
Decentralized Jini Security

Pasi Eronen and Pekka Nikander
Helsinki University of Technology

{pasi.eronen, pekka.nikander}@hut.fi

Abstract

Among the different approaches to distributed computing,
the Jini technology provides a number of very promising
methods for attacking the fundamental problems involved.
Programs built according to the Jini principles will be able
to function and survive in highly dynamic network environ-
ments, allowing applications to adapt their behaviour to
the requirements of the current context. Unfortunately, the
security problems that are bound to be present in any large
scale deployment of Jini are not adequately addressed by
either the current revisions of Jini technology or the un-
derlying Java security solutions. In particular, the solu-
tions proposed so far are either bound to a specific com-
munication protocol—thereby hampering the protocol in-
dependence of Jini—or rely on centralized security servers,
thereby losing the benefits of the ad hoc nature of Jini.

In this paper, we present results of our research that act
as stepping stones towards a fully decentralized, complete
Jini security architecture. In particular, we describe our
experimental implementation that separates the Java 2 ac-
cess permissions of Jini clients, service proxies, and ser-
vices, while allowing natural delegation of Java 2 permis-
sions between Jini enabled devices. Our solution integrates
seamlessly to the underlying Java 2 security, and allows all
of Jini’s benefits to be utilized in a secure way.

1 Introduction

Distributed computing is fundamentally different from cen-
tralized computing. The usually mentioned four major dif-
ferences include latency, memory access, partial failures,
and concurrency (e.g. [35]). Security should definitely be
added to this list, since a distributed system requires cryp-
tography to be used while a centralized system may survive
without it. While many of the approaches to distributed
computing attempt to mask out some of these problems, the
Jini approach mostly does not. Instead, it aims at providing
tools and methods for effectively building software that ad-
equately addresses these differences and is able to survive
in the face of problems caused by distribution. [1]

The fundamental differences become especially appar-
ent when considering the future ad hoc networks and other
loosely coupled systems. These systems, by nature, are not
only distributed but alsodecentralized. That is, a genuine
ad hoc network does not have any centralized services but
all the network services are configured and created on the
fly. In the security area, the underlying mechanisms stay
more or less the same to what is used in centralized sys-
tems, but the trust and infrastructure assumptions change
altogether, requiring different kinds of solutions (cf. [29]).

In this paper, we present a fully decentralized network se-
curity architecture for Jini, and describe a prototype imple-
mentation of the architecture. The architecture builds upon
our earlier work on trust management [25] and distributed
Jini security [12]. The implementation is integrated to the
Java 2 security model, augmenting and utilizing the secu-
rity services provided by the Java 2 security architecture
[15] and the Java Socket Security Extension (JSSE) [33].
In the future, we plan to look at how to integrate our exten-
sions to the Java Authentication and Authorization Service
(JAAS) [21] and to the RMI Security Extension [32]. Our
solution is fully compatible with the Jini architecture and
assumptions, and does not require any centralized security
services. It makes a clean distinction between the access
rights of client applications and service proxies, and pro-
vides a means of delegating Java 2 security permissions be-
tween Jini clients, services proxies, and services. These and
other aspects of our solution are discussed in detail later in
this paper.

The rest of this paper is organized as follows. First, in the
rest of this section, we briefly describe the central concepts
of trust management and the Jini architecture. After that, in
Section 2, we provide a brief taxonomy of Jini related se-
curity requirements and a number of related design aspects.
Section 3 discusses our design choices and outlines the ar-
chitecture of our solution, and Section 4 describes the im-
plementation, including some performance measurements.
Related work is briefly discussed in Section 5, and Section
6 evaluates our approach in the light of the alternative so-
lutions. We also give some ideas for future work. Finally,
Section 7 contains our conclusions from this research.



1.1 Decentralized trust management

Traditionally, security has been based on identity authenti-
cation and locally stored access control lists (ACLs). This
has been the case even in distributed systems. However,
that approach has a number of drawbacks, including, for
example, the problem of protecting the operations that are
needed for managing access control lists remotely. In [5]
Blaze et al. argue that “the use of identity-based public-
key systems in conjuction with ACLs are inadequate so-
lutions to distributed (and programmable) system-security
problems.”

An alternative solution, termedtrust management, uses a
set of unified mechanisms for specifying both security poli-
cies and security credentials. Basically, trust management
usually involves signed statements (certificates) about what
principals (users) are allowed to do, instead of traditional
name certificates which just bind a public key to a name.
Examples of trust management systems include the Policy-
Maker, which originally introduced the term trust manage-
ment [6], its continuations KeyNote and KeyNote2 [4], and
in some respects, SPKI [11] and its applications, including
TeSSA [23].

1.2 Introduction to Jini

The Jini programming model provides a set basic build-
ing blocks for distributed applications: distributed events,
transactions, leases, and downloadable proxies. These
don’t try to hide the fact that networks are unreliable, and
the approach, in general, encourages building more fault-
tolerant applications [26, 35].

The building blocks are used in the centerpiece of Jini,
the lookup service, which is a directory where service
providers register themselves and clients search for what
they need. For example, when a service registers itself
with a lookup service, it receives aleaseon the registration,
with an expiration date. If the service doesn’t renew the
lease before it expires—for example, the service is discon-
nected from the network— the registration is automatically
cleaned from the lookup service.

The lookup service is somewhat similar to other service
location protocols, such as Salutation [28], Service Loca-
tion Protocol [16], and Universal Plug and Play [34], except
that matching is based in Java interface types. The central
difference between Jini and the other service location proto-
cols is protocol independence: that is, Jini does not mandate
any specific communication protocol between the clients
and the services (except for bootstrapping the system), but
relies on dynamic Java class loading instead. Since the
proxies are written in Java, the system also claims oper-
ating system independence; this in contrast with the other
service location protocols which usually use non-portable

device drivers.
All communication goes through proxies, which are local

objects that implement some well-known interface (such as
“Printer”). Proxies can be simple Remote Method Invoca-
tion (RMI) stubs which marshall method calls over the net-
work, or they can implement part of the functionality in the
proxy itself (for example, converting the data to the correct
format for this printer). Also, some services don’t neces-
sarily require network communication at all, in which case
the proxy alone implements the service.

Protocol independence and the ability to implement part
of the intelligence on the client side give Jini tremen-
dous flexibility. For example, proxies can communicate
with devices which don’t have a Java virtual machine; ei-
ther legacy devices with proprietary protocols, or resource-
stripped embedded devices. On the other hand, Jini requires
that the clients have their own Java virtual machines.

1.3 Proxies and security

Protocol independence presents also some new security
challenges. The Jini architecture doesn’t include any se-
curity in addition to the normal Java security facilities (for
protecting the client JVM from malicious proxy code), and
the security aspects of RMI in their current state are insuf-
ficient for the task (see Section 4.7).

Since all communication goes through downloaded
proxy objects, security methods used in environments with
fixed protocols can’t usually be used without some adap-
tation. For example, the Transport Layer Security (TLS)
protocol supports authentication of both the client and the
server using X.509 certificates [10]. This doesn’t, however,
help us in determining whether a specific proxy is trustwor-
thy. The client certainly doesn’t want to give its private key
to the proxy (since it might use it to access a completely
different service).

We feel the situation resembles the concept of delegation,
and therefore a trust management system which supports
delegation could be applied to the problem elegantly.

2 Requirements for Jini security

When talking about Jini security, we must first decide what
security functionality is needed. This naturally depends on
what we are using Jini for, and what trust relationships are
involved. In this paper, we are focusing on the client ac-
cessing a server through a proxy, and leave the security as-
pects of distributed events, leases, and transactions for fu-
ture work.

So far, we have identified the following requirements.

• Principal authentication.The client should be able to
verify that it is actually talking to the right service and



through the right proxy. Likewise, the service should
be able to verify who is trying to access it.

It is important to notice that authentication is impossi-
ble in a number of situtations. For example, in a pure
ad hoc network there may not be any prior information
about the communicating peers.

• Secure principal attributes.In many circumstances,
human readable and recognizable names are required
for authentication. Services might also have other at-
tributes such as security level (for example, a printer
for printing classified documents) or the “owner” of
the service (for example, “Alice’s calendar”). Users
might have other attributes such as memberships in
groups or roles.

Not all clients or services necessarily have names with
any uniqueness beyond one client or server. For ex-
ample, getting a CA-signed certificate for the doorbell
ourside your door so that it can contact a server inside
your house to play a tune doesn’t seem very sensible.

• Service access control.Based on the result of princi-
pal authentication and/or capabilities presented by the
client and/or other circumstances, the service should
allow some operations and deny others.

• Protection from applications.The client Java Virtual
Machine (JVM) might run multiple applications, some
of which are not fully trusted, such as applets and
games. Untrusted applications should not be able to
access services with the user’s privileges.

• Protection from proxies.The downloaded proxy code
needs some special permissions (for example, to make
network connections) when running inside the client
JVM. Some proxies may need more permissions than
others. These should be controlled somehow. Java, of
course, provides some facilities for this, but they are
somewhat insufficient for many applications.

On a lower level, protocol-related aspects such as mes-
sage confidentiality and integrity, replay prevention, perfect
forward secrecy of keying, and so forth, are also desirable.
We do not consider these further, since appropriate solu-
tions are widely known.

The actual requirements, of course, vary from case to
case. For example, if the client runs only trusted appli-
cations, protection from applications might not be needed.
Some of these, such as protection from proxies, could also
be addressed separately from the rest.

2.1 Other design aspects

The requirements outlined above still leave a lot of free-
dom for the implementor. The design choices made will

certainly affect the situations where the solution is applica-
ble. In this section we identify some of the design aspects.
In the next section we continue to set forth our choices, and
the reasons behind them.

• Centralization. Does the architecture rely on some
centralized servers or authorities? Are they required
to be on-line during service access?

Centralized security architecture probably makes ad-
ministration in large networks easier. On the other
hand, it doesn’t work well for, e.g. mobile ad hoc net-
works. Furthermore, there are several somewhat in-
dependent features which could be centralized or de-
centralized. For example, we could have decentral-
ized access control with either centralized naming (CA
type) or decentralized naming (for example, PGP-style
“web of trust”).

• Trusted components.Does the system rely on the se-
curity of the lookup service, or some other on-line se-
curity server?

• Protocol independence.Is the solution tied to some
transport protocol, such as the RMI wire protocol over
TLS or IIOP? If the protocol is fixed, it can be imple-
mented using trusted code, which simplifies the secu-
rity situtation.

• Service access control model.How flexible and fine-
grained is the access control mechanism? What kind
of policies can it support? For example, applica-
tions which access medical data probably require more
complicated policies than an office environment.

This is influenced by other choices. For example, if the
access control is managed by a “container” of some
kind, the granularity is probably at most per-method.

• Application protection model.How flexibly can the
user decide which client applications are allowed to
do what? For example, if the system uses TLS client
authentication and a server-side access control list
(ACL), the restrictions can’t probably be more specific
than per service (i.e., application can use key X only
to access service Y).

• Delegation.Does the system support delegation? Can
the delegated rights be restricted somehow? How flex-
ible are these restrictions?

• Transparency.How transparent the security system is
for service or client software?

For example, in Enterprise JavaBeans security is man-
aged by the “container”, so it is sort of transparent to
the service software. It is probably a good idea to



make the security as transparent as possible to client
applications.

3 Solution architecture

Our goal was to provide access control for Jini clients, ser-
vices, and proxies without sacrificing any essential Jini fea-
tures, such as protocol independence. In our architecture
trust assumptions are made visible by using authorization
certificates instead of traditional name certificates. This al-
lows us to identify what level of trust is really required by
the application, which is important in, e.g., ad hoc environ-
ments where a fully trusted third party can’t be assumed to
exist.

3.1 Our design choices

When designing the system, our target environment was ad
hoc mobile networks. For example, such a network might
consists of PDAs communicating with a short range radio
network such as Bluetooth [24]. Such an environment re-
quires that the solution is decentralized, or at least does not
rely on any on-line third party, since such a party might not
be available at all times in an ad hoc network. Therefore,
we also assume that the lookup service isn’t secure. We
also early rejected a centralized off-line trusted third party
for signing the code as “trustworthy”, since we believe that
that kind of solutions are better for assigning blame after-
wards than preventing wrong things from happening in the
first place. Considering the communication, reliance on a
fixed communications protocol was also deemed an unsat-
isfactory solution from the start.

Since we had prior experience in using SPKI certificates,
we decided to use them for decentralizing trust. In our sys-
tem, clients and services are identified by public keys. Un-
like in some other architectures, names bound to these keys
are not important. That is, when performing the access con-
trol decision, names are not used—names and other secu-
rity attributes may be, of course, used by the application.

3.2 Using authorization

We next describe a typical authorization scenario in our so-
lution. The service key typically delegates full permissions
for the service to the administrator’s key, who can then au-
thorize ordinary users to use the service. The authorization
is expressed as a SPKI certificate, where the administrator
delegates the access right to user’s public key. The certifi-
cates are stored by client.

The user can delegate a subset of her authorizations to
local applications. The authorizations delegated to the ap-
plication depend on how much the user trusts the applica-

Very limited access
to service Limited access

JAR signature

User’s key

Full access

Proxy key Service admin 
key

Service key

Naming authority
key

Proxy code and 
data hash

Name = "Service name"

"My code""My data"

Code signing
key

Authentication
protocol

Hash verification
Configuration file

Figure 1: Typical certificate chains; the authorization
chain (verified by the service) is shown in bold, the au-
thentication chain (verified by the user) in dashed line.

tion. For example, the user might trust a word processor to
print correctly, and she would delegate the corresponding
permission it. However, the user probably won’t give the
word processor the permission to access personal calendar
files, because the application does not really need it, and it
just might contain code that misbehaves.

Our solution provides a way for the application to use
these authorizations with a service in Jini environment. One
of the problems to be solved is how to prove these autho-
rizations through the Jini proxy which is loaded from the
network and can not be fully trusted by the user. The user’s
secret key is required to prove the user’s authorizations but
it must not be given to the proxy.

Typical certificate chains are shown in Figure 1. The de-
tails of proxy verifications are explained below.

4 Implementation

Our prototype implementation is responsible for proving
user authorizations to services, authenticating proxies, and
verifying authorizations. It is implemented completely in
Java, and consists of about 10 000 lines of code. The im-
plementation consists of the following components:

• SPKI certificate library (siesta.security.spki) is used
for encoding and decoding SPKI certificates.



Application

Proxy
Printer

Client JVM

Jini lookup service

3. print(doc)

4. print(doc)

2. Proxy download

1. Lookup(Printer)

Figure 2: Accessing a Jini service, without any security
features.

• Server-side module (siesta.security.authorization) ver-
ifies SPKI certificate chains. It could be considered a
sort of “trust management engine”, like KeyNote, but
it is somewhat simpler. This package and its connec-
tion with the standard Java 2 security architecture are
described in Section 4.6.

• Certificate repository (siesta.security.repository) pro-
vides a simple local certificate repository where autho-
rization certificates are stored, and a certificate gath-
erer which tries to find a complete certificate chain.
This could be extended to support of retrieval of cer-
tificates from the network using DNS [18], LDAP, or
some other directory access protocol.

• Client-side security module is responsible for control-
ling access to user’s private keys, authenticating prox-
ies, and enforcing application access control.

• Utilities to simplify writing services and clients, such
as signing proxies, verifying name certificates, etc.

• RMI over TLS [10] module supports using client au-
thentication over TLS sockets, as described in Section
4.7.

4.1 An example scenario

The default behavior of a Jini client application and a ser-
vice is shown in Figure 2, where an application prints a
document.

1. An application, wishing to use a Jini service, con-
tacts the lookup service, and performs an appropriate
lookup (for example, searching for printer services). A
list of available services is returned to the application.

2. The user (or the application itself) selects one of the
listed services. A serialized proxy object is transported
to the client, and the corresponding bytecode is down-
loaded.

Application

Proxy

Client JVM

2. Proxy download
5. print(doc)

6. Get authorization

4. Authenticate
proxy

3. Verify

Jini security manager

Printer

Jini lookup service

7. print(doc, creds)

1. Lookup(Printer)

Figure 3: Accessing a Jini service with our security
modifications.

3. The application calls some method on the proxy ob-
ject, requesting it to do whatever the service does. In
our example, it asks the proxy the print a document.

4. The proxy sends the request to the service, which
prints the document.

In the next section we describe the modifications needed
in our security solution.

4.2 Overview of the modified protocol

When security is applied to typical Jini scenario, a number
of additional steps are needed. On the client side, we have a
“Jini security manager” which is responsible for controlling
access to the user’s private keys. It also enforces application
access control. The mechanisms needed at server side de-
pend on the requirements of the service. The typical steps
taken when accessing a service are described below, and are
illustrated in Figure 3.

1. An application, wishing to use a Jini service, con-
tacts the lookup service, and performs an appropriate
lookup (for example, searching for printer services).
A list of is returned to the application. No special se-
curity features are assumed here.

2. The user selects one of the listed services. A serial-
ized proxy object is transported to the client, and the
corresponding bytecode is downloaded (again, using
standard Jini facilities).

3. The Jini security module asks the proxy for the ser-
vice’s public key, and checks that this proxy indeed
represents that service. This is done by checking the
signature of the code and data as described in Section
4.3.



4. Next we have an optional authentication step. If the
application knows an identity of the desired service,
it can now ask the Jini security service to authenticate
the service key. Authenticating the actual identity (e.g.
a human readable name) might involve certificates ob-
tained from the lookup service or the proxy itself, and
is described below in Section 4.4.

5. The application calls some method on the proxy ob-
ject, requesting it to do whatever the service does. In
our example, it asks the proxy the print a document.

6. The proxy then asks the Jini security library for autho-
rization. The Jini security manager checks that (1) the
proxy is trying to really access the service it represents
and (2) that the application is allowed to perform this
operation on behalf of the user. Application access
control is described in Section 4.5.

To enforce these local restrictions, we generate a tem-
porary key for the proxy, and delegate the restricted
rights to this temporary key1. A handle to this key is
then given to the proxy. The proxy can’t get the ac-
tual key material through this handle, but it can use
it for signing data (this allows us to “revoke” the key
immediately, if necessary).

The certificate repositories are then searched for other
certificates which might be relevant to the case, and
the certificates are returned to the proxy.

7. Using the key handle, the proxy can open a secure
connection to the server. The proxy can implement
any protocol it chooses. Our library provides a mod-
ule which uses RMI over TLS, as described in Section
4.7.

After proving possession of the temporary key, the
proxy sends the certificates and the service request to
the server. The server checks the certificate chain, and
then performs the operation. This aspect is discussed
more in Section 4.6.

4.3 Proxy verification

Usually we wish to verify that the proxy really came from
the service we want. Since services are identified by public
keys, this can be arranged by having both the code and data
signed by the service key. However, it should be noted that
due to the ad hoc nature of the network, we do not neces-
sarily know anything about the “authenticity” of the service
key, at least not yet.

During the implementation we discovered what we con-
sider a small deficiency in Java’s facilities for signed code.
It is not possible to give expiration dates for code signa-
tures. The associated X.509 certificate has an expiration

date, but it is not possible to produce signatures which have
a shorter lifetime than the certificate. We wanted that pos-
siblity (to make sure we are using the right version of the
proxy code), so we had to make some modifications.

There are basically two ways of achieving the expiration.
The JAR file signature could be modified to contain an expi-
ration date. This would, however, require modifications to
the JAR file loading code. This is by no means impossible;
it has been done in the TeSSA project to allow delegation
of code permissions with SPKI certificates [27].

Our approach splits the signature to two parts. We sign
the JAR file (using standard Java facilities) using a newly
generated key, whose private half is then destroyed. The
service then supplies a SPKI certificate chain from the ser-
vice key to this code signing key (usually just one certifi-
cate). This certificate chain is stored in the data part of the
proxy. This approach has couple of advantages:

• We don’t have to re-sign the JAR file if it hasn’t
changed. Since the JAR files are stored on a web
server, the service might not be able to easily modify
them.

• We don’t have to modify the JAR file loading code.

• We can use existing JDK tools for signing the JAR.

The main drawback is that the signature expiry date isn’t
visible to the standard Java components.

In addition to verifying the authenticity of the proxy
bytecode, we would like verify the proxy object as well.
The straight-forward way would be to calculate the mes-
sage digest of the serialized proxy object. However, this
fails because we don’t really know what part of the data is
fixed state worth signing and which is just transient state.
Also, the proxy might be composed of multiple objects.

We solved this by asking the proxy object to calculate its
own message digest. The proxy bytecode has been verified
in this point, so the proxy isn’t completely untrusted, and
it isn’t in the service’s interest to return a wrong message
digest. On the other hand, a lazy service writer could defeat
this check by always returning the same message digest (for
example, zero).

The service then supplies a SPKI certificate chain from
the service key to the message digest object-hash, and
stores it in the proxy’s data part. Usually this certificate
chain is just one certificate.

1. We certainly wish to write a certificate that can only be used at the
service the proxy represents. However, we noticed that there wasn’t any
elegant way to restrict the delegated certificate only to particular service
in SPKI. Although we considered adding a new element to the SPKI cer-
tificate (say, named(valid-at (public-key service-key )) ),
we decided to encode this information at a fixed position in thetag field.



4.4 Service/proxy authentication

After we have verified the signatures of proxy code and
state, we know which service the proxy represents (as iden-
tified by the service’s public key). Now the application may
wish to verify other security attributes of the service, such
as human-readable names.

We argue that this is a function best left to the applica-
tion, since the trust models are very application specific. In
some cases, a traditional solution based on a trusted third
party is the most appropriate (e.g., naming printers on a cor-
porate network). In many cases, a PGP-style web of trust
may be more appropriate.

Stajano and Anderson [29] describe an example of an ad
hoc networking situation where a completely different so-
lutions are required. Consider a thermometer, having a very
small display and communicating using a short-range radio.
If we have a bowl of disinfectant containing many unused
thermometers, it doesn’t really matter which we choose;
but we want to make sure we communicate with the one
we have picked from the bowl. The thermometers could,
of course, be given artificial names (such as serial numbers,
which could be engraved on the case), but this solution isn’t
very user friendly. Instead, if we have a secure (free of ac-
tive middle-men) communications channel, such as short-
range infrared or physical contact, we can simply transmit
the public key over this channel.

To help application developers in verifying human
readable properties, our utility library provides support
for two common cases: names signed by some cen-
tral authority, and ownership of services (such as “John’s
siesta.pim.Calendar” service). The properties are repre-
sented by subclasses of java.security.Principal.

4.5 Application access control

When designing our system, the environment we had in
mind was a PDA using a single keypair stored on a smart-
card. This key would be used for accessing dozens of dif-
ferent services (using many different client applications).
Therefore, we wanted to restrict what applications could do
with the key. We call this feature “application access con-
trol”.

Since we use SPKI certificate chains for authorizations,
we can implement more complex restrictions than simply
allowing or denying access to the key. Our implementa-
tion stores these restrictions as a subclass of Permission.
The restrictions are associated with applications using the
standard Java 2 policy mechanisms [15]. The only case re-
quiring special treatment is the proxy class. Since the key
used for signing the code isn’t the same as the service key,
this must be associated with the permission later (when the
proxy state and code have been verified, as described in

Section 4.3).

When the proxy requests some permissions to be dele-
gated to its temporary key, the Jini security manager con-
structs the corresponding RemotePermission instance. It
then uses the Java 2 stack inspection features (AccessCon-
troller) [37] to verify that the application is authorized for
this action.

4.6 Authorization checking

When the server has received a request from the proxy and
verified the proxy’s key, it gives the key and the certificates
to a SPKI certificate chain verifier module. The verifier
then verifies certificate signatures and validity and finds all
certificate chains from the service key to the proxy key.
These chains are then stored inside a PermissionCollection
instance (PermissionCollections are used in the Java 2 se-
curity architecture to store a set of related permissions).

The service software can then call the implies() method
of the collection, giving a parameter corresponding to
the client request (the method then returns either true
or false). Storing the authorizations inside a Permis-
sionCollection gives the service software another pos-
sibility. It can use the AccessController.doPrivileged
call to associate the permissions with the Java call
stack. Permissions are then checked using normal
System.getSecurityManager().checkPermission() call. In
many cases, this is a cleaner solution than passing a Per-
missionCollection object through a long chain of method
calls, or storing it in a visible variable. It also allows com-
municating these permissions to code which doesn’t know
the original call was a remote call.

4.7 RMI over TLS

Our architecture allows the proxy to implement any pro-
tocol for communicating with the service. In our tests, we
have used RMI. The default RMI configuration uses normal
TCP sockets, but it is possible to override this behaviour by
supplying a pair ofsocket factoriesto be used on the server
and client side of the communication. This is meant for
plugging in Transport Layer Security (TLS) sockets.

Using these facilities, we implemented socket factories
for TLS client authentication using the Java Security Socket
Extension (JSSE) libraries [33]. During the implementa-
tion we found some slight deficiencies in the current RMI
implementation. Hopefully, most of these will be fixed in
the next release of RMI, and in the RMI security extension
[32].



4.7.1 Problems with client authentication

Although the socket factories were originally intended for
plugging in TLS sockets, the design supports cleanly only
server authentication. The socket factories are given to the
constructor of java.rmi.server.UnicastRemoteObject which
is the base class of RMI server objects. The application
has no further control of the remote method invocation pro-
cess. The network connections are formed automatically
whenever the client invokes a remote method and a server
method is automatically executed with the arguments sent
over the network. Neither the client nor the server has direct
access to the underlying socket.

On the client side, it is difficult to actually verify that the
stub is using the secure socket factory. Even more diffi-
cult is communicating the correct key to the socket factory,
since the socket might be opened even before any methods
are called (due to distributed garbage collection).

Similar problems appear also on the server side. Once a
call is received, there it no way to get access to the socket
instance it came from. In the case of TLS sockets, the
socket would contain methods to get the client’s key.

We worked around these problems (sort of) by commu-
nicating the keys using thread-local variables, and control-
ling the deserialization of the stub by wrapping it inside a
MarshalledObject. We later found out that Balfanz et al.
had independently discovered a similar workaround [2].

4.7.2 Code bases

We also encountered a limitation in the way RMI serial-
izes stubs. When sending a serialized object to a remote
system, a codebase URL is included with it. The URL
specifies the location where the bytecode can be down-
loaded. The current RMI implementation gets this code-
base URL from a global system configuration property
named “java.rmi.server.codebase”. This makes running
multiple services inside the same JVM more difficult.

Fortunately, if the proxy was originally loaded with a
subclass of java.net.URLClassLoader, its getURLs method
is called to get the codebase URL. If we load the proxy from
the URL on the server side as well, and instantiate and ini-
tialize it using the reflection API, the codebase gets set to
the correct value. We must, of course, verify the signature
on the bytecode on the server side to make sure we got the
right proxy.

4.8 Performance

Table 1 shows our initial performance figures. Basically,
the measurement represents the time required to delegate a
permission from the client to the server through the proxy.
As the measurements show, currently the authorization re-

Measurement average (ms) std dev
Standard Jini/RMI call 30 2
With SPKI and TLS applied 6180 80
With pre-generated keys 983 130

Table 1: The results of performance measurements,
measuring the time required for the first remote method
call through an already authenticated proxy. The sec-
ond and subsequent calls take about 300 ms in the se-
cure case.

quires quite a lot of time. Most of the time is spent in Java
cryptographic primitives. However, our current implemen-
tation is quite unoptimized. In particular, the process re-
quires that a separate public key pair is created on the fly;
these keys can be generated beforehand, and taken from a
pool of pre-generated keys during the protocol run. As the
table shows, this cuts the time required to a more reasonable
value.

We used Sun’s JDK 1.2.2 under Red Hat Linux 6.2 to
do our measurements. Both the client and the server were
run on the same machine, which was equipped with a 750
MHz AMD Athlon CPU and 256 MB of RAM. The mea-
surements were run ten times, and the average and standard
deviation were calculated.

5 Related work

5.1 Java security

Most work in Java security has focused on protecting the
host from malicious code. The original JDK 1.0 featured a
sandboxwhich limited the operations untrusted code could
invoke. Since then, the Java 2 security architecture [15]
added more flexible and fine-grained access control. A
number of other solutions have been proposed [36, 38, 19].
The Java 2 security architecture has been extended with
decentralized trust management in [27]. The concept of
"who is running the code" has been implemented in the Java
Authentication and Authorization Services (JAAS) [21],
and has been extended with roles in [14]. Controlling the
amount of resources (computational cycles, memory, etc.)
a program can use is discussed in [8].

5.2 Distributed object security, mobile
agents

Most work related to remote object security has focused on
CORBA (for example, [3, 22, 31]). Although the concepts
in CORBA security are similar than in Jini, the problem
of untrusted proxy code requires different solutions. This
issue is discussed in Section 5.3 below.



The mobile agent research community has also produced
a lot of results related to mobile code and security. Most
of that work has focused on protecting sites from malicious
agents, and also on protecting agents from malicious hosts.
Often the situation is the reverse of that in Jini: a user sends
an agent to the service site, where it performs some func-
tions on behalf of the user. In Jini, the code moves from the
service to the client.

5.3 Solutions for downloaded proxy code

As explained in Section 1.3, communicating securely
through downloaded proxy code presents new security
challenges. There are a couple of solutions for this prob-
lem, and the following are reported in the literature.

• Fixed protocol. If the communication protocol is
fixed, proxies can be generated on the client side, ei-
ther statically (using an IDL compiler), or dynamically
on-the-fly (cf. RMI security extension draft [32]).
Statically generated proxies are used by, e.g., Balfanz
et al. [2].

• Centrally signed proxies.The proxy code is signed
by some central authority, and if the signature is valid,
the code is considered fully trusted. This is used by
Hasselmeyer et al. [17] and in the Sun demonstration
solution presented at JavaOne 2000 [30].

• Mixed approach.In the RMI security extension draft
[32], it is also possible to combine dynamically gen-
erated proxies (implementing a fixed protocol) with
signed hand-written proxies.

The hand-written proxy code and data are signed by
someone, usually the service. The “trust verifier” ob-
ject is obtained from the service using the dynamically
generated RMI stub.

All of these approaches have their own benefits and
drawbacks. Fixing the protocol eliminates the need to
download the proxies and allow communicating with any
service, but also lose the ability to implement part of the
proxy functionality on the client side. On the other hand,
requiring that the proxies are signed by some central au-
thority restricts spontaneous networking.

The mixed approach seems most promising of these
three, and resembles our approach in that the data and code
are effectively signed by the service (though the details are
quite different). However, it loses some of the protocol in-
dependence.

5.4 Jini-specific security

The security of specifically Jini systems hasn’t been studied
much yet. Sun presented a demonstration solution which

integrates Jini with JAAS at JavaOne 2000 [30]. It is based
on a centralized security server, and a certificate authority
(CA) signing all proxy code. It is somewhat similar to Ge-
offrey Clements’s Usersecurity project [7].

Hasselmeyer et al. have developed a Jini security solu-
tion based on a centralized secure lookup server [17]. Sim-
ilar secure service directory in non-Jini environment is de-
scribed by Czerwinski et al. in [9].

Sun’s future solution for Jini security is the RMI secu-
rity extension, currently in draft stage [32], which provides
at least some support for intelligent proxies. However, the
initial implementation of it only supports TLS based au-
thentication, which, in turn, relies on a centralized certifi-
cate architecture, and separates the mechanisms for authen-
tication and access control. Furthermore, a trusted compo-
nent (not downloaded from the network) is responsible for
opening the network connections and implementing some
authentication protocol, so this might limit the protocol in-
dependence offered by Jini.

There is also a “Jini and Friends at Work” project going
on at Eurescom, but no results have been published so far
[13].

6 Evaluation and future work

In this project, our goal was to provide a Jini security so-
lution that does not unnecessarily restrict the possibilities
for creating secure Jini services. In particular, we wanted
our solution to be protocol independent, to rely on existing
Java security mechanisms to the greatest extent possible,
to be reasonably transparent to the clients, service proxies,
and services, and not to require any centralized servers.

We feel that we have mostly reached these goals. The im-
plementation allows Jini services to implement any proto-
col between the proxy and the service. The solution utilizes
the possibilities created by the underlying Java 2 security
architecture and, if used, the existing Java Secure Socket
Extension (JSSE). Furthermore, there is no need for any
centralized security or other servers. On the other hand,
in order to support permission delegation, the proxy and
the server must take a number of additional steps, and they
must transport SPKI certificates in the whatever protocol
they use. Thus, our solution is not fully transparent to the
proxy or the service implementations. But, given the re-
quirement of protocol independence, our solution seems to
be reasonably easy to utilize, and it is in full conformance
with the central toolbox approach of Jini.

Compared to the other proposed solutions, our solution
is similar to the other Jini security in the sense that it mainly
addresses the proxy security problem, focusing on the au-
thentication of the clients and the services, and on autho-
rization at the method call level. On the other hand, our



solution has a number of additional benefits. The main ben-
efits can be enumerated as follows.

• The solution does not place any unnecessary restric-
tions on the implementation of Jini services. In par-
ticular, the solution is protocol independent, basically
allowing any protocol to be used between a Jini proxy
and the corresponding server.

• The solution does not require any centralized security
services, and therefore it can be easily utilized in ad
hoc networks.

• The solution allows fine grained Java 2 permissions to
be separately applied in the client, proxy, and server.
In particular, a client application that requests a Jini
service runs in a separate protection domain than the
proxy, thereby restricting the permissions the proxy
has access to. Furthermore, permissions are explic-
itly delegated from the application to the proxy. Thus,
in addition to restricting the permission of the proxy
itself, this allows the proxy to provide the service with
a proof that the application does have the permissions
required by the service and that the application really
wants to use the permissions to access the service.

Since the permissions can be delegated to the service
(if desired), and since they can be presented as genuine
Java permissions at the service JVM, the service can
further use them when calling unrelated Java code. In
other words, we have basically extended the Java 2 ac-
cess control mechanisms to distributed environments,
allowing an application to pass any Java 2 permissions
to a Jini service through the service proxy.2

Considering our future directions, there are two major
branches. First, we want to test the applicability of our so-
lution to the security of other Jini mechanisms, including
leases, distributed events, and transactions. In particular,
we would like to provide a kind of toolbox that would al-
low Jini service implementors to easily add strong, crypto-
graphical security to these mechanisms without adversely
affecting the environmental requirements of the services.
Second, we plan to study how to integrate our approach
with additional Java security mechanisms, including the
forthcoming Java Authentication and Authorization Service
(JAAS) [21] and the planned RMI Security Extension [32].

Another important aspect which requires further work
is the integration of a certificate revocation or validation
mechanism. The revocation and validation of SPKI certifi-
cates are discussed in e.g. [20].

7 Conclusions

The Jini approach provides a number of methods and tools
for building distributed applications for decentralized, ad
hoc network environments. However, the current state of
the technology does not adequately address the security re-
quirements present in many of such environments.

In this paper, we have briefly analyzed the client–service
related security requirements relevant to typical Jini envi-
ronments, and described a software architecture, backed up
by an implementation, that provides decentralized solutions
to these requirements. Our approach is based on apply-
ing SPKI based trust management to controlling Jini prox-
ies and delegating Java 2 permissions between Jini clients,
proxies, and services. Our experience indicates that it is in-
deed possible to build a completely decentralized security
solution, and apply it to Jini without losing any of the intrin-
sic Jini properties. In particular, our implementation does
not restrict the methods and protocols that can be used to
implement communication between a service and its prox-
ies. Our initial performance measurements indicate that,
once optimized, the approach should provide adequate pe-
formance in practice.

Acknowledgements

This work would not have been possible without the rest of
the SIESTA team: Johannes Lehtinen, Antti Mannisto, Pe-
tra Pietiläinen, Satu Virtanen, and Jukka Zitting. We would
also like to thank Yki Kortesniemi, Jonna Särs, and the
anonymous reviewers for their valuable comments and sug-
gestions, and Pekka Kanerva for helping in the preparation
of this manuscript.

References
[1] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim

Waldo, and Ann Wollrath.The Jini Specification. Addison-
Wesley, June 1999.

[2] Dirk Balfanz, Drew Dean, and Mike Spreitzer. A security
infrastructure for distributed Java applications. InProceed-
ings of the 2000 IEEE Symposium on Security and Privacy,
pages 15–26, Oakland, California, May 2000.

[3] Konstantin Beznosov, Yi Deng, Bob Blakley, Carol Burt,
and John Barkley. A resource access decision service for
CORBA-based distributed systems. InProceedings of the

2. As the astute reader quickly understands, the actual solution is not
quite that easy due to the requirement of keeping the relevant certificates
along all the time. That is, in addition to representing the permissions as
Java objects, they must also be present in the form of properly authorized
certificates. Only that creates a proper certificate chain that the server can
use to verify the access permissions of the client application.



15th Annual Computer Security Applications Conference
(ACSAC ’99), pages 310–319, Phoenix, Arizona, December
1999.

[4] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Ange-
los D. Keromytis. The KeyNote trust-management system
version 2. RFC 2704, IETF, September 1999.

[5] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Ange-
los D. Keromytis. The role of trust management in dis-
tributed systems security. In Jan Bosch, Jan Vitek, and Chris-
tian D. Jensen, editors,Secure Internet Programming: Se-
curity Issues for Mobile and Distributed Objects, Lecture
Notes in Computer Science volume 1603, pages 185–210.
Springer, 1999.

[6] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
trust management. InProceedings of the 1996 IEEE Sym-
posium on Security and Privacy, pages 164–173, Oakland,
California, May 1996.

[7] Geoffrey Clements. Jini Usersecurity project home page.
http://www.bald-mountain.com/jini.html, 2000.

[8] Grzegorz Czajkowski and Thorsten von Eicken. JRes: a
resource accounting interface for Java. InProceedings of
the Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’98), pages 21–35,
Vancouver, Canada, October 1998.

[9] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, An-
thony D. Joseph, and Randy H. Katz. An architecture for
a secure service discovery service. InProceedings of the
5th Annual ACM/IEEE International Conference on Mo-
bile Computing and Networks (MobiCom ’99), pages 24–35,
Seattle, Washington, August 1999.

[10] Tim Dierks and Christopher Allen. The TLS protocol, ver-
sion 1.0. RFC 2246, IETF, January 1999.

[11] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian
Thomas, and Tatu Ylönen. SPKI certificate theory. RFC
2693, IETF, September 1999.

[12] Pasi Eronen, Johannes Lehtinen, Jukka Zitting, and Pekka
Nikander. Extending Jini with decentralized trust manage-
ment. In Short paper proceedings of the 3rd IEEE Con-
ference on Open Architectures and Network Programming
(OPENARCH 2000), pages 25–29, Tel Aviv, Israel, March
2000.

[13] Eurescom. Jini and friends at work project home page.
http://www.eurescom.de/Public/Projects/P1000-series/
P1005/P1005.htm, 2000.

[14] Luigi Giuri. Role-based access control on the web using
Java. InProceedings of the 4th ACM workshop on Role-
based access control (RBAC ’99), pages 11–18, Fairfax, Vir-
ginia, October 1999.

[15] Li Gong. Inside Java 2 Platform Security: Architecture, API
design, and implementation. Addison-Wesley, June 1999.

[16] Erik Guttman, Charles Perkins, John Veizades, and Michael
Day. Service location protocol, version 2. RFC 2608, IETF,
June 1999.

[17] Peer Hasselmeyer, Roger Kehr, and Marco Voß. Trade-offs
in a secure Jini service architecture. In Claudia Linnhoff-
Popien and Heinz-Gerd Hegering, editors,Trends in Dis-
tributed Systems: Towards a Universal Service Market.
Third International IFIP/GI working conference proceed-
ings (USM 2000), Lecture Notes in Computer Science vol-
ume 1890, pages 190–201, Munich, Germany, September
2000. Springer.

[18] Tero Hasu. Storage and retrieval of SPKI certificates using
the DNS. Master’s thesis, Helsinki University of Technol-
ogy, April 1999.

[19] Trent Jaeger, Atul Prakash, Jochen Liedtke, and Nayeem
Islam. Flexible control of downloaded executable con-
tent.ACM Transactions on Information and System Security,
2(2):177–228, May 1999.

[20] Yki Kortesniemi, Tero Hasu, and Jonna Särs. A revocation,
validation and authentication protocol for SPKI based del-
egation systems. InProceedings of the 2000 Network and
Distributed System Security Symposium (NDSS 2000), pages
85–101, San Diego, California, February 2000.

[21] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and
Roland Schemers. User authentication and authorization in
the Java platform. InProceedings of the 15th Annual Com-
puter Security Applications Conference (ACSAC ’99), pages
285–290, Phoenix, Arizona, December 1999.

[22] Tuomo Lampinen. Using SPKI certificates for authoriza-
tion in CORBA based distributed object-oriented systems.
In Proceedings of the 4th Nordic Workshop on Secure IT sys-
tems (NordSec ’99), pages 61–81, Kista, Sweden, November
1999.

[23] Sanna Liimatainen et al. Tessa project home page.
http://www.tml.hut.fi/Research/TeSSA/, 2000.

[24] Riku Mettälä. Bluetooth protocol architecture white paper,
version 1.0. Bluetooth Special Interest Group, August 1999.

[25] Pekka Nikander. An Architecture for Authorization and
Delegation in Distributed Object-Oriented Agent Systems.
Ph.D. thesis, Helsinki University of Technology, March
1999.

[26] Pekka Nikander. Fault tolerance in decentralized and loosely
coupled systems. InProceedings of Ericsson Conference
on Software Engineering, Stockholm, Sweden, September
2000.

[27] Pekka Nikander and Jonna Partanen. Distributed policy
management for JDK 1.2. InProceedings of the 1999 Net-
work and Distributed System Security Symposium (NDSS
’99), pages 91–101, San Diego, California, February 1999.

[28] Salutation Consortium. Salutation home page.
http://www.salutation.org/, 2000.

[29] Frank Stajano and Ross Anderson. The resurrecting duck-
ling: Security issues for ad-hoc wireless networks. In
Bruce Christianson, Bruno Crispo, James A. Malcolm, and
Michael Roe, editors,Security Protocols, 7th International
Workshop Proceedings, Lecture Notes in Computer Science
volume 1796, Cambridge, UK, April 1999. Springer.



[30] Christopher Steel. Securing Jini connection technology.
Technical presentation 573 at the JavaOne 2000 confer-
ence, San Francisco, California. Slides available from
http://java.sun.com/javaone/javaone00/, June 2000.

[31] Daniel F. Sterne, Gregg W. Tally, C. Durward McDonell,
David L. Sherman, David L. Sames, Pierre X. Pasturel, and
E. John Sebes. Scalable access control for distributed object
systems. InProceedings of the 8th USENIX Security Sym-
posium, pages 201–214, Washington, D.C., August 1999.

[32] Sun Microsystems. Java remote method invocation secu-
rity extension. Technical specification, early look draft
3, http://java.sun.com/products/jdk/rmi/rmisec-doc/, April
2000.

[33] Sun Microsystems. Java secure socket extension home page.
http://java.sun.com/products/jsse/, 2000.

[34] Universal Plug and Play Forum. Universal plug and play
home page. http://www.upnp.org/, 2000.

[35] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall.
A note on distributed computing. Technical Report
SMLI TR-94-29, Sun Microsystems Laboratories, Novem-
ber 1994.

[36] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W.
Felten. Extensible security architectures for Java. InPro-
ceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97), pages 116–128, Saint-Malo, France,
October 1997.

[37] Dan S. Wallach and Edward W. Felten. Understanding Java
stack inspection. InProceedings of the 1998 IEEE Sympo-
sium on Security and Privacy, pages 52–63, Oakland, Cali-
fornia, May 1998.

[38] Ian Welch and Robert J. Stroud. Supporting real world se-
curity models in Java. InProceedings of the 7th IEEE Work-
shop on Future Trends of Distributed Computing Systems,
pages 155–159, Cape Town, South Africa, December 1999.


