Java Persistence with Hiberate

by Christian Bauer
and Gavin King

Chapter 8

Copyright 2006 Manning Publications

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

322

Legacy databases
and custom SQL

This chapter covers
■ Legacy database integration and tricky mappings
■ Customization of SQL statements
■ Improving the SQL schema with custom DDL

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56
Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

Integrating legacy databases 323

Many examples presented in this chapter are about “difficult” mappings. The first
time you’ll likely have problems creating a mapping is with a legacy database
schema that can’t be modified. We discuss typical issues you encounter in such a
scenario and how you can bend and twist your mapping metadata instead of
changing your application or database schema.

 We also show you how you can override the SQL Hibernate generates auto-
matically. This includes SQL queries, DML (create, update, delete) operations, as
well as Hibernate’s automatic DDL-generation feature. You’ll see how to map
stored procedures and user-defined SQL functions, and how to apply the right
integrity rules in your database schema. This section will be especially useful if
your DBA needs full control (or if you’re a DBA and want to optimize Hibernate
at the SQL level).

 As you can see, the topics in this chapter are diverse; you don’t have to read
them all at once. You can consider a large part of this chapter to be reference
material and come back when you face a particular issue.

8.1 Integrating legacy databases

In this section, we hope to cover all the things you may encounter when you have
to deal with an existing legacy database or (and this is often synonymous) a weird
or broken schema. If your development process is top-down, however, you may
want to skip this section. Furthermore, we recommend that you first read all chap-
ters about class, collection, and association mappings before you attempt to
reverse-engineer a complex legacy schema.

 We have to warn you: When your application inherits an existing legacy data-
base schema, you should usually make as few changes to the existing schema as
possible. Every change that you make to the schema could break other existing
applications that access the database. Possibly expensive migration of existing
data is also something you need to evaluate. In general, it isn’t possible to build a
new application and make no changes to the existing data model—a new applica-
tion usually means additional business requirements that naturally require evolu-
tion of the database schema.

 We’ll therefore consider two types of problems: problems that relate to the
changing business requirements (which generally can’t be solved without schema
changes) and problems that relate only to how you wish to represent the same
business problem in your new application (these can usually, but not always, be
solved without database schema changes). It should be clear that the first kind of
problem is usually visible by looking at just the logical data model. The second

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

324 CHAPTER 8

Legacy databases and custom SQL

more often relates to the implementation of the logical data model as a physical
database schema.

 If you accept this observation, you’ll see that the kinds of problems that require
schema changes are those that necessitate addition of new entities, refactoring of
existing entities, addition of new attributes to existing entities, and modification
to the associations between entities. The problems that can be solved without
schema changes usually involve inconvenient table or column definitions for a
particular entity. In this section, we’ll concentrate on these kinds of problems.

 We assume that you’ve tried to reverse-engineer your existing schema with the
Hibernate toolset, as described in chapter 2, section 2.3, “Reverse engineering a
legacy database.” The concepts and solutions discussed in the following sections
assume that you have basic object/relational mapping in place and that you need
to make additional changes to get it working. Alternatively, you can try to write the
mapping completely by hand without the reverse-engineering tools.

 Let’s start with the most obvious problem: legacy primary keys.

8.1.1 Handling primary keys

We’ve already mentioned that we think natural primary keys can be a bad idea.
Natural keys often make it difficult to refactor the data model when business
requirements change. They may even, in extreme cases, impact performance.
Unfortunately, many legacy schemas use (natural) composite keys heavily and, for
the reason we discourage the use of composite keys, it may be difficult to change
the legacy schema to use noncomposite natural or surrogate keys.

 Therefore, Hibernate supports the use of natural keys. If the natural key is a
composite key, support is via the <composite-id> mapping. Let’s map both a
composite and a noncomposite natural primary key.

Mapping a natural key
If you encountered a USERS table in a legacy schema, it’s likely that USERNAME is
the actual primary key. In this case, you have no surrogate identifier that is auto-
matically generated. Instead, you enable the assigned identifier generator strat-
egy to indicate to Hibernate that the identifier is a natural key assigned by the
application before the object is saved:

<class name="User" table="USERS">
 <id name="username" column="USERNAME" length="16">
 <generator class="assigned"/>
 </id>

 ...
</class>

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 325

The code to save a new User is as follows:

User user = new User();
user.setUsername("johndoe"); // Assign a primary key value
user.setFirstname("John");
user.setLastname("Doe");
session.saveOrUpdate(user); // Will result in an INSERT
// System.out.println(session.getIdentifier(user));
session.flush();

How does Hibernate know that saveOrUpdate() requires an INSERT and not an
UPDATE? It doesn’t, so a trick is needed: Hibernate queries the USERS table for the
given username, and if it’s found, Hibernate updates the row. If it isn’t found,
insertion of a new row is required and done. This is certainly not the best solution,
because it triggers an additional hit on the database.

 Several strategies avoid the SELECT:

■ Add a <version> or a <timestamp> mapping, and a property, to your entity.
Hibernate manages both values internally for optimistic concurrency con-
trol (discussed later in the book). As a side effect, an empty timestamp or a
0 or NULL version indicates that an instance is new and has to be inserted,
not updated.

■ Implement a Hibernate Interceptor, and hook it into your Session. This
extension interface allows you to implement the method isTransient()
with any custom procedure you may need to distinguish old and new
objects.

On the other hand, if you’re happy to use save() and update() explicitly instead
of saveOrUpdate(), Hibernate doesn’t have to distinguish between transient and
detached instances—you do this by selecting the right method to call. (This issue
is, in practice, the only reason to not use saveOrUpdate() all the time, by the way.)

 Mapping natural primary keys with JPA annotations is straightforward:

@Id
private String username;

If no identifier generator is declared, Hibernate assumes that it has to apply the
regular select-to-determine-state-unless-versioned strategy and expects the appli-
cation to take care of the primary key value assignment. You can again avoid the
SELECT by extending your application with an interceptor or by adding a version-
control property (version number or timestamp).

 Composite natural keys extend on the same ideas.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

326 CHAPTER 8

Legacy databases and custom SQL

Mapping a composite natural key
Suppose that the primary key of the USERS table consists of a USERNAME and
DEPARTMENT_NR. You can add a property named departmentNr to the User class
and create the following mapping:

<class name="User" table="USERS">

 <composite-id>
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentNr"
 column="DEPARTMENT_NR"/>
 </composite-id>

 ...
</class>

The code to save a new User looks like this:

User user = new User();

// Assign a primary key value
user.setUsername("johndoe");
user.setDepartmentNr(42);

// Set property values
user.setFirstname("John");
user.setLastname("Doe");

session.saveOrUpdate(user);
session.flush();

Again, keep in mind that Hibernate executes a SELECT to determine what save-
OrUpdate() should do—unless you enable versioning control or a custom Inter-
ceptor. But what object can/should you use as the identifier when you call load()
or get()? Well, it’s possible to use an instance of the User class, for example:

User user = new User();

// Assign a primary key value
user.setUsername("johndoe");
user.setDepartmentNr(42);

// Load the persistent state into user
session.load(User.class, user);

In this code snippet, User acts as its own identifier class. It’s more elegant to
define a separate composite identifier class that declares just the key properties.
Call this class UserId:

public class UserId implements Serializable {
 private String username;

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 327

 private Integer departmentNr;

 public UserId(String username, Integer departmentNr) {
 this.username = username;
 this.departmentNr = departmentNr;
 }

 // Getters...

 public int hashCode() {
 int result;
 result = username.hashCode();
 result = 29 * result + departmentNr.hashCode();
 return result;
 }

 public boolean equals(Object other) {
 if (other==null) return false;
 if (!(other instanceof UserId)) return false;
 UserId that = (UserId) other;
 return this.username.equals(that.username) &&
 this.departmentNr.equals(that.departmentNr);
 }
}

It’s critical that you implement equals() and hashCode() correctly, because
Hibernate relies on these methods for cache lookups. Identifier classes are also
expected to implement Serializable.

 You now remove the username and departmentNr properties from User and
add a userId property. Create the following mapping:

<class name="User" table="USERS">

 <composite-id name="userId" class="UserId">
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentNr"
 column="DEPARTMENT_NR"/>
 </composite-id>

 ...
</class>

Save a new instance of User with this code:

UserId id = new UserId("johndoe", 42);

User user = new User();

// Assign a primary key value
user.setUserId(id);

// Set property values

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

328 CHAPTER 8

Legacy databases and custom SQL

user.setFirstname("John");
user.setLastname("Doe");

session.saveOrUpdate(user);
session.flush();

Again, a SELECT is needed for saveOrUpdate() to work. The following code shows
how to load an instance:

UserId id = new UserId("johndoe", 42);

User user = (User) session.load(User.class, id);

Now, suppose that the DEPARTMENT_NR is a foreign key referencing the DEPART-
MENT table, and that you wish to represent this association in the Java domain
model as a many-to-one association.

Foreign keys in composite primary keys
We recommend that you map a foreign key column that is also part of a compos-
ite primary key with a regular <many-to-one> element, and disable any Hiber-
nate inserts or updates of this column with insert="false" update="false", as
follows:

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentId"
 column="DEPARTMENT_ID"/>
 </composite-id>

 <many-to-one name="department"
 class="Department"
 column="DEPARTMENT_ID"
 insert="false" update="false"/>
 ...
</class>

Hibernate now ignores the department property when updating or inserting a
User, but you can of course read it with johndoe.getDepartment(). The relation-
ship between a User and Department is now managed through the departmentId
property of the UserId composite key class:

UserId id = new UserId("johndoe", department.getId());

User user = new User();

// Assign a primary key value
user.setUserId(id);

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 329

// Set property values
user.setFirstname("John");
user.setLastname("Doe");
user.setDepartment(department);

session.saveOrUpdate(user);
session.flush();

Only the identifier value of the department has any effect on the persistent state;
the setDepartment(department) call is done for consistency: Otherwise, you’d
have to refresh the object from the database to get the department set after the
flush. (In practice you can move all these details into the constructor of your com-
posite identifier class.)

 An alternative approach is a <key-many-to-one>:

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="username"
 column="USERNAME"/>

 <key-many-to-one name="department"
 class="Department"
 column="DEPARTMENT_ID"/>
 </composite-id>

 ...
</class>

However, it’s usually inconvenient to have an association in a composite identifier
class, so this approach isn’t recommended except in special circumstances. The
<key-many-to-one> construct also has limitations in queries: You can’t restrict a
query result in HQL or Criteria across a <key-many-to-one> join (although it’s
possible these features will be implemented in a later Hibernate version).

Foreign keys to composite primary keys
Because USERS has a composite primary key, any referencing foreign key is also
composite. For example, the association from Item to User (the seller) is now
mapped with a composite foreign key.

 Hibernate can hide this detail from the Java code with the following associa-
tion mapping from Item to User:

<many-to-one name="seller" class="User">
 <column name="USERNAME"/>
 <column name="DEPARTMENT_ID"/>
</many-to-one>

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

330 CHAPTER 8

Legacy databases and custom SQL

Any collection owned by the User class also has a composite foreign key—for
example, the inverse association, items, sold by this user:

<set name="itemsForAuction" inverse="true">
 <key>
 <column name="USERNAME"/>
 <column name="DEPARTMENT_ID"/>
 </key>
 <one-to-many class="Item"/>
</set>

Note that the order in which columns are listed is important and should match
the order in which they appear in the <composite-id> element of the primary
key mapping of User.

 This completes our discussion of the basic composite key mapping technique
in Hibernate. Mapping composite keys with annotations is almost the same, but as
always, small differences are important.

Composite keys with annotations
The JPA specification covers strategies for handling composite keys. You have
three options:

■ Encapsulate the identifier properties in a separate class and mark it
@Embeddable, like a regular component. Include a property of this compo-
nent type in your entity class, and map it with @Id for an application-
assigned strategy.

■ Encapsulate the identifier properties in a separate class without any annota-
tions on it. Include a property of this type in your entity class, and map it
with @EmbeddedId.

■ Encapsulate the identifier properties in a separate class. Now—and this is
different that what you usually do in native Hibernate—duplicate all the
identifier properties in the entity class. Then, annotate the entity class with
@IdClass and specify the name of your encapsulated identifier class.

The first option is straightforward. You need to make the UserId class from the
previous section embeddable:

@Embeddable
public class UserId implements Serializable {
 private String username;
 private String departmentNr;

 ...
}

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 331

As for all component mappings, you can define extra mapping attributes on the
fields (or getter methods) of this class. To map the composite key of User, set the
generation strategy to application assigned by omitting the @GeneratedValue
annotation:

@Id
@AttributeOverrides({
 @AttributeOverride(name = "username",
 column = @Column(name="USERNAME")),
 @AttributeOverride(name = "departmentNr",
 column = @Column(name="DEP_NR"))
})
private UserId userId;

Just as you did with regular component mappings earlier in the book, you can
override particular attribute mappings of the component class, if you like.

 The second composite-key mapping strategy doesn’t require that you mark up
the UserId primary key class. Hence, no @Embeddable and no other annotation
on that class is needed. In the owning entity, you map the composite identifier
property with @EmbeddedId, again, with optional overrides:

@EmbeddedId
@AttributeOverrides({
 @AttributeOverride(name = "username",
 column = @Column(name="USERNAME")),
 @AttributeOverride(name = "departmentNr",
 column = @Column(name="DEP_NR"))
})
private UserId userId;

In a JPA XML descriptor, this mapping looks as follows:

<embeddable class="auction.model.UserId" access ="PROPERTY">
 <attributes>
 <basic name="username">
 <column name="UNAME"/>
 </basic>
 <basic name="departmentNr">
 <column name="DEPARTMENT_NR"/>
 </basic>
 </attributes>
</embeddable>

<entity class="auction.model.User" access="FIELD">
 <attributes>
 <embedded-id name="userId">
 <attribute-override name="username">
 <column name="USERNAME"/>
 </attribute-override>

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

332 CHAPTER 8

Legacy databases and custom SQL

 <attribute-override name="departmentNr">
 <column name="DEP_NR"/>
 </attribute-override>
 </embedded-id>
 ...
 </attributes>
</entity>

The third composite-key mapping strategy is a bit more difficult to understand,
especially for experienced Hibernate users. First, you encapsulate all identifier
attributes in a separate class—as in the previous strategy, no extra annotations
on that class are needed. Now you duplicate all the identifier properties in the
entity class:

@Entity
@Table(name = "USERS")
@IdClass(UserId.class)
public class User {

 @Id
 private String username;

 @Id
 private String departmentNr;

 // Accessor methods, etc.
 ...
}

Hibernate inspects the @IdClass and singles out all the duplicate properties (by
comparing name and type) as identifier properties and as part of the primary
key. All primary key properties are annotated with @Id, and depending on the
position of these elements (field or getter method), the entity defaults to field or
property access.

 Note that this last strategy is also available in Hibernate XML mappings; how-
ever, it’s somewhat obscure:

<composite-id class="UserId" mapped="true">
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentNr"
 column="DEP_NR"/>
</composite-id>

You omit the identifier property name of the entity (because there is none), so
Hibernate handles the identifier internally. With mapped="true", you enable the
last JPA mapping strategy, so all key properties are now expected to be present in
both the User and the UserId classes.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 333

 This composite identifier mapping strategy looks as follows if you use JPA XML
descriptors:

<entity class="auction.model.User" access="FIELD">
 <id-class class="auction.model.UserId"/>
 <attributes>
 <id name="username"/>
 <id name="departmentNr"/>
 </attributes>
</entity>

Because we didn’t find a compelling case for this last strategy defined in Java Per-
sistence, we have to assume that it was added to the specification to support some
legacy behavior (EJB 2.x entity beans).

 Composite foreign keys are also possible with annotations. Let’s first map the
association from Item to User:

@ManyToOne
@JoinColumns({
 @JoinColumn(name="USERNAME", referencedColumnName = "USERNAME"),
 @JoinColumn(name="DEP_NR", referencedColumnName = "DEP_NR")
})
private User seller;

The primary difference between a regular @ManyToOne and this mapping is the
number of columns involved—again, the order is important and should be the
same as the order of the primary key columns. However, if you declare the refer-
encedColumnName for each column, order isn’t important, and both the source
and target tables of the foreign key constraint can have different column names.

 The inverse mapping from User to Item with a collection is even more straight-
forward:

@OneToMany(mappedBy = "seller")
private Set<Item> itemsForAuction = new HashSet<Item>();

 This inverse side needs the mappedBy attribute, as usual for bidirectional associa-
tions. Because this is the inverse side, it doesn’t need any column declarations.

 In legacy schemas, a foreign key often doesn’t reference a primary key.

Foreign key referencing nonprimary keys
Usually, a foreign key constraint references a primary key. A foreign key constraint
is an integrity rule that guarantees that the referenced table has one row with a key
value that matches the key value in the referencing table and given row. Note that
a foreign key constraint can be self-referencing; in other words, a column with a
foreign key constraint can reference the primary key column of the same table.
(The PARENT_CATEGORY_ID in the CaveatEmptor CATEGORY table is one example.)

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

334 CHAPTER 8

Legacy databases and custom SQL

 Legacy schemas sometimes have foreign key constraints that don’t follow the
simple “FK references PK” rule. Sometimes a foreign key references a nonprimary
key: a simple unique column, a natural nonprimary key. Let’s assume that in Cave-
atEmptor, you need to handle a legacy natural key column called CUSTOMER_NR on
the USERS table:

<class name="User" table="USERS">

 <id name="id" column="USER_ID">...</id>

 <property name="customerNr"
 column="CUSTOMER_NR"
 not-null="true"
 unique="true"/>

</class>

The only thing that is probably new to you in this mapping is the unique attribute.
This is one of the SQL customization options in Hibernate; it’s not used at run-
time (Hibernate doesn’t do any uniqueness validation) but to export the database
schema with hbm2ddl. If you have an existing schema with a natural key, you
assume that it’s unique. For completeness, you can and should repeat such impor-
tant constraints in your mapping metadata—maybe you’ll use it one day to export
a fresh schema.

 Equivalent to the XML mapping, you can declare a column as unique in JPA
annotations:

@Column(name = "CUSTOMER_NR", nullable = false, unique=true)
private int customerNr;

The next issue you may discover in the legacy schema is that the ITEM table has a
foreign key column, SELLER_NR. In an ideal world, you would expect this foreign
key to reference the primary key, USER_ID, of the USERS table. However, in a legacy
schema, it may reference the natural unique key, CUSTOMER_NR. You need to map
it with a property reference:

<class name="Item" table="ITEM">

 <id name="id" column="ITEM_ID">...</id>

 <many-to-one name="seller" column="SELLER_NR"
 property-ref="customerNr"/>

</class>

You’ll encounter the property-ref attribute in more exotic Hibernate mappings.
It’s used to tell Hibernate that “this is a mirror of the named property.” In the pre-
vious example, Hibernate now knows the target of the foreign key reference. One

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 335

further thing to note is that property-ref requires the target property to be
unique, so unique="true", as shown earlier, is needed for this mapping.

 If you try to map this association with JPA annotations, you may look for an
equivalent to the property-ref attribute. You map the association with an explicit
reference to the natural key column, CUSTOMER_NR:

@ManyToOne
@JoinColumn(name="SELLER_NR", referencedColumnName = "CUSTOMER_NR")
private User seller;

Hibernate now knows that the referenced target column is a natural key and man-
ages the foreign key relationship accordingly.

 To complete this example, you make this association mapping between the two
classes bidirectional, with a mapping of an itemsForAuction collection on the
User class. First, here it is in XML:

<class name="User" table="USERS">

 <id name="id" column="USER_ID">...</id>

 <property name="customerNr" column="CUSTOMER_NR" unique="true"/>

 <set name="itemsForAuction" inverse="true">
 <key column="SELLER_NR” property-ref="customerNr"/>
 <one-to-many class="Item"/>
 </set>

</class>

Again the foreign key column in ITEM is mapped with a property reference to
customerNr. In annotations, this is a lot easier to map as an inverse side:

@OneToMany(mappedBy = "seller")
private Set<Item> itemsForAuction = new HashSet<Item>();

Composite foreign key referencing nonprimary keys
Some legacy schemas are even more complicated than the one discussed before:
A foreign key might be a composite key and, by design, reference a composite nat-
ural nonprimary key!

 Let’s assume that USERS has a natural composite key that includes the FIRST-
NAME, LASTNAME, and BIRTHDAY columns. A foreign key may reference this natural
key, as shown in figure 8.1.

 To map this, you need to group several properties under the same name—oth-
erwise you can’t name the composite in a property-ref. Apply the <properties>
element to group the mappings:

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

336 CHAPTER 8

Legacy databases and custom SQL

<class name="User" table="USERS">

 <id name="id" column="USER_ID">...</id>

 <properties name="nameAndBirthday" unique="true" update="false">
 <property name="firstname" column="FIRSTNAME"/>
 <property name="lastname" column="LASTNAME"/>
 <property name="birthday" column="BIRTHDAY" type="date"/>
 </properties>

 <set name="itemsForAuction" inverse="true">
 <key property-ref="nameAndBirthday">
 <column name="SELLER_FIRSTNAME"/>
 <column name="SELLER_LASTNAME"/>
 <column name="SELLER_BIRTHDAY"/>
 </key>
 <one-to-many class="Item"/>
 </set>

</class>

As you can see, the <properties> element is useful not only to give several prop-
erties a name, but also to define a multicolumn unique constraint or to make sev-
eral properties immutable. For the association mappings, the order of columns is
again important:

<class name="Item" table="ITEM">

 <id name="id" column="ITEM_ID">...</id>

 <many-to-one name="seller" property-ref="nameAndBirthday">
 <column name="SELLER_FIRSTNAME"/>
 <column name="SELLER_LASTNAME"/>
 <column name="SELLER_BIRTHDAY"/>
 </many-to-one>

</class>

Figure 8.1 A composite foreign key references a composite primary key.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 337

Fortunately, it’s often straightforward to clean up such a schema by refactoring
foreign keys to reference primary keys—if you can make changes to the database
that don’t disturb other applications sharing the data.

 This completes our exploration of natural, composite, and foreign key-related
problems you may have to deal with when you try to map a legacy schema. Let’s
move on to other interesting special mapping strategies.

 Sometimes you can’t make any changes to a legacy database—not even creat-
ing tables or views. Hibernate can map classes, properties, and even parts of asso-
ciations to a simple SQL statement or expression. We call these kinds of mappings
formula mappings.

8.1.2 Arbitrary join conditions with formulas

Mapping a Java artifact to an SQL expression is useful for more than integrating a
legacy schema. You created two formula mappings already: The first, “Using
derived properties,” in chapter 4, section 4.4.1, was a simple derived read-only
property mapping. The second formula calculated the discriminator in an inher-
itance mapping; see chapter 5, section 5.1.3, “Table per class hierarchy.”

 You’ll now apply formulas for a more exotic purposes. Keep in mind that some
of the mappings you’ll see now are complex, and you may be better prepared to
understand them after reading all the chapters in part 2 of this book.

Understanding the use case
You now map a literal join condition between two entities. This sounds more com-
plex than it is in practice. Look at the two classes shown in figure 8.2.

 A particular Item may have several Bids—this is a one-to-many association. But
it isn’t the only association between the two classes; the other, a unidirectional

Figure 8.2
A single-association that references an
instance in a many-association

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

338 CHAPTER 8

Legacy databases and custom SQL

one-to-one, is needed to single out one particular Bid instance as the winning bid.
You map the first association because you’d like to be able to get all the bids for an
auctioned item by calling anItem.getBids(). The second association allows you
to call anItem.getSuccessfulBid(). Logically, one of the elements in the collec-
tion is also the successful bid object referenced by getSuccessfulBid().

 The first association is clearly a bidirectional one-to-many/many-to-one associ-
ation, with a foreign key ITEM_ID in the BID table. (If you haven’t mapped this
before, look at chapter 6, section 6.4, “Mapping a parent/children relationship.”)

 The one-to-one association is more difficult; you can map it several ways.
The most natural is a uniquely constrained foreign key in the ITEM table refer-
encing a row in the BID table—the winning row, for example a SUCCESSFUL_
BID_ID column.

 Legacy schemas often need a mapping that isn’t a simple foreign key relation-
ship.

Mapping a formula join condition
Imagine that each row in the BID table has a flag column to mark the winning bid,
as shown in figure 8.3. One BID row has the flag set to true, and all other rows for
this auction item are naturally false. Chances are good that you won’t find a con-
straint or an integrity rule for this relationship in a legacy schema, but we ignore
this for now and focus on the mapping to Java classes.

 To make this mapping even more interesting, assume that the legacy schema
didn’t use the SQL BOOLEAN datatype but a CHAR(1) field and the values T (for
true) and F (for false) to simulate the boolean switch. Your goal is to map this flag
column to a successfulBid property of the Item class. To map this as an object
reference, you need a literal join condition, because there is no foreign key Hiber-
nate can use for a join. In other words, for each ITEM row, you need to join a row
from the BID table that has the SUCCESSFUL flag set to T. If there is no such row,
the anItem.getSuccessfulBid() call returns null.

 Let’s first map the Bid class and a successful boolean property to the SUC-
CESSFUL database column:

Figure 8.3
The winning bid is marked with the
SUCCESSFUL column flag.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 339

<class name="Bid" table="BID">

 <id name="id" column="BID_ID"...

 <property name="amount"
 ...

 <properties name="successfulReference">

 <property name="successful"
 column="SUCCESSFUL"
 type="true_false"/>
 ...

 <many-to-one name="item"
 class="Item"
 column="ITEM_ID"/>
 ...
 </properties>

 <many-to-one name="bidder"
 class="User"
 column="BIDDER_ID"/>
 ...
</class>

The type="true_false" attribute creates a mapping between a Java boolean
primitive (or its wrapper) property and a simple CHAR(1) column with T/F literal
values—it’s a built-in Hibernate mapping type. You again group several properties
with <properties> under a name that you can reference in other mappings. What
is new here is that you can group a <many-to-one>, not only basic properties.

 The real trick is happening on the other side, for the mapping of the success-
fulBid property of the Item class:

<class name="Item" table="ITEM">

 <id name="id" column="ITEM_ID"...

 <property name="initialPrice"
 ...

 <one-to-one name="successfulBid"
 property-ref="successfulReference">
 <formula>'T'</formula>
 <formula>ITEM_ID</formula>
 </one-to-one>

 <set name="bids" inverse="true">
 <key column="ITEM_ID”/>
 <one-to-many class="Bid"/>
 </set>

</class>

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

340 CHAPTER 8

Legacy databases and custom SQL

Ignore the <set> association mapping in this example; this is the regular one-to-
many association between Item and Bid, bidirectional, on the ITEM_ID foreign
key column in BID.

NOTE Isn’t <one-to-one> used for primary key associations? Usually, a <one-to-
one> mapping is a primary key relationship between two entities, when
rows in both entity tables share the same primary key value. However, by
using a formula with a property-ref, you can apply it to a foreign key
relationship. In the example shown in this section, you could replace the
<one-to-one> element with <many-to-one>, and it would still work.

The interesting part is the <one-to-one> mapping and how it relies on a prop-
erty-ref and literal formula values as a join condition when you work with the
association.

Working with the association
The full SQL query for retrieval of an auction item and its successful bid looks like
this:

select
 i.ITEM_ID,
 i.INITIAL_PRICE,
 ...
 b.BID_ID,
 b.AMOUNT,
 b.SUCCESSFUL,
 b.BIDDER_ID,
 ...
from
 ITEM i
left outer join
 BID b
 on 'T' = b.SUCCESSFUL
 and i.ITEM_ID = b.ITEM_ID
where
 i.ITEM_ID = ?

When you load an Item, Hibernate now joins a row from the BID table by applying
a join condition that involves the columns of the successfulReference property.
Because this is a grouped property, you can declare individual expressions for
each of the columns involved, in the right order. The first one, 'T', is a literal, as
you can see from the quotes. Hibernate now includes 'T' = SUCCESSFUL in the
join condition when it tries to find out whether there is a successful row in the BID
table. The second expression isn’t a literal but a column name (no quotes).

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 341

Hence, another join condition is appended: i.ITEM_ID = b.ITEM_ID. You can
expand this and add more join conditions if you need additional restrictions.

 Note that an outer join is generated because the item in question may not have
a successful bid, so NULL is returned for each b.* column. You can now call
anItem.getSuccessfulBid() to get a reference to the successful bid (or null if
none exists).

 Finally, with or without database constraints, you can’t just implement an
item.setSuccessfulBid() method that only sets the value on a private field in
the Item instance. You have to implement a small procedure in this setter method
that takes care of this special relationship and the flag property on the bids:

public class Item {
 ...

 private Bid successfulBid;
 private Set<Bid> bids = new HashSet<Bid>();

 public Bid getSuccessfulBid() {
 return successfulBid;
 }

 public void setSuccessfulBid(Bid successfulBid) {
 if (successfulBid != null) {

 for (Bid bid : bids)
 bid.setSuccessful(false);

 successfulBid.setSuccessful(true);
 this.successfulBid = successfulBid;
 }
 }

}

When setSuccessfulBid() is called, you set all bids to not successful. Doing so
may trigger the loading of the collection—a price you have to pay with this strat-
egy. Then, the new successful bid is marked and set as an instance variable. Setting
the flag updates the SUCCESSFUL column in the BID table when you save the
objects. To complete this (and to fix the legacy schema), your database-level con-
straints need to do the same as this method. (We’ll come back to constraints later
in this chapter.)

 One of the things to remember about this literal join condition mapping is
that it can be applied in many other situations, not only for successful or default
relationships. Whenever you need some arbitrary join condition appended to
your queries, a formula is the right choice. For example, you could use it in a

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

342 CHAPTER 8

Legacy databases and custom SQL

<many-to-many> mapping to create a literal join condition from the association
table to the entity table(s).

 Unfortunately, at the time of writing, Hibernate Annotations doesn’t support
arbitrary join conditions expressed with formulas. The grouping of properties
under a reference name also wasn’t possible. We expect that these features will
closely resemble the XML mapping, once they’re available.

 Another issue you may encounter in a legacy schema is that it doesn’t integrate
nicely with your class granularity. Our usual recommendation to have more
classes than tables may not work, and you may have to do the opposite and join
arbitrary tables into one class.

8.1.3 Joining arbitrary tables

We’ve already shown the <join> mapping element in an inheritance mapping in
chapter 5; see section 5.1.5, “Mixing inheritance strategies.” It helped to break out
properties of a particular subclass into a separate table, out of the primary inherit-
ance hierarchy table. This generic functionality has more uses—however, we have
to warn you that <join> can also be a bad idea. Any properly designed system
should have more classes than tables. Splitting a single class into separate tables is
something you should do only when you need to merge several tables in a legacy
schema into a single class.

Moving properties into a secondary table
Suppose that in CaveatEmptor, you aren’t keeping a user’s address information
with the user’s main information in the USERS table, mapped as a component, but
in a separate table. This is shown in figure 8.4. Note that each BILLING_ADDRESS
has a foreign key USER_ID, which is in turn the primary key of the BILLING_
ADDRESS table.

 To map this in XML, you need to group the properties of the Address in a
<join> element:

Figure 8.4
Breaking out the billing address
data into a secondary table

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 343

<class name="User" table="USERS">
 <id>...

 <join table="BILLING_ADDRESS" optional="true">
 <key column="USER_ID"/>
 <component name="billingAddress" class="Address">
 <property name="street"
 type="string"
 column="STREET"
 length="255"/>
 <property name="zipcode"
 type="string"
 column="ZIPCODE"
 length="16"/>
 <property name="city"
 type="string"
 column="CITY"
 length="255"/>
 </component>
 </join>

</class>

You don’t have to join a component; you can as well join individual properties or
even a <many-to-one> (we did this in the previous chapter for optional entity
associations). By setting optional="true", you indicate that the component prop-
erty may also be null for a User with no billingAddress, and that no row should
then be inserted into the secondary table. Hibernate also executes an outer join
instead of an inner join to retrieve the row from the secondary table. If you
declared fetch="select" on the <join> mapping, a secondary select would be
used for that purpose.

 The notion of a secondary table is also included in the Java Persistence specifi-
cation. First, you have to declare a secondary table (or several) for a particular
entity:

@Entity
@Table(name = "USERS")
@SecondaryTable(
 name = "BILLING_ADDRESS",
 pkJoinColumns = {
 @PrimaryKeyJoinColumn(name="USER_ID")
 }
)
public class User {
 ...
}

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

344 CHAPTER 8

Legacy databases and custom SQL

Each secondary table needs a name and a join condition. In this example, a for-
eign key column references the primary key column of the USERS table, just like
earlier in the XML mapping. (This is the default join condition, so you can only
declare the secondary table name, and nothing else). You can probably see that
the syntax of annotations is starting to become an issue and code is more difficult
to read. The good news is that you won’t have to use secondary tables often.

 The actual component property, billingAddress, is mapped as a regular
@Embedded class, just like a regular component. However, you need to override
each component property column and assign it to the secondary table, in the
User class:

@Embedded
@AttributeOverrides({
 @AttributeOverride(
 name = "street",
 column = @Column(name="STREET",
 table = "BILLING_ADDRESS")
),
 @AttributeOverride(
 name = "zipcode",
 column = @Column(name="ZIPCODE",
 table = "BILLING_ADDRESS")
),
 @AttributeOverride(
 name = "city",
 column = @Column(name="CITY",
 table = "BILLING_ADDRESS")
)
})
private Address billingAddress;

This is no longer easily readable, but it’s the price you pay for mapping flexibility
with declarative metadata in annotations. Or, you can use a JPA XML descriptor:

<entity class="auction.model.User" access="FIELD">
 <table name="USERS"/>
 <secondary-table name="BILLING_ADDRESS">
 <primary-key-join-column
 referenced-column-name="USER_ID"/>
 </secondary-table>
 <attributes>
 ...
 <embedded name="billingAddress">
 <attribute-override name="street">
 <column name="STREET" table="BILLING_ADDRESS"/>
 </attribute-override>
 <attribute-override name="zipcode">

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 345

 <column name="ZIPCODE" table="BILLING_ADDRESS"/>
 </attribute-override>
 <attribute-override name="city">
 <column name="CITY" table="BILLING_ADDRESS"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>

Another, even more exotic use case for the <join> element is inverse joined prop-
erties or components.

Inverse joined properties
Let’s assume that in CaveatEmptor you have a legacy table called DAILY_BILLING.
This table contains all the open payments, executed in a nightly batch, for any
auctions. The table has a foreign key column to ITEM, as you can see in figure 8.5.

 Each payment includes a TOTAL column with the amount of money that will be
billed. In CaveatEmptor, it would be convenient if you could access the price of a
particular auction by calling anItem.getBillingTotal().

 You can map the column from the DAILY_BILLING table into the Item class.
However, you never insert or update it from this side; it’s read-only. For that rea-
son, you map it inverse—a simple mirror of the (supposed, you don’t map it here)
other side that takes care of maintaining the column value:

<class name="Item" table="ITEM">
 <id>...

 <join table="DAILY_BILLING" optional="true" inverse="true">
 <key column="ITEM_ID"/>
 <property name="billingTotal"
 type="big_decimal"
 column="TOTAL"/>
 </join>

</class>

Figure 8.5 The daily billing summary references an item and contains the total sum.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

346 CHAPTER 8

Legacy databases and custom SQL

Note that an alternative solution for this problem is a derived property using a for-
mula expression and a correlated subquery:

<property name="billingTotal"
 type="big_decimal"
 formula="(select db.TOTAL from DAILY_BILLING db
 where db.ITEM_ID = ITEM_ID)"/>

The main difference is the SQL SELECT used to load an ITEM: The first solution
defaults to an outer join, with an optional second SELECT if you enable <join
fetch="select">. The derived property results in an embedded subselect in
the select clause of the original query. At the time of writing, inverse join map-
pings aren’t supported with annotations, but you can use a Hibernate annota-
tion for formulas.

 As you can probably guess from the examples, <join> mappings come in
handy in many situations. They’re even more powerful if combined with formu-
las, but we hope you won’t have to use this combination often.

 One further problem that often arises in the context of working with legacy
data are database triggers.

8.1.4 Working with triggers

There are some reasons for using triggers even in a brand-new database, so legacy
data isn’t the only scenerio in which they can cause problems. Triggers and object
state management with an ORM software are almost always an issue, because trig-
gers may run at inconvenient times or may modify data that isn’t synchronized
with the in-memory state.

Triggers that run on INSERT
Suppose the ITEM table has a CREATED column, mapped to a created property of
type Date, that is initialized by a trigger that executes automatically on insertion.
The following mapping is appropriate:

<property name="created"
 type="timestamp"
 column="CREATED"
 insert="false"
 update="false"/>

Notice that you map this property insert="false" update="false" to indicate
that it isn’t to be included in SQL INSERTs or UPDATEs by Hibernate.

 After saving a new Item, Hibernate isn’t aware of the value assigned to this col-
umn by the trigger, because it occurred after the INSERT of the item row. If you

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 347

need the generated value in the application, you must explicitly tell Hibernate to
reload the object with an SQL SELECT. For example:

Item item = new Item();
...
Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

session.save(item);
session.flush(); // Force the INSERT to occur
session.refresh(item); // Reload the object with a SELECT

System.out.println(item.getCreated());

tx.commit();
session.close();

Most problems involving triggers may be solved in this way, using an explicit
flush() to force immediate execution of the trigger, perhaps followed by a call to
refresh() to retrieve the result of the trigger.

 Before you add refresh() calls to your application, we have to tell you that the
primary goal of the previous section was to show you when to use refresh().
Many Hibernate beginners don’t understand its real purpose and often use it
incorrectly. A more formal definition of refresh() is “refresh an in-memory
instance in persistent state with the current values present in the database.”

 For the example shown, a database trigger filling a column value after inser-
tion, a much simpler technique can be used:

<property name="created"
 type="timestamp"
 column="CREATED"
 generated="insert"
 insert="false"
 update="false"/>

With annotations, use a Hibernate extension:

@Temporal(TemporalType.TIMESTAMP)
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.INSERT
)
@Column(name = "CREATED", insertable = false, updatable = false)
private Date created;

We have already discussed the generated attribute in detail in chapter 4,
section 4.4.1.3, “Generated and default property values.” With gener-

ated="insert", Hibernate automatically executes a SELECT after insertion, to
retrieve the updated state.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

348 CHAPTER 8

Legacy databases and custom SQL

 There is one further problem to be aware of when your database executes trig-
gers: reassociation of a detached object graph and triggers that run on each
UPDATE.

Triggers that run on UPDATE
Before we discuss the problem of ON UPDATE triggers in combination with reat-
tachment of objects, we need to point out an additional setting for the generated
attribute:

<version name="version"
 column="OBJ_VERSION"
 generated="always"/>
...
<timestamp name="lastModified"
 column="LAST_MODIFIED"
 generated="always"/>
...
<property name="lastModified"
 type="timestamp"
 column="LAST_MODIFIED"
 generated="always"
 insert="false"
 update="false"/>

With annotations, the equivalent mappings are as follows:

@Version
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
@Column(name = "OBJ_VERSION")
private int version;

@Version
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
@Column(name = "LAST_MODIFIED")
private Date lastModified;

@Temporal(TemporalType.TIMESTAMP)
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
@Column(name = "LAST_MODIFIED", insertable = false, updatable = false)
private Date lastModified;

With always, you enable Hibernate’s automatic refreshing not only for insertion
but also for updating of a row. In other words, whenever a version, timestamp, or
any property value is generated by a trigger that runs on UPDATE SQL statements,

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Integrating legacy databases 349

you need to enable this option. Again, refer to our earlier discussion of generated
properties in section 4.4.1.

 Let’s look at the second issue you may run into if you have triggers running on
updates. Because no snapshot is available when a detached object is reattached to
a new Session (with update() or saveOrUpdate()), Hibernate may execute
unnecessary SQL UPDATE statements to ensure that the database state is synchro-
nized with the persistence context state. This may cause an UPDATE trigger to fire
inconveniently. You avoid this behavior by enabling select-before-update in the
mapping for the class that is persisted to the table with the trigger. If the ITEM
table has an update trigger, add the following attribute to your mapping:

<class name="Item"
 table="ITEM"
 select-before-update="true">
 ...
</class>

This setting forces Hibernate to retrieve a snapshot of the current database state
using an SQL SELECT, enabling the subsequent UPDATE to be avoided if the state of
the in-memory Item is the same. You trade the inconvenient UPDATE for an addi-
tional SELECT.

 A Hibernate annotation enables the same behavior:

@Entity
@org.hibernate.annotations.Entity(selectBeforeUpdate = true)
public class Item { ... }

Before you try to map a legacy scheme, note that the SELECT before an update
only retrieves the state of the entity instance in question. No collections or associ-
ated instances are eagerly fetched, and no prefetching optimization is active. If
you start enabling selectBeforeUpdate for many entities in your system, you’ll
probably find that the performance issues introduced by the nonoptimized
selects are problematic. A better strategy uses merging instead of reattachment.
Hibernate can then apply some optimizations (outer joins) when retrieving data-
base snapshots. We’ll talk about the differences between reattachment and merg-
ing later in the book in more detail.

 Let’s summarize our discussion of legacy data models: Hibernate offers several
strategies to deal with (natural) composite keys and inconvenient columns easily.
Before you try to map a legacy schema, our recommendation is to carefully exam-
ine whether a schema change is possible. In our experience, many developers
immediately dismiss database schema changes as too complex and time-consum-
ing and look for a Hibernate solution. This sometimes isn’t justified, and you

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

350 CHAPTER 8

Legacy databases and custom SQL

should consider schema evolution a natural part of your schema’s lifecycle. If
tables change, then a data export, some transformation, and an import may solve
the problem. One day of work may save many days in the long run.

 Legacy schemas often also require customization of the SQL generated by
Hibernate, be it for data manipulation (DML) or schema definition (DDL).

8.2 Customizing SQL

SQL started its life in the 1970s but wasn’t (ANSI) standardized until 1986.
Although each update of the SQL standard has seen new (and many controver-
sial) features, every DBMS product that supports SQL does so in its own unique
way. The burden of portability is again on the database application developers.
This is where Hibernate helps: Its built-in query mechanisms, HQL and the Cri-
teria API, produce SQL that depends on the configured database dialect. All
other automatically generated SQL (for example, when a collection has to be
retrieved on demand) is also produced with the help of dialects. With a simple
switch of the dialect, you can run your application on a different DBMS.

 To support this portability, Hibernate has to handle three kinds of operations:

■ Every data-retrieval operation results in SELECT statements being executed.
Many variations are possible; for example, database products may use a dif-
ferent syntax for the join operation or how a result can be limited to a par-
ticular number of rows.

■ Every data modification requires the execution of Data Manipulation Lan-
guage (DML) statements, such as UPDATE, INSERT, and DELETE. DML often
isn’t as complex as data retrieval, but it still has product-specific variations.

■ A database schema must be created or altered before DML and data
retrieval can be executed. You use Data Definition Language (DDL) to work
on the database catalog; it includes statements such as CREATE, ALTER, and
DROP. DDL is almost completely vendor specific, but most products have at
least a similar syntax structure.

Another term we use often is CRUD, for create, read, update, and delete. Hiber-
nate generates all this SQL for you, for all CRUD operations and schema definition.
The translation is based on an org.hibernate.dialect.Dialect implementa-
tion—Hibernate comes bundled with dialects for all popular SQL database man-
agement systems. We encourage you to look at the source code of the dialect
you’re using; it’s not difficult to read. Once you’re more experienced with

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Customizing SQL 351

Hibernate, you may even want to extend a dialect or write your own. For example,
to register a custom SQL function for use in HQL selects, you’d extend an existing
dialect with a new subclass and add the registration code—again, check the exist-
ing source code to find out more about the flexibility of the dialect system.

 On the other hand, you sometimes need more control than Hibernate APIs (or
HQL) provide, when you need to work on a lower level of abstraction. With Hiber-
nate you can override or completely replace all CRUD SQL statements that will be
executed. You can customize and extend all DDL SQL statements that define your
schema, if you rely on Hibernate’s automatic schema-export tool (you don’t have
to).

 Furthermore Hibernate allows you to get a plain JDBC Connection object at all
times through session.connection(). You should use this feature as a last resort,
when nothing else works or anything else would be more difficult than plain
JDBC. With the newest Hibernate versions, this is fortunately exceedingly rare,
because more and more features for typical stateless JDBC operations (bulk
updates and deletes, for example) are built-in, and many extension points for cus-
tom SQL already exist.

 This custom SQL, both DML and DDL, is the topic of this section. We start with
custom DML for create, read, update, and delete operations. Later, we integrate
stored database procedures to do the same work. Finally, we look at DDL customi-
zation for the automatic generation of a database schema and how you can create
a schema that represents a good starting point for the optimization work of a DBA.

 Note that at the time of writing this detailed customization of automatically
generated SQL isn’t available in annotations; hence, we use XML metadata exclu-
sively in the following examples. We expect that a future version of Hibernate
Annotations will include better support for SQL customization.

8.2.1 Writing custom CRUD statements

The first custom SQL you’ll write is used to load entities and collections. (Most of
the following code examples show almost the same SQL Hibernate executes by
default, without much customization—this helps you to understand the mapping
technique more quickly.)

Loading entities and collections with custom SQL
For each entity class that requires a custom SQL operation to load an instance, you
define a <loader> reference to a named query:

<class name="User" table="USERS">
 <id name="id" column="USER_ID"...

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

352 CHAPTER 8

Legacy databases and custom SQL

 <loader query-ref="loadUser"/>
 ...

</class>

The loadUser query can now be defined anywhere in your mapping metadata,
separate and encapsulated from its use. This is an example of a simple query that
retrieves the data for a User entity instance:

<sql-query name="loadUser">
 <return alias="u" class="User"/>
 select
 us.USER_ID as {u.id},
 us.FIRSTNAME as {u.firstname},
 us.LASTNAME as {u.lastname},
 us.USERNAME as {u.username},
 us."PASSWORD" as {u.password},
 us.EMAIL as {u.email},
 us.RANKING as {u.ranking},
 us.IS_ADMIN as {u.admin},
 us.CREATED as {u.created},
 us.HOME_STREET as {u.homeAddress.street},
 us.HOME_ZIPCODE as {u.homeAddress.zipcode},
 us.HOME_CITY as {u.homeAddress.city},
 us.DEFAULT_BILLING_DETAILS_ID as {u.defaultBillingDetails}
 from
 USERS us
 where
 us.USER_ID = ?
</sql-query>

As you can see, the mapping from column names to entity properties uses a sim-
ple aliasing. In a named loader query for an entity, you have to SELECT the follow-
ing columns and properties:

■ The primary key columns and primary key property or properties, if a com-
posite primary key is used.

■ All scalar properties, which must be initialized from their respective col-
umn(s).

■ All composite properties which must be initialized. You can address the
individual scalar elements with the following aliasing syntax: {entity-
alias.componentProperty.scalarProperty}.

■ All foreign key columns, which must be retrieved and mapped to the
respective many-to-one property. See the DEFAULT_BILLING_DETAILS_ID
example in the previous snippet.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Customizing SQL 353

■ All scalar properties, composite properties, and many-to-one entity refer-
ences that are inside a <join> element. You use an inner join to the
secondary table if all the joined properties are never NULL; otherwise, an
outer join is appropriate. (Note that this isn’t shown in the example.)

■ If you enable lazy loading for scalar properties, through bytecode instru-
mentation, you don’t need to load the lazy properties. See chapter 13, sec-
tion 13.1.6, “Lazy loading with interception.”

The {propertyName} aliases as shown in the previous example are not absolutely
necessary. If the name of a column in the result is the same as the name of a
mapped column, Hibernate can automatically bind them together.

 You can even call a mapped query by name in your application with ses-
sion.getNamedQuery("loadUser"). Many more things are possible with custom
SQL queries, but we’ll focus on basic SQL customization for CRUD in this section.
We come back to other relevant APIs in chapter 15, section 15.2, “Using native
SQL queries.”

 Let’s assume that you also want to customize the SQL that is used to load a col-
lection—for example, the items sold by a User. First, declare a loader reference
in the collection mapping:

<set name="items" inverse="true">
 <key column="SELLER_ID" not-null="true"/>
 <one-to-many class="Item"/>
 <loader query-ref="loadItemsForUser"/>
</set>

The named query loadItemsForUser looks almost the same as the entity loader:

<sql-query name="loadItemsForUser">
 <load-collection alias="i" role="User.items"/>
 select
 {i.*}
 from
 ITEM i
 where
 i.SELLER_ID = :id
</sql-query>

There are two major differences: One is the <load-collection> mapping from
an alias to a collection role; it should be self-explanatory. What is new in this query
is an automatic mapping from the SQL table alias ITEM i to the properties of all
items with {i.*}. You created a connection between the two by using the same
alias: the symbol i. Furthermore, you’re now using a named parameter, :id,

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

354 CHAPTER 8

Legacy databases and custom SQL

instead of a simple positional parameter with a question mark. You can use what-
ever syntax you prefer.

 Sometimes, loading an entity instance and a collection is better done in a sin-
gle query, with an outer join (the entity may have an empty collection, so you can’t
use an inner join). If you want to apply this eager fetch, don’t declare a loader ref-
erences for the collection. The entity loader takes care of the collection retrieval:

<sql-query name="loadUser">
 <return alias="u" class="User"/>
 <return-join alias="i" property="u.items"/>
 select
 {u.*}, {i.*}
 from
 USERS u
 left outer join ITEM i
 on u.USER_ID = i.SELLER_ID
 where
 u.USER_ID = ?
</sql-query>

Note how you use the <return-join> element to bind an alias to a collection
property of the entity, effectively linking both aliases together. Further note that
this technique also works if you’d like to eager-fetch one-to-one and many-to-one
associated entities in the original query. In this case, you may want an inner join if
the associated entity is mandatory (the foreign key can’t be NULL) or an outer join
if the target is optional. You can retrieve many single-ended associations eagerly in
one query; however, if you (outer-) join more than one collection, you create a
Cartesian product, effectively multiplying all collection rows. This can generate
huge results that may be slower than two queries. You’ll meet this limitation again
when we discuss fetching strategies in chapter 13.

 As mentioned earlier, you’ll see more SQL options for object loading later in
the book. We now discuss customization of insert, update, and delete operations,
to complete the CRUD basics.

Custom insert, update, and delete
Hibernate produces all trivial CRUD SQL at startup. It caches the SQL statements
internally for future use, thus avoiding any runtime cost of SQL generation for the
most common operations. You’ve seen how you can override the R of CRUD, so
let’s do the same for CUD.

 For each entity or collection, you can define custom CUD SQL statements
inside the <sql-insert>, <sql-delete>, and <sql-update> element, respectively:

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Customizing SQL 355

 <class name="User" table="USERS">

 <id name="id" column="USER_ID"...

 ...

 <join table="BILLING_ADDRESS" optional="true">
 <key column="USER_ID"/>
 <component name="billingAddress" class="Address">
 <property ...
 </component>

 <sql-insert>
 insert into BILLING_ADDRESS
 (STREET, ZIPCODE, CITY, USER_ID)
 values (?, ?, ?, ?)
 </sql-insert>

 <sql-update>...</sql-update>

 <sql-delete>...</sql-delete>

 </join>

 <sql-insert>
 insert into USERS (FIRSTNAME, LASTNAME, USERNAME,
 "PASSWORD", EMAIL, RANKING, IS_ADMIN,
 CREATED, DEFAULT_BILLING_DETAILS_ID,
 HOME_STREET, HOME_ZIPCODE, HOME_CITY,
 USER_ID)
 values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
 </sql-insert>

 <sql-update>...</sql-update>

 <sql-delete>...</sql-delete>

</class>

This mapping example may look complicated, but it’s really simple. You have two
tables in a single mapping: the primary table for the entity, USERS, and the second-
ary table BILLING_ADDRESS from your legacy mapping earlier in this chapter.
Whenever you have secondary tables for an entity, you have to include them in
any custom SQL—hence the <sql-insert>, <sql-delete>, and <sql-update>
elements in both the <class> and the <join> sections of the mapping.

 The next issue is the binding of arguments for the statements. For CUD SQL
customization, only positional parameters are supported at the time of writing.
But what is the right order for the parameters? There is an internal order to how
Hibernate binds arguments to SQL parameters. The easiest way to figure out the
right SQL statement and parameter order is to let Hibernate generate one for

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

356 CHAPTER 8

Legacy databases and custom SQL

you. Remove your custom SQL from the mapping file, enable DEBUG logging for
the org.hibernate.persister.entity package, and watch (or search) the
Hibernate startup log for lines similar to these:

AbstractEntityPersister - Insert 0: insert into USERS (FIRSTNAME,
 LASTNAME, USERNAME, "PASSWORD", EMAIL, RANKING, IS_ADMIN,
 CREATED, DEFAULT_BILLING_DETAILS_ID, HOME_STREET, HOME_ZIPCODE,
 HOME_CITY, USER_ID) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
AbstractEntityPersister - Update 0: update USERS set
 FIRSTNAME=?, LASTNAME=?, "PASSWORD"=?, EMAIL=?, RANKING=?,
 IS_ADMIN=?, DEFAULT_BILLING_DETAILS_ID=?, HOME_STREET=?,
 HOME_ZIPCODE=?, HOME_CITY=? where USER_ID=?
...

You can now copy the statements you want to customize into your mapping file
and make the necessary changes. For more information on logging in Hibernate,
refer to “Enabling logging statistics” in chapter 2, in section 2.1.3.

 You’ve now mapped CRUD operations to custom SQL statements. On the other
hand, dynamic SQL isn’t the only way how you can retrieve and manipulate data.
Predefined and compiled procedures stored in the database can also be mapped
to CRUD operations for entities and collections.

8.2.2 Integrating stored procedures and functions

Stored procedures are common in database application development. Moving
code closer to the data and executing it inside the database has distinct advantages.

 First, you don’t have to duplicate functionality and logic in each program that
accesses the data. A different point of view is that a lot of business logic shouldn’t
be duplicated, so it can be applied all the time. This includes procedures that
guarantee the integrity of the data: for example, constraints that are too complex
to be implemented declaratively. You’ll usually also find triggers in a database that
has procedural integrity rules.

 Stored procedures have advantages for all processing on large amounts of
data, such as reporting and statistical analysis. You should always try to avoid mov-
ing large data sets on your network and between your database and application
servers, so a stored procedure is a natural choice for mass data operations. Or, you
can implement a complex data-retrieval operation that assembles data with sev-
eral queries before it passes the final result to the application client.

 On the other hand, you’ll often see (legacy) systems that implement even the
most basic CRUD operations with a stored procedure. As a variation of this, sys-
tems that don’t allow any direct SQL DML, but only stored procedure calls, also
had (and sometimes still have) their place.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Customizing SQL 357

 You may start integrating existing stored procedures for CRUD or for mass data
operations, or you may begin writing your own stored procedure first.

Writing a procedure
Programming languages for stored procedures are usually proprietary. Oracle
PL/SQL, a procedural dialect of SQL, is very popular (and available with variations
in other database products). Some databases even support stored procedures writ-
ten in Java. Standardizing Java stored procedures was part of the SQLJ effort,
which, unfortunately, hasn’t been successful.

 You’ll use the most common stored procedure systems in this section: Oracle
databases and PL/SQL. It turns out that stored procedures in Oracle, like so many
other things, are always different than you expect; we’ll tell you whenever some-
thing requires extra attention.

 A stored procedure in PL/SQL has to be created in the database catalog as
source code and then compiled. Let’s first write a stored procedure that can load
all User entities that match a particular criterion:

<database-object>
 <create>
 create or replace procedure SELECT_USERS_BY_RANK
 (
 OUT_RESULT out SYS_REFCURSOR,
 IN_RANK in int
) as
 begin
 open OUT_RESULT for
 select
 us.USER_ID as USER_ID,
 us.FIRSTNAME as FIRSTNAME,
 us.LASTNAME as LASTNAME,
 us.USERNAME as USERNAME,
 us."PASSWORD" as PASSWD,
 us.EMAIL as EMAIL,
 us.RANKING as RANKING,
 us.IS_ADMIN as IS_ADMIN,
 us.CREATED as CREATED,
 us.HOME_STREET as HOME_STREET,
 us.HOME_ZIPCODE as HOME_ZIPCODE,
 us.HOME_CITY as HOME_CITY,
 ba.STREET as BILLING_STREET,
 ba.ZIPCODE as BILLING_ZIPCODE,
 ba.CITY as BILLING_CITY,
 us.DEFAULT_BILLING_DETAILS_ID
 as DEFAULT_BILLING_DETAILS_ID
 from
 USERS us

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

358 CHAPTER 8

Legacy databases and custom SQL

 left outer join
 BILLING_ADDRESS ba
 on us.USER_ID = ba.USER_ID
 where
 us.RANKING >= IN_RANK;
 end;
 </create>
 <drop>
 drop procedure SELECT_USERS_BY_RANK
 </drop>
</database-object>

You embed the DDL for the stored procedure in a <database-object> element
for creation and removal. That way, Hibernate automatically creates and drops
the procedure when the database schema is created and updated with the
hbm2ddl tool. You could also execute the DDL by hand on your database catalog.
Keeping it in your mapping files (in whatever location seems appropriate, such as
in MyStoredProcedures.hbm.xml) is a good choice if you’re working on a nonleg-
acy system with no existing stored procedures. We’ll come back to other options
for the <database-object> mapping later in this chapter.

 As before, the stored procedure code in the example is straightforward: a join
query against the base tables (primary and secondary tables for the User class)
and a restriction by RANKING, an input argument to the procedure.

 You must observe a few rules for stored procedures mapped in Hibernate.
Stored procedures support IN and OUT parameters. If you use stored procedures
with Oracle’s own JDBC drivers, Hibernate requires that the first parameter of the
stored procedure is an OUT; and for stored procedures that are supposed to be
used for queries, the query result is supposed to be returned in this parameter. In
Oracle 9 or newer, the type of the OUT parameter has to be a SYS_REFCURSOR. In
older versions of Oracle, you must define your own reference cursor type first,
called REF CURSOR—examples can be found in Oracle product documentation.
All other major database management systems (and drivers for the Oracle DBMS
not from Oracle) are JDBC-compliant, and you can return a result directly in the
stored procedure without using an OUT parameter. For example, a similar proce-
dure in Microsoft SQL Server would look as follows:

create procedure SELECT_USERS_BY_RANK
 @IN_RANK int
 as
 select
 us.USER_ID as USER_ID,
 us.FIRSTNAME as FIRSTNAME,
 us.LASTNAME as LASTNAME,

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Customizing SQL 359

 ...
 from
 USERS us
 where us.RANKING >= @IN_RANK

Let’s map this stored procedure to a named query in Hibernate.

Querying with a procedure
A stored procedure for querying is mapped as a regular named query, with some
minor differences:

<sql-query name="loadUsersByRank" callable="true">
 <return alias="u" class="User">
 <return-property name="id" column="USER_ID"/>
 <return-property name="firstname" column="FIRSTNAME"/>
 <return-property name="lastname" column="LASTNAME"/>
 <return-property name="username" column="USERNAME"/>
 <return-property name="password" column="PASSWD"/>
 <return-property name="email" column="EMAIL"/>
 <return-property name="ranking" column="RANKING"/>
 <return-property name="admin" column="IS_ADMIN"/>
 <return-property name="created" column="CREATED"/>
 <return-property name="homeAddress">
 <return-column name="HOME_STREET"/>
 <return-column name="HOME_ZIPCODE"/>
 <return-column name="HOME_CITY"/>
 </return-property>
 <return-property name="billingAddress">
 <return-column name="BILLING_STREET"/>
 <return-column name="BILLING_ZIPCODE"/>
 <return-column name="BILLING_CITY"/>
 </return-property>
 <return-property name="defaultBillingDetails"
 column="DEFAULT_BILLING_DETAILS_ID"/>
 </return>
 { call SELECT_USERS_BY_RANK(?, :rank) }
</sql-query>

The first difference, compared to a regular SQL query mapping, is the call-
able="true" attribute. This enables support for callable statements in Hibernate
and correct handling of the output of the stored procedure. The following map-
pings bind the column names returned in the procedures result to the properties
of a User object. One special case needs extra consideration: If multicolumn
properties, including components (homeAddress), are present in the class, you
need to map their columns in the right order. For example, the homeAddress
property is mapped as a <component> with three properties, each to its own

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

360 CHAPTER 8

Legacy databases and custom SQL

column. Hence, the stored procedure mapping includes three columns bound to
the homeAddress property.

 The call of the stored procedure prepares one OUT (the question mark) and a
named input parameter. If you aren’t using the Oracle JDBC drivers (other driv-
ers or a different DBMS), you don’t need to reserve the first OUT parameter; the
result can be returned directly from the stored procedure.

 Look at the regular class mapping of the User class. Notice that the column
names returned by the procedure in this example are the same as the column
names you already mapped. You can omit the binding of each property and let
Hibernate take care of the mapping automatically:

<sql-query name="loadUsersByRank" callable="true">
 <return class="User"/>
 { call SELECT_USERS_BY_RANK(?, :rank) }
</sql-query>

The responsibility for returning the correct columns, for all properties and for-
eign key associations of the class with the same names as in the regular mappings,
is now moved into the stored procedure code. Because you have aliases in the
stored procedure already (select ... us.FIRSTNAME as FIRSTNAME...), this is
straightforward. Or, if only some of the columns returned in the result of the pro-
cedure have different names than the ones you mapped already as your proper-
ties, you only need to declare these:

<sql-query name="loadUsersByRank" callable="true">
 <return class="User">
 <return-property name="firstname" column="FNAME"/>
 <return-property name="lastname" column="LNAME"/>
 </return>
 { call SELECT_USERS_BY_RANK(?, :rank) }
</sql-query>

Finally, let’s look at the call of the stored procedure. The syntax you’re using
here, { call PROCEDURE() }, is defined in the SQL standard and portable. A non-
portable syntax that works for Oracle is begin PROCEDURE(); end;. It’s recom-
mended that you always use the portable syntax. The procedure has two
parameters. As explained, the first is reserved as an output parameter, so you use a
positional parameter symbol (?). Hibernate takes care of this parameter if you
configured a dialect for an Oracle JDBC driver. The second is an input parameter
you have to supply when executing the call. You can either use only positional
parameters or mix named and positional parameters. We prefer named parame-
ters for readability.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

Customizing SQL 361

 Querying with this stored procedure in the application looks like any other
named query execution:

Query q = session.getNamedQuery("loadUsersByRank");
q.setParameter("rank", 12);
List result = q.list();

At the time of writing, mapped stored procedures can be enabled as named que-
ries, as you did in this section, or as loaders for an entity, similar to the loadUser
example you mapped earlier.

 Stored procedures can not only query and load data, but also manipulate data.
The first use case for this is mass data operations, executed in the database tier.
You shouldn’t map this in Hibernate but should execute it with plain JDBC: ses-
sion.connection().prepareCallableStatement(); and so on. The data-manip-
ulation operations you can map in Hibernate are the creation, deletion, and
update of an entity object.

Mapping CUD to a procedure
Earlier, you mapped <sql-insert>, <sql-delete>, and <sql-update> elements
for a class to custom SQL statements. If you’d like to use stored procedures for
these operations, change the mapping to callable statements:

<class name="User">
 ...

 <sql-update callable="true" check="none">
 { call UPDATE_USER(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) }
 </sql-update>

</class>

With the current version of Hibernate, you have the same problem as before: the
binding of values to the positional parameters. First, the stored procedure must
have the same number of input parameters as expected by Hibernate (enable the
SQL log as shown earlier to get a generated statement you can copy and paste).
The parameters again must be in the same order as expected by Hibernate.

 Consider the check="none" attribute. For correct (and, if you enabled it) opti-
mistic locking, Hibernate needs to know whether this custom update operation
was successful. Usually, for dynamically generated SQL, Hibernate looks at the
number of updated rows returned from an operation. If the operation didn’t or
couldn’t update any rows, an optimistic locking failure occurs. If you write your
own custom SQL operation, you can customize this behavior as well.

 With check="none", Hibernate expects your custom procedure to deal inter-
nally with failed updates (for example, by doing a version check of the row that

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

362 CHAPTER 8

Legacy databases and custom SQL

needs to be updated) and expects your procedure to throw an exception if some-
thing goes wrong. In Oracle, such a procedure is as follows:

<database-object>
 <create>
 create or replace procedure UPDATE_USER
 (IN_FIRSTNAME in varchar,
 IN_LASTNAME in varchar,
 IN_PASSWORD in varchar,
 ...
)
 as
 rowcount INTEGER;
 begin

 update USERS set
 FIRSTNAME = IN_FIRSTNAME,
 LASTNAME = IN_LASTNAME,
 "PASSWORD" = IN_PASSWORD,
 where
 OBJ_VERSION = ...;

 rowcount := SQL%ROWCOUNT;
 if rowcount != 1 then
 RAISE_APPLICATION_ERROR(-20001, 'Version check failed');
 end if;

 end;

 </create>
 <drop>
 drop procedure UPDATE_USER
 </drop>
</database-object>

The SQL error is caught by Hibernate and converted into an optimistic locking
exception you can then handle in application code. Other options for the check
attribute are as follows:

■ If you enable check="count", Hibernate checks the number of modified
rows using the plain JDBC API. This is the default and used when you write
dynamic SQL without stored procedures.

■ If you enable check="param", Hibernate reserves an OUT parameter to get
the return value of the stored procedure call. You need to add an additional
question mark to your call and, in your stored procedure, return the row
count of your DML operation on this (first) OUT parameter. Hibernate then
validates the number of modified rows for you.

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56
Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

Customizing SQL 363

Mappings for insertion and deletion are similar; all of these must declare how
optimistic lock checking is performed. You can copy a template from the Hiber-
nate startup log to get the correct order and number of parameters.

 Finally, you can also map stored functions in Hibernate. They have slightly dif-
ferent semantics and use cases.

Mapping stored functions
A stored function only has input parameters—no output parameters. However, it
can return a value. For example, a stored function can return the rank of a user:

<database-object>
 <create>
 create or replace function GET_USER_RANK
 (IN_USER_ID int)
 return int is
 RANK int;
 begin
 select
 RANKING
 into
 RANK
 from
 USERS
 where
 USER_ID = IN_USER_ID;

 return RANK;
 end;
 </create>
 <drop>
 drop function GET_USER_RANK
 </drop>
</database-object>

This function returns a scalar number. The primary use case for stored functions
that return scalars is embedding a call in regular SQL or HQL queries. For exam-
ple, you can retrieve all users who have a higher rank than a given user:

String q = "from User u where u.ranking > get_user_rank(:userId)";
List result = session.createQuery(q)
 .setParameter("userId", 123)
 .list();

This query is in HQL; thanks to the pass-through functionality for function calls in
the WHERE clause (not in any other clause though), you can call any stored func-
tion in your database directly. The return type of the function should match the

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

364 CHAPTER 8

Legacy databases and custom SQL

operation: in this case, the greater-than comparison with the ranking property,
which is also numeric.

 If your function returns a resultset cursor, as in previous sections, you can
even map it as a named query and let Hibernate marshal the resultset into an
object graph.

 Finally, remember that stored procedures and functions, especially in legacy
databases, sometimes can’t be mapped in Hibernate; in such cases you have to fall
back to plain JDBC. Sometimes you can wrap a legacy stored procedure with
another stored procedure that has the parameter interface expected by Hiber-
nate. There are too many varieties and special cases to be covered in a generic
mapping tool. However, future versions of Hibernate will improve mapping capa-
bilities—we expect better handling of parameters (no more counting of question
marks) and support for arbitrary input and output arguments to be available in
the near future.

 You’ve now completed customization of runtime SQL queries and DML. Let’s
switch perspective and customize the SQL used for the creation and modification
of the database schema, the DDL.

Dottie
Text Box
Excerpt from Chapter 8 of Java Persistence with Hibernate (2nd Edition of Hibernate in Action)

http://www.manning.com/affiliate/idevaffiliate.php?id=221_56

