
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

Field guide to Java
collections

Mike Duigou (@mjduigou)

Java Core Libraries

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

Required Reading

 Should have used most at some point

– List, Vector, ArrayList, LinkedList, Arrays.asList

– Set, HashSet, TreeSet

– Queue, PriorityQueue

– Map, Hashtable, HashMap, TreeMap

 Bonus Points

– Deque, ConcurrentHashMap, CopyOnWriteArray, etc.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Program Agenda

 Collection interfaces

– Implementations tour

– Unexpected usages

 Collections outside the JDK

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

Collections Categories

 Many collection classes

 Each implements one or more collection interfaces

 We will be classifying according to interfaces

Establishing the categories

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Two Fundamental “Shapes”

Collection

Value

c

Key Value

Value Value

c

Key

Map

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Map

Pear

Fruit

Milk

Dairy

Beef

Meat

Cheese

Dairy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

Map

 Aggregation of key-value mappings

 Keys are unique

 Values can be anything

 Simple set of operations

– get, contains<key|value>, remove, {put}<single|bulk>

– iterate<keys|values|mappings>

– equivalence, size

 The reason why Object.hashCode() exists

 hashCode() or compareTo() must never change while in Map

Not that kind of map

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

HashMap

 Array of buckets with chaining for collisions

 Bucket array is power of two sized

 Bucket index derived from hash code

– Performance depends upon quality of hashCode() implementation

– O(1) with good hash code, O(n) with worst hash code

 Expansion (aka rehashing) occurs when fullness threshold exceeded

 Iteration order for keys, values, elements is unspecified

– and may become unpredictable (7u6 alternative hashing & Java 8)

Making a hash of it

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

LinkedHashMap

 Subclass of HashMap

 Tracks insertion order of mappings

 Iteration order is insertion order (predictable)

 Some are surprised it’s not a SortedMap

 Often used for LRU caches or where key order matters

A link to the past

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

WeakHashMap

 Map which holds keys with weak references

 When key reference is cleared value is removed

 Commonly used for look up tables and caches

 Cache pattern: soft reference value holding strong reference to key

Actually quite powerful

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

IdentityHashMap

 Map which uses identity equality (==) rather than equals()

 Originally used for structure preserving object graph traversal

(Serialization)

 Suggested use: associating meta-data with specific instances

 It is sometimes possible to use for higher performance map

– How often this is worthwhile is debatable

Some objects are more equal than others

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

EnumMap

 Map specifically for enums (Java 5)

 Keys restricted to a single enum

 Very space efficient and high performance

– Two implementations internally

 O(1) for put, get, remove, contains

 Elements are ordered according to enum order

 Not a SortedMap (frequently requested)

Optimization is key

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Hashtable

 Retrofitted into Collections framework

 All public methods are synchronized

 Does not allow null keys or values

 Array of buckets with chaining for collisions.

– Bucket index derived from hash code. HashMap has better distribution

 Bucket array expansion by doubling when fullness threshold exceeded

 Iteration order for keys, values, elements is unspecified

– and may become unpredictable

It’s not faster. Really. Stop saying that.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

ConcurrentHashMap

 Fully concurrent

 Multiple arrays of buckets with chaining for collisions

 Individual bucket arrays grow by doubling

 Allergic to null (not supported)

– Bonus: no need for separate contains() to determine if key present

 Iteration order for keys, values, elements is unspecified

 Iterators are consistent

– But map may change while you are iterating

 Implements ConcurrentMap

Firing on all cylinders

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

ConcurrentMap

 Adds several methods to Map interface

 Operations that would require synchronized block for safety

– putIfAbsent

– remove(key,value)

– replace(key,value)

– replace(key,value,newvalue)

Atomics-r-us

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

SortedMap/NavigableMap

Milk

Dairy

Beef

Dairy

Cheese

Dairy

Pear

Fruit

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

SortedMap/NavigableMap

 Map with sorted keys

 Iteration order is key sort order

 Map partitioning features for creating sub-map views

 Any SortedMap can be used to make a SortedSet

Which came first?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

SortedMap vs NavigableMap

 SortedMap/SortedSet came first in Java 1.2

 NavigableMap/SortedSet added in Java 6

 NavigableMap extends SortedMap

 NavigableSet extends SortedSet

 TreeMap/TreeSet were upgraded to NavigableMap/Set

 Prefer Navigable to Sorted—more features

– lower(), floor(), higher(), ceiling()

– inclusive headMap() and tailMap()

What’s the deal with that?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

TreeMap

Red black balanced tree

Basic operations (put, get, contains) are O(log2 n)

Sorting via Comparator or Comparable

null keys not permitted for “natural ordering” Comparable

Comparators can support null

Branchin out

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

ConcurrentSkipListMap

 Fully concurrent map implementation based on skip lists

 A much better choice for heavy concurrent use than synchronizedMap

– Higher overhead though

 Implements ConcurrentNavigableMap

 Does not support null keys or values

Massive backup at the maze

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

Collection

A place for your stuff

Fruit Meat Bread Milk

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Collection

 Aggregation of values

 Simple set of operations

– {add, remove, contains}<single|bulk>, equivalence, iterate, size

 No implementations of Collection in JDK

– Lots of sub-interface implementations

 Extra operations on Collections

Not one to brag

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Collection-what it’s not

 Sub-interfaces add behaviour

 Definition of Collection.equals()almost never used

 Elements might be ordered

 Duplicates may be allowed

 Mutability may be allowed

 Concurrency is (mostly) not part of definition

Warranty void in Tennessee

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Collection

 Inheritance isn’t just for specialization

 Commonality is expressed as well

Ignoring the differences for fun and profit

Collection

Set Queue List

Iterable

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Collection

 Variables and Fields

List<String> foo = new ArrayList<>();

 Method Parameters

public void calculate(ArrayList<String> bar);

 Return types

public List<String> sort(List<String> bar);

public <A extends List<String>> A sort(A bar)

ArrayList<String> sorted = sort(list);

 If you ain’t going to need it, don’t declare it!

– You may want to keep reference with original type for some methods

Unspecific Specifics

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

Collection

Finally, an inheritance hierarchy

Collection

Set Queue List

LinkedList

ArrayList

…

Deque

…

SortedSet

…

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Collection : Set

My Grocery List Set

Fruit Meat Bread Milk

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Set

 Collection of unique elements—no duplicates

 Elements are not ordered

 Iteration order is not defined

 Iteration order may not be consistent

 SortedSet/NavigableSet also available

 Make any Map a Set with Collections.newSetFromMap()

Are you in or out?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

EnumSet

 Set specifically for enums (Java 5)

 Instance restricted to a single enum

 Very space efficient and high performance

– Two implementations internally

 O(1) for add, remove, contains

 Elements are ordered according to enum order

 Not a SortedSet (frequently requested)

The “members only” Set

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

HashSet

 Set based upon HashMap

– Can be a little wasteful (high overhead) for small objects

 O(1) for add, remove, contains

 Elements are unordered

 Iteration order may be unpredictable

Hashing it out (or is it in?)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

LinkedHashSet

 Set based upon LinkedHashMap

– Can be a little wasteful (high overhead) for small objects

 O(1) for add, remove, contains

 Iteration order is insertion order

 Often used for LRU caches

 Some are surprised it’s not a SortedSet

Follow the breadcrumbs

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Collection : SortedSet

For the highly organized

Bread Meat Milk Fruit

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Collection : SortedSet

 Collection of unique ordered elements

 Iteration order is sort order

 Subset partitioning is very useful

More than just sorted

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

TreeSet

 Based upon TreeMap

– Can be a little wasteful (high overhead) for small objects

 Elements stored in a balanced binary tree

 O(log n) for add, remove, contains

 Elements ordered via Comparator or Comparable elements

 null allowed if supported by Comparator

 Concurrent via Collections.synchronizedSortedSet()

Every leaf is unique

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 36

ConcurrentSkipListSet

 Based upon ConcurrentSkipListMap

 Elements stored in a skip list (aka super linked list)

 O(log n) average for add, remove, contains

 Elements ordered via Comparator or Comparable elements

 Iteration order is sort order

 Fully concurrent

– Surprising: Iterating concurrently with add and remove

– size() is O(n) and also subject to concurrent modification

Easier to use than type

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 37

Collection : List

First, make a List

Fruit Milk Bread Bread

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 38

List

 Commonly used like a more flexible array

– There is a huge difference between List<Integer> and int[]

 Elements are ordered, duplicates are allowed

 Random access is offered (but beware)

– RandomAccess marker interface on truly random access Lists

More than meets the eye

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 39

ArrayList

 List backed by an array

 Random Access

 Grows automatically, shrinking by explicit request

– trimToSize() is a method of ArrayList not of List

 Grows by 1.5x as needed by creating a new larger array (copies data)

 Single threaded only (use Collections.synchronizedList)

– Which means you will lose trimToSize() and ensureCapacity()

Everybody knows your name

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 40

Arrays.asList()

 Created from an array

 java.util.Arrays.ArrayList is it’s name

 List backed by an array

 Random Access

 Size is fixed

 Unable to grow or shrink

 May still need Collections.synchronizedList

aka “The Fake ArrayList”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 41

CopyOnWriteArray

 Fully concurrent array-based List implementation

 Random Access

 Modification copies the backing array

 Iterators use a snapshot of List

 Great when you need concurrent modification but only rarely

 Heavy updates will cause too much copying

Where did all these clones come from?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 42

Vector

 List backed by an array

 Random Access

 Grows automatically, shrinking by explicit request

– trimToSize() is a method of Vector not of List

 Grows by 2x or increment by creating a new larger array (copies data)

 All public methods are synchronized

– No need to call Collections.synchronizedList

– No way to turn of synchronization. (But HotSpot is magic)

Faded Hero

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 43

LinkedList

 Implemented as a doubly linked list

 Cheaper add/remove within list

 Not random access

 Object overhead per element

 Single threaded only

 Also supports Queue and Deque interfaces

Indexed access is the weakest link

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 44

Collection : Queue

Things are poppin’

Milk Bread Fruit

Point

Remove

Add

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 45

Queue/Deque

 Ordered and allows duplicates like List

 Special semantics for adding and removing

– And possibly “full” and “empty”

 Deque provides additional add/remove options

 Not particularly useful as immutable structure

Get in line

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 46

ArrayDeque

 Deque implementation similar to ArrayList

 Grows as needed but never shrinks

– LinkedList may be a better choice for highly elastic queues

 Performance better for LIFO (stack) for FIFO (queue)

So you don’t like LinkedList

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 47

PriorityQueue

 Sorts according to Comparator or Comparable

 Removes “least” element next

 Sorting happens only at addition

– Need to change priority? Must remove and re-add

 Not concurrent by default

– Use PriorityBlockingQueue rather than synchronized

Getting a better position

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 48

ConcurrentLinkedQueue

 Unbounded concurrent queue

 Main advantage is latency for push/pop

Not a BlockingQueue

Getting a better position

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 49

Blocking Queue/Deque

 Block until space available

 Block until element available

 Only make sense when used concurrently

We are experiencing heavy call volume

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 50

ArrayBlockingQueue

 Fixed size

 Fully concurrent

 Offers optional “fairness”

– For very unbalanced producer/consumer more fairness might be needed

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 51

LinkedBlockingQueue/Deque

 Optionally unbounded useful for periodic long queues

 Fully concurrent

 Somewhat higher throughput than blocking

 High throughput can increase GC pressure

 No “fairness” behaviour needed

– Adding and removing only contend at empty <-> non empty state.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 52

DelayQueue

 Concurrent unbounded Queue

 Elements can only be retrieved after they have expired

 Next element returned is the “most expired”

 Can consider DelayQueue as a time oriented PriorityQueue

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 53

SynchronousQueue

 Concurrent queue with no capacity

 Pushing blocks until it is retrieved by another thread

 Retrieving blocks until an element is available from another thread

 Optional fairness policy to make waiting more FIFO

 Useful when you must know that handoff has occurred

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 54

Lambda and Collections

 Java 8 will add lambdas to the language

 Major libraries upgrade focused on use of lambda with collections

 Lambda for bulk data operations including parallel

 JDK Collections will be extended to be data sources for bulk data APIs

Same collections, new features

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 55

Other collections

 Improves readability and reduces duplication of iteration code (enforces DRY/OAOO)

 Implements several, high-level iteration patterns (select, reject, collect, inject into, etc.)

on "humane" container interfaces which are extensions of the JDK interfaces. Provides

a consistent mechanism for iterating over Collections, Arrays, Maps, and Strings

 Provides replacements for ArrayList, HashSet, and HashMap optimized for performance

and memory usage. Adds new containers including Bag, Interval, Multimap, and

immutable versions of all types

 Encapsulates a lot of the structural complexity of parallel iteration and lazy evaluation.

Performs more "behind-the-scene" optimizations in utility classes

 Has been under active development since 2005 and is a mature library

GS Collections -- github.com/goldmansachs/gs-collections

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 56

Other collections

 Guava is the open-sourced version of Google's core Java libraries: the

core utilities that Googlers use every day in their code. The Guava

utilities have been carefully designed, tested, optimized and used in

production at Google. You don't need to write them, test them, or

optimize them: you can just use them.

Guava -- code.google.com/p/guava-libraries

 Additional collections, collections utilities

 Lots of non-collections utilities

 Some very small bits are planned to be added to Java 8

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 57

Q & A

@mjduigou

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 58

