

Effective Memory Utilization for Reliable,
High-Performance Java™ Applications

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

2

BIO:... 2
Intro .. 3
Traditional Memory-Related Problems in C/C++.. 3
New Memory-Related Problems in Java ... 4
Optimizing Java Memory Utilization .. 6
Summary .. 15

BIO:
Daniel F. Savarese is a developer of enterprise Java applications. He has worked as a
senior scientist at the California Institute of Technology and director of Java product
development at ORO, Inc. Daniel is the original author of the Jakarta-ORO text processing
packages and the NetComponents network protocol library. He is also a co-author of How
to Build a Beowulf. Daniel can be reached at dfs@savarese.org.

mailto:dfs@savarese.org

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

3

Intro
Java has greatly simplified application development and deployment through its cross-
platform virtual machine, object-oriented semantics, language-intrinsic thread model, and
garbage-collected memory management. These features have contributed to greater
programmer productivity and more reliable software. With distributed computing and Web
application support in the form of Remote Method Invocation (RMI), servlets, JavaServer
Pages (JSP), and Enterprise JavaBeans (EJB), Java has become a preferred implementation
technology for enterprise computing and server-side components of Web applications. As
Java becomes adopted increasingly more often for mission-critical tasks and interactive
services requiring long up-times and high availability, such as e-commerce applications, it
becomes even more important to ensure that your Java applications maintain a high level
of performance.

Even though Java accelerates the software development process and increases application
stability by relieving programmers from the error-prone task of explicit memory
management required by languages such as C and C++, it still requires careful
programming to maximize application performance and scalability. Server-side
applications tend to be long-lived, allocating and releasing resources many times over their
lifetimes. These resources include file descriptors, network and database connections, but
primarily memory. Frequent memory allocation and deallocation can adversely affect
application performance simply because doing so expends extra CPU cycles, sometimes
making a system call to the operating system kernel and incurring a potentially adverse
temporal overhead. The temporal costs of memory allocation can be especially detrimental
to applications that require fast response times or need to scale to serve large numbers of
clients. Java application components, in the form of servlets, JSPs, and EJBs, tend to be
long-lived and are especially vulnerable to this problem because Java naturally encourages
on-demand object instantiation over more complicated object creation strategies such as
object pooling.

Traditional Memory-Related Problems in C/C++
Java memory management is inherently different from that of C/C++ and requires different
optimization techniques, even though it is susceptible to some of the same general failings,
including memory leaks. C and C++ require a much greater intimacy with memory
management on the part of the programmer. Dynamically allocated memory is divided into
two regions: the stack and the heap. The stack is a contiguous region of memory that is
used to store activation records or function call frames. Every time you call a method or
function, a call frame is pushed onto the stack, containing saved registers, function
parameters, a return stack pointer, and local variables. This memory allocation is managed
for you by the compiler and the operating system. The compiler generates the machine
instructions that create the activation records and increment the stack pointer and the
operating system handles stack overflows by either dynamically increasing the process

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

4

stack size or aborting the program with a stack overflow error. Programmers have to make
sure they do not create excessively large local objects, else they will consume all of the
available stack space.

Large objects are typically allocated on the heap, a global pool of memory available to a
program for dynamic object creation. The C malloc and free functions and the C++
new and delete operators allow programmers to explicitly allocate and release heap
memory, referencing it with pointers. Where stack-allocated memory is automatically
released immediately upon the return of a function, heap memory is not released until the
programmer explicitly does so. If a programmer is not careful to release memory after it is
no longer needed, the heap space available to a program can gradually decrease in size.
This is commonly referred to as a memory leak. Eventually, if a program continues to leak
memory, system performance will degrade, sometimes to unusable levels. To minimize
this risk, C++ object classes can implement destructors, special methods that are invoked
when an object is destroyed. Destructors are used to clean up after an object, usually
releasing all memory that was dynamically allocated by the object. Stack-allocated local
objects have their destructors automatically invoked at the end of their scope, such as at the
end of a method call. The destructors of heap-allocated objects are invoked when their
memory is explicitly deallocated with the delete operator. Destructors have to be
implemented by the programmer, an often difficult task given the complicated links objects
can form to other objects. For example, a hash table may not only contain a dynamically
allocated array, but also many linked lists that contain objects with yet more pointers to
other objects. The invocation of a single object's destructor can cause a chain of other
destructors to be invoked. This is not only potentially expensive in terms of CPU cycles,
but also creates extra opportunities for memory leaks to emerge.

The heap is divided into blocks that are parceled out to a program depending on the size of
memory requested. Individual memory allocations must be contiguous. Therefore, when
many small memory allocations have been made, it becomes more difficult to allocate a
larger contiguous block. The heap is said to become fragmented when this happens. It is
not always possible to rearrange the heap in order to coalesce small free blocks to satisfy a
large memory request because C++ pointers reference physical memory. If the memory
allocation system were to move allocated memory around, it would have to update the
values of all the pointers to that memory, which is not possible in a C++ program. It is,
however, possible to rearrange unallocated contiguous memory blocks in order to satisfy
memory requests. The more fragmented memory becomes, the more difficult and time-
consuming it is to do this.

New Memory-Related Problems in Java
Java solves the difficulties of managing memory use present in C++ by taking it largely out
of the hands of programmers. Java does not allow programs to contain pointers to physical
memory. Instead it only allows references to objects whose physical memory locations
cannot be determined from within a program. A reference can be thought of as a handle to

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

5

an object. Even though you can directly create objects with the Java new operator, only an
indirect reference to the object is returned rather than a physical memory address. This
allows the Java runtime system to rearrange memory at will without disrupting a program's
data relationships. It also allows the Java runtime to track all references to objects and
detect when an object is no longer reachable by a program accessible reference. If an
object becomes unreachable, it becomes eligible to have its memory reclaimed.
Unreachable objects are called garbage, which is why automatic memory reclamation is
called garbage collection. A resulting difference between Java and C++ memory
management is that in C++ both allocations and deallocations are synchronous, whereas in
Java only allocations are synchronous because deallocations are handled asynchronously
by a low-priority garbage-collection thread.

It might seem, then, that it is not possible to leak memory in Java because the garbage
collector always releases memory when it is no longer in use. This is not quite the case
because it is possible to retain references to unused memory in a program. It is common for
this to happen when caching data. A frequently used idiom in Java programs is to store
references to data inside of container objects, often using a Hashtable or HashMap. Even
when the keys and values inside a container are no longer being used, so long as a
reference to the container remains, those keys and values will never become eligible for
garbage collection. Recognizing this problem, the Java 2 Platform introduced the
java.lang.ref package, which includes support for weak references (the references
discussed up to this point are strong references). In simple terms, an object that is only
referenced by weak references may be garbage collected. Programs that leak memory by
using a hash table for caching purposes can instead use a WeakHashMap to ensure that
keys and their associated values are released when they are no longer needed. It is also
possible to remove references to objects as soon as they are no longer needed by assigning
a null value to their reference variables. This can make an object eligible for garbage
collection earlier than it might have otherwise in the normal course of program execution.
It can sometimes be helpful to apply this technique to long-running threads and methods.

Leaking memory is not the only pitfall that can plague Java programs. In Java, each thread
is assigned its own private stack, similar in principle to a C runtime stack. However, Java
stack memory does not have to be contiguous and can therefore be heap-allocated.
Furthermore, all user-defined object class instantiation, as well as array creation, occurs on
the heap. It is not possible to declare automatic stack-allocated variables of non-primitive
type. Therefore, every time you create an object you affect the structure of the heap.
Excessive object creation can lead to memory fragmentation. Unlike C++, the Java
garbage collector can coalesce arbitrary free blocks in the heap. But this comes at a price.
The garbage collector can stall your entire application if it needs to significantly rearrange
the heap. This will happen when a program uses too much memory at one time. In many
cases, a program only needs to use a fraction of the memory it has allocated at any given
time. The garbage collector must also work harder when objects are constantly being
allocated, used for a short time, and then unreferenced. Sometimes it can be more
advantageous to pre-allocate a set of objects at application start time and reuse them in a

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

6

programmer-managed object pool rather than repeatedly reallocating them from the heap.
This can reduce the temporal cost of object creation and also reduce the frequency with
which the garbage collection thread must interfere with your application.

Optimizing Java Memory Utilization
Deciding what memory-use optimization strategies to apply in a program is impossible to
do without knowledge of the program's memory-use characteristics. Different applications
have different memory-use requirements and cannot necessarily be optimized in the same
ways. The DevPartner Memory Profiler, part of the NuMega DevPartner Java Edition
application profiling and analysis suite, provides the essential data for understanding how
your Java applications use memory and its impact on performance. The Memory Profiler
instruments compiled class files and executes them in a virtual machine of your choice.
Sun JDKs 1.2 and higher are supported as well as Microsoft VM for Java 4.79.2339 and
higher. The instrumentation code allows the Memory Profiler to record the memory use of
every object and method in an application. The data for a run, called a session, can be
saved for later analysis, comparison with results from running other versions of the code,
or sharing with other developers working on the application. Multiple sessions can be
grouped into a project so that you can preserve an entire record of the memory-use
characteristics of successive versions of an application.

The DevPartner Memory Profiler is capable of profiling Java applications and components
such as Servlets, JSPs and EJBs in a server environment, but for this illustration we will
use the Memory Profiler’s GUI on a development workstation. Begin by opening the
application from the File menu by selecting the class file containing the main method
from the open file dialog. Finally run the application by selecting Start from the Program
menu. Code listing 1 shows a sample program with some memory-use problems. Figures 1
and 2 show the results of a Memory Profiler run for the program.

Code Listing 1

import java.util.*;

public class Element {
private String open, end;
private ArrayList elements;

public Element(String content) {
end = null;
open = content;
elements = null;

}

public Element(String openTag, String endTag) {
open = openTag;
end = endTag;
elements = new ArrayList();

}

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

7

public void add(Element element) {
elements.add(element);

}

public String toString() {
if(elements == null)

return open;

StringBuffer buffer = new StringBuffer();
Iterator iterator;

buffer.append(open);
buffer.append('\n');

iterator = elements.iterator();

while(iterator.hasNext()) {
Element element;

element = (Element)iterator.next();

buffer.append(element.toString());
buffer.append('\n');

}

buffer.append(end);

return buffer.toString();
}

}

public class MakeDocument {
public static final void main(String[] args) {

Element html = new Element("<html>", "</html>");
Element title = new Element("<title>", "</title>");
Element body = new Element("<body>", "</body>");
Element paragraph = new Element("<p>", "</p>");

title.add(new Element("The Lord of the Rings"));
paragraph.add(new Element(

"When Mr. Bilbo Baggins of Bag End announced ..."));
body.add(paragraph);
html.add(title);
html.add(body);

/* Simulate repeated output generation. */
for(int i=0; i < 10; ++i)
System.out.println(html);

}
}

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

8

Figure 1

The example program in listing 1, although simplified, is representative of the types of
operations frequently performed by servlets and JavaServer Pages. They often create
HTML or XML output from document tree hierarchies. The example program uses a
generic Element class to represent the elements of an HTML document, but a more
complex HTML generation library would be used in reality. The fundamental approach to
generating output is the same, though, using a depth -first tree traversal. Looking at figure
1, you will notice that the Memory Profiler has generated a listing of all the method calls
made by the program, the number of times each was called, and the amount of memory
used by each. When looking for memory problems, you will usually want to zero in on the
methods that are called the most times or use the most memory. Frequently called methods
deserve attention because they may unnecessarily allocate objects on each call, even if they
do not use inordinate amounts of memory. Methods that use a lot of memory should be
investigated because they may not need to use as much memory or they may be a source of
memory leaks.

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

9

Figure 2

Figures 1 and 2 show us that Element.toString() is called the most times and uses the most
memory, so it deserves close inspection. Figure 1 shows the Function List view, which
summarizes method call memory use on a global basis for the entire life of the application.
Figure 2 shows the Source Code view, which provides memory use statistics on a line by
line basis for the application code. It is clear from looking at Element.toString() that it
allocates a new StringBuffer on every call. Even though our example program only
simulates the reuse of Element objects by repeatedly printing the same document, a real
servlet would reuse its Element objects to dynamically create different documents. The
frequent toString() calls would quickly create a lot of garbage for the garbage collector to
clean up, interfering with program execution. It would be more appropriate to use a single
StringBuffer member instance such as is done in a refined implementation of the Element
class shown in listing 2.

Code Listing 2

import java.util.*;

public class Element {
private String open, end;
private ArrayList elements;
private StringBuffer buffer;

public Element(String content) {
end = null;

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

10

open = content;
elements = null;
buffer = null;

}

public Element(String openTag, String endTag) {
open = openTag;
end = endTag;
elements = new ArrayList();
buffer = new StringBuffer();

}

public void add(Element element) {
elements.add(element);

}

public String toString() {
if(elements == null)

return open;

Iterator iterator;

buffer.setLength(0);
buffer.append(open);
buffer.append('\n');

iterator = elements.iterator();

while(iterator.hasNext()) {
Element element;

element = (Element)iterator.next();

buffer.append(element.toString());
buffer.append('\n');

}

buffer.append(end);

return buffer.toString();
}

}

In the new version of the toString() method, the StringBuffer is only allocated once, when
the object is created, and reused every time the method is called. Running this version of
the code through the Memory Profiler shows a 35% improvement in memory utilization.
Figure 3 shows the results. Where the first version of the code used a total of 19,972 bytes,
the second version uses 13,000 bytes. However, we find that the toString() method still
dominates overall memory use. This is because we still associate a StringBuffer with every
Element and convert each StringBuffer to a String before appending it to a parent
Element's StringBuffer. This is clearly wasteful, but the observation allows us to refine our
program even further until we reach the version in listing 3.

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

11

Figure 3

Code Listing 3

import java.util.*;

public class Element {
private String open, end;
private ArrayList elements;

public Element(String content) {
end = null;
open = content;
elements = null;

}

public Element(String openTag, String endTag) {
open = openTag;
end = endTag;
elements = new ArrayList();

}

public void add(Element element) {
elements.add(element);

}

public void makeDocument(StringBuffer buffer) {

if(elements == null) {
buffer.append(open);
return;

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

12

}

Iterator iterator;

buffer.append(open);
buffer.append('\n');

iterator = elements.iterator();

while(iterator.hasNext()) {
Element element;

element = (Element)iterator.next();

element.makeDocument(buffer);
buffer.append('\n');

}

buffer.append(end);
}

}

public class MakeDocument {
public static final void main(String[] args) {

Element html = new Element("<html>", "</html>");
Element title = new Element("<title>", "</title>");
Element body = new Element("<body>", "</body>");
Element paragraph = new Element("<p>", "</p>");
StringBuffer buffer = new StringBuffer(128);

title.add(new Element("The Lord of the Rings"));
paragraph.add(new Element(

"When Mr. Bilbo Baggins of Bag End announced ..."));
body.add(paragraph);
html.add(title);
html.add(body);

/* Simulate repeated output generation. */
for(int i=0; i < 10; ++i) {
buffer.setLength(0);
html.makeDocument(buffer);
System.out.println(buffer);

}
}

}

In this last version of our program, we no longer use the toString() method and have
optimized the code to use a single StringBuffer. The Memory Profiler revealed that by
using multiple StringBuffer objects that are converted to Strings before appending them to
yet another StringBuffer consumed extra memory. This time, the caller of the document-
generating method makeDocument() must provide a StringBuffer that is used by all the
other makeDocument() calls during the depth-first document traversal. Running this last
version of the program through the Memory Profiler yields the results in figure 4, which
indicate that memory use is now almost a factor of 3 smaller than in the second version of
the code and almost a factor of 4.5 smaller than the original version of the code. Even
though this example is artificial in certain respects, it demonstrates the dramatic

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

13

improvements you can make to the memory-use of applications with just a few small
changes. The key to knowing which changes to make is to use the Memory Profiler to
understand how your programs use memory.

Figure 4

In some ways, efficient memory management techniques appear to go against the grain of
object-oriented programming. The first version of our example program is probably the
most natural to write since it restricts member variables to those that are absolutely
necessary and cleanly encapsulates document generation in the toString() method. The last
version appears more fragile. It mandates a contract that makeDocument() will only
append to its StringBuffer parameter and not destroy any data that it already contains. The
caller of the method must trust that the method will behave itself. In the original toString()
method, there is no risk of overwriting data because it maintains complete control over
result generation, returning an immutable String. In truth, both approaches are object-
oriented and simply demonstrate an ease of use tradeoff driven by memory optimization
requirements.

Java encourages the creation of object on demand because many of the core APIs do not
have setter methods, only allowing their state to be set at the time of creation in a
constructor. The tendency, then, is to create objects exactly when you need them rather
than create a single object or pool of objects that you reuse. There are ways of avoiding
this tendency and improving memory use as a result. In the case of immutable objects like

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

14

the String class, try to use mutable objects like StringBuffers or a char array instead until
you absolutely need to convert a result into a String. When you define your own classes,
don't restrict object state initialization to the arguments passed to a constructor. Also
provide a zero-argument constructor that creates reasonable default values and include
setter methods or an init method to allow objects of that class to be reused. Take
java.awt.Color for example. It only contains argument-based constructors and no setter
methods. This means the only way you can use the Color class to any effect is to
repeatedly instantiate it whenever you need a new color rather than simply alter the values
of a pre-existing Color object with a setRGB() method. If you have to wrap primitive
types, such as an int, in a class for the purpose of creating a reference to it, such as is
necessary to store a value in a container class, define your own wrapper class instead of
using java.lang.Integer. Only use the primitive wrapper classes in the java.lang package
when you really need a read-only value or need to serialize an object. The wrapper classes
do not define setter methods and can therefore not be reused. In addition, if you need to
create many instances of a wrapper class like Integer, consider writing your algorithm to
accept primitive types. Otherwise you run the risk of incurring unacceptably large memory
costs. Let's say you want to store thousands of integers in a priority queue using an
inverted heap structure. You could implement the data structure to store references to
Integer types or primitive int types. Using primitive ints will save you from allocating an
Integer every time a value is added to or removed from the priority queue, assuming the
underlying representation of the queue is an array. This can save up to hours of CPU time
when amortized over the lifetime of a long-running application.

You can often hide the details of memory optimization by using careful object-oriented
design. Rather than allocating objects explicitly with the new operator, you can let a
factory class create them for you. The factory class might implement an object pool, hiding
the details of memory optimization from the core program logic. This technique is similar
to both thread pooling and database connection pooling, which are applied to avoid the
overhead of creating new threads and re-establishing database connections. Object pools
can be implemented in different ways depending on the aspect of memory management
that requires optimization in an application. When strictly seeking to avoid the latency of
object creation in time-critical portions of code, an object pool may allocate many objects
at application start-up to be able to satisfy object creation requests quickly. When the
emphasis is more on keeping garbage collection to a minimum and avoiding the global
cost of memory allocation across the entire application lifetime, rather than just optimizing
localized allocations, a lazy allocation object pool can be implemented. A lazy allocation
pool starts off with a few pre-allocated objects or none at all and gradually increases the
number of objects in the pool as they are requested. This approach tries to keep memory
use below an upper bound equal to the maximum number of objects concurrently in use by
an application during its lifetime. Object pools themselves can be sources of memory leaks
and are candidates for implementation with weak references. They also trade away ease of
use by requiring programmers to indicate when they have finished using an object. In
database connection pools this is easy to detect because close() will be called when a
database connection is no longer needed. Generic object-pools will require that poolable

Copyright © 2000 Compuware Corporation. All rights reserved. NuMega and DevPartner are
trademarks of Compuware Corporation. Sun, Solaris, Java and all Java-based marks are trademarks
of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are property
of their respective owners.

15

objects implement an interface containing a release() method that is called when the object
can be returned to the pool.

Summary
Maximizing the performance of your applications can be a daunting task. Complex server
applications will contain many classes that can interact in unpredictable ways. Simply
looking at source code and guessing at a classes' runtime behavior when looking for ways
to improve performance can be a time-consuming task that leads down many blind alleys.
Useful performance optimization requires empirical data that describes the runtime
behavior of an entire application. Without performance data, you may inadvertently
concentrate effort at optimizing object methods that are rarely used. Performance data
keeps you from making guesses and guides you to improve the most important sections of
your code. The DevPartner Memory Profiler provides the necessary data to learn how your
applications use memory and where to concentrate your efforts in improving program
performance. However, it does not do the entire job for you. It is up to you to decide what
memory-use optimization techniques are most appropriate for your application. The
Memory Profiler will point out object methods and lines of code that allocate a lot of
memory or are invoked frequently over the life of a program. This can help you track down
memory leaks and allocation hotspots that may be fragmenting the heap. Some algorithms
are always going to be memory intensive and cannot be optimized beyond a certain limit.
Others my not require a lot of memory, but can be made to run faster by using more
memory. Some sorting algorithms fall into this category. Ultimately, the responsibility of
analyzing your programs rests on your shoulders. Equipped with the right tools, you will
be better able to reach the right conclusions and write more efficient programs.

Code Online:
All the code in this article is available for free at http://www.java-pro.com/. Use the
Locator+ codes shown below to download the code. Free online registration is required.
See the Online Resources box in “Letters to the Editor” for more information.
Article Title
Registered Locator+: JPmmyy
Premier Locator+: JPmmyyxx

http://www.java-pro.com/

	BIO:
	Intro
	Traditional Memory-Related Problems in C/C++
	New Memory-Related Problems in Java
	Optimizing Java Memory Utilization
	Summary

