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Program Agenda 

 Project Coin — Small Language Features 

 NIO.2 File System APIs 

 Fork/Join Framework 

 Core Library Morsels 



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 4 

Audience Poll 

 Which JDK version are you using? 

– pre-1.4.2 

– 1.4.2 

– 5 

– 6 

– 7 

– 8 preview builds 

 Uptake of 7 features? 

 Which IDE? 
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Project Coin 
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Project Coin is a suite of 

language and library changes 

to make things programmers 

do every day easier. 
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Project Coin Benefits 

 Remove extra text to make programs more readable 

 Encourage writing programs that are more reliable 

 Integrate well with past and future changes 

 

Enjoy improved free code flow today! 
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Coin Constraints 

 Small language changes 

– Specification 

– Implementation 

– Testing 

 No JVM changes! 

 Coordinate with forthcoming larger language changes 

 Beware the hazards of language interactions! 
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The Six Coin Features and How They Help 

 Consistency and clarity 

– 1. Improved literals 

– 2. Strings in switch 

 Easier to use generics 

– 3. SafeVarargs (removing varargs warnings) 

– 4. Diamond 

 More concise error handling 

– 5. Multi-catch and precise rethrow 

– 6. Try-with-resources 
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1. Improved Literals 
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Improved Literals 

 Binary integral literals 

– new “0b” prefix 

 Underscores in numeric literals 

– can have multiple underscores between digits 
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Integral Binary Literals 

// An 8-bit 'byte' value: 
byte aByte = (byte)0b00100001; 
 
// A 16-bit 'short' value: 
short aShort = (short)0b1010000101000101; 
 
// Some 32-bit 'int' values: 
int anInt1 = 0b10100001010001011010000101000101; 
int anInt3 = 0B101; // The B can be upper or lower case. 
 
// A 64-bit 'long' value. Note the "L" suffix: 
long aLong = 
0b1010000101000101101000010100010110100001010001011010000101000101L; 
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Underscores in Literals 

long creditCardNumber = 1234_5678_9012_3456L; 
long socialSecurityNumber = 999_99_9999L; 
 
long hexWords = 0xCAFE_BABE; 
long maxLong = 0x7fff_ffff_ffff_ffffL; 
 
byte nybbles = 0b0010_0101; 
long bytes = 0b11010010_01101001_10010100_10010010; 
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Underscores in Literals 

 Grammar changes a bit tricky to get right; 

multiple underscores between digits: 
 

Digits: 

 Digit 

 Digit DigitsAndUnderscoresopt Digit  

 

DigitsAndUnderscores: 

 DigitOrUnderscore 

 DigitsAndUnderscores DigitOrUnderscore 
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Implication of Multiple Underscores 

// Courtesy Josh Bloch 
int bond = 
        0000_____________0000________0000000000000000__000000000000000000+ 
      00000000_________00000000______000000000000000__0000000000000000000+ 
     000____000_______000____000_____000_______0000__00______0+ 
    000______000_____000______000_____________0000___00______0+ 
   0000______0000___0000______0000___________0000_____0_____0+ 
   0000______0000___0000______0000__________0000___________0+ 
   0000______0000___0000______0000_________000+__0000000000+ 
   0000______0000___0000______0000________0000+ 
    000______000_____000______000________0000+ 
     000____000_______000____000_______00000+ 
      00000000_________00000000_______0000000+ 
        0000_____________0000________000000007; 

 

Do we want this to be allowed? 
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2. Strings in Switch 
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Strings in Switch 

switch (name) { 
    case "Athos": 
    case "Porthos": 
    case "Aramis": 
        System.out.println("One of the Three Musketeers"); 
        break; 
    case "d’Artagnan": 
        System.out.println("Not a Musketeer"); 
        break; 
    default: 
        throw new IllegalArgumentException(); 
} 
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Strings in Switch Specification 

 JLS §14.11 The switch Statement 

 

“The type of the switch expression must be char, byte, short, 

int, Character, Byte, Short, Integer, String, or an enum 

type (§8.9), or a compile-time error occurs.” 
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Strings in Switch Specification 

 What does switching on a null do? (NullPointerException) 

 Can null be a case label? (No.) 

 Case-insensitive comparisons? (No.) 

 Implementation 

– relies on a particular algorithm be used for String.hashCode 

– on average faster than if-else chain with >3 cases 

What is there to discuss? 
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3. Safe Varargs 
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Safe Varargs 

List<String> list1 = ... 
List<String> list2 = ... 
List<String> list3 = ... 
 
Set<List<String>> setOfLists = new HashSet<List<String>>(); 
 
Collections.addAll(setOfLists, list1, list2, list3); 
                  ^ 
warning: [unchecked] unchecked generic array 
creation of type java.util.List<java.lang.String>[] 
for varargs parameter 
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“If your entire application has been 
compiled without unchecked 
warnings, it is type safe.” 

Generics Tutorial Extra 
http://docs.oracle.com/javase/tutorial/extra/generics/index.html 

Gilad Bracha, Computational Theologist (emer.) 
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Safe Varargs 

 Desirable to have a sound system of warnings 

– No missed cases (no false negatives) 

– But may have false positives 

 

Background 
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Unchecked Warnings & Heap Pollution 

“To make sure that potential violations of the typing rules are always 

flagged, some accesses to members of a raw type will result in compile-

time unchecked warnings.” — JLS §4.8 Raw Types 

 

“Heap pollution can only occur if the program performed some operation 

involving a raw type that would give rise to a compile-time unchecked 

warning or if the program aliases an array variable of non-reifiable 

element type through an array variable of a supertype which is either raw 

or non-generic.” — JLS §4.12.2 Variables of Reference Type 
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Unchecked Warnings and Soundness 

 Unchecked warnings are intended to be a sound analysis 

 From a certain point of  view, it would be correct (but unhelpful!) to 

always emit an unchecked warning 

 Pre-JDK 7, all callers always got an unchecked warning when calling 

certain varargs library methods (e.g., Collections.addAll) 

– Bad, and complicated interaction between generics and arrays 

– But usually nothing actually dangerous happens! 
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The @SafeVarargs Annotation 

 Added to the problematic library calls in Java 7 

– java.util 

 Arrays.asList 

 Collections.addAll 

 EnumSet.of 

– javax.swing 

 SwingWorker.publish 

 Shuts off annoying warnings to the callers of these methods 

– No changes necessary to callers! 
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@SafeVarargs Design Considerations 

 Annotations on methods are not inherited 

 @SafeVarargs can therefore only be applied to 

– Static methods 

– Constructors 

– final instance methods 

 Additional checks on varargs status, etc. 

 Runtime retention policy 

 

 



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 28 

4. Diamond <> 
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Diamond <> 

Set<List<String>> setOfLists = new HashSet<List<String>>(); 
 
Set<List<String>> setOfLists = new HashSet<>(); 
 

the type in the diamond is 

inferred from the declaration 
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Diamond Use: Variable Initializer 

Set<List<String>> setOfLists = new HashSet<>(); 
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Diamond Use: Assignment Statement 

List<Map<String,Integer>> listOfMaps; 
... 
... 
... 
listOfMaps = new ArrayList<>(); 
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Diamond Use: Return Statement 

public Set<Map<BigInteger,BigInteger>> compute() { 
    ... 
    ... 
    ... 
    return new Set<>(); 

} 
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Diamond <> 

 Diamond uses type inference to figure out types so the programmer 

doesn’t have to write them 

 Primary input to type inference is the target type 

– Determined the context within which the expression occurs 

 Type inference is a constraint satisfaction problem 

– What are the constraints? 

– How can they be satisfied? 

 Want a unique answer returned by the algorithm 
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More Than One Facet 

 Two inference schemes proposed, differing in how they gathered 

constraints 

 Each sometimes more useful than the other 

 Use quantitative analysis to help resolve the issue 

– Prototype both schemes 

– Analyze results on millions of files of code 
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Quantitative Results 

 Both schemes equally effective 

– Each could eliminate a different 90% of the explicit type parameters to 

constructor calls 

– Verified diamond was a worthwhile feature! 

 Choose inference scheme with better evolution and maintenance 

properties 

 Language designer's notebook: Quantitative language design 
http://www.ibm.com/developerworks/java/library/j-ldn1/  

 

http://www.ibm.com/developerworks/java/library/j-ldn1/
http://www.ibm.com/developerworks/java/library/j-ldn1/
http://www.ibm.com/developerworks/java/library/j-ldn1/
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5. Multi-Catch and 

Precise Rethrow 
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Multi-Catch and Precise Rethrow 

 Multi-catch: 

– ability to catch multiple exception types in a single catch clause 

try { 

    ... 

} catch (FirstException | SecondException) { ... } 

 Precise rethrow: 

– change in can-throw analysis of a catch clause 
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Multi-Catch and Precise Rethrow 

 Java’s checked exceptions must either: 

– Be handled by a catch clause; or 

– Be declared in the throws clause of the containing method. 

 Where do checked exceptions come from? 

– The throw statement 

– The throws clause of called methods 

 Can-throw analysis 

– Determines what exceptions can be thrown by a block of code 
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Multi-Catch and Precise Rethrow 

 The can-throw analysis for a catch block has changed 

 Java 6 and earlier: 

– the declared type of the exception variable 

 Java 7 and later: 

– If the exception variable is effectively final (not assigned), 

– Only the checked exceptions that can be thrown by the try-block 
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Multi-Catch and Precise Rethrow 

void exampleMethod(Future future) throws 
    InterruptedException, ExecutionException, TimeoutException 
{ 
    Object result = future.get(5, SECONDS); 
} 
 
 
 

How would we catch, clean up, and rethrow? 

Declaration has: 
throws InterruptedException, ExecutionException, TimeoutException 
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Multi-Catch and Precise Rethrow 

void exampleMethod(Future future) throws 
    InterruptedException, ExecutionException, TimeoutException 
{ 
    try { 
        Object result = future.get(5, SECONDS); 
    } catch (InterruptedException ex) { 
        cleanup(); 
        throw ex; 
    } catch (ExecutionException ex) { 
        cleanup(); 
        throw ex; 
    } catch (TimeoutException ex) { 
        cleanup(); 
        throw ex; 
    } 
} 
 

Java 6: multiple catch clauses 
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Multi-Catch and Precise Rethrow 

void exampleMethod(Future future) throws 
    Exception 
{ 
    try { 
        Object result = future.get(5, SECONDS); 
    } catch (Exception ex) { 
        cleanup(); 
        throw ex; 
    } 
} 
 

Java 6: catch “wider” exception type (poor style) 
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Multi-Catch and Precise Rethrow 

void exampleMethod(Future future) throws 
    InterruptedException, ExecutionException, TimeoutException 
{ 
    try { 
        Object result = future.get(5, SECONDS); 
    } catch (InterruptedException | ExecutionException | 
             TimeoutException ex) { 
        cleanup(); 
        throw ex; 
    } 
} 
 

Java 7: multi-catch 
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Multi-Catch and Precise Rethrow 

void exampleMethod(Future future) throws 
    InterruptedException, ExecutionException, TimeoutException 
{ 
    try { 
        Object result = future.get(5, SECONDS); 
    } catch (Throwable th) { 
        cleanup(); 
        throw th; 
    } 
} 
 

Java 7: precise rethrow (is this good style now?) 
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Precise Rethrow — Compatibility 

try { 
    throw new DaughterOfFoo(); 
} catch (Foo exception) { 
    try { 
        throw exception; 
            // in JDK6, exception is Foo 
            // in JDK7, exception is DaughterOfFoo 
    } catch (SonOfFoo anotherException) { 
        ;   // Reachable?  JDK6=yes, JDK7=no 
    } 
} 
 

Does it matter if this code doesn’t compile in JDK 7? 
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6. Try-with-resources 
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6. Try-with-resources 

 A variation of the try-catch-finally statement 

 Allows initialization of a resource variable 

– Must be of type AutoCloseable 

– Its close() method is called from a generated finally-block 

– Exceptions thrown by close() added to suppressed exception list 

 Useful for avoiding leaks of external objects 

– Files, channels, sockets, SQL statements, ... 

– Many JDK classes retrofitted to be AutoCloseable 

Largest of the Coins 
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Try-with-resources 
You type this: 

try (Resource r = aa()) { 
    bb(); 
} catch (Exception e) { 
    cc(); 
} finally { 
    dd(); 
} 
 

Compiler generates this: 

try { 
    Resource r = null; 
    try { 
        r = aa(); 
        bb(); 
    } finally { 
        if (r != null) 
            r.close(); 
    } 
} catch (Exception e) { 
    cc(); 
} finally { 
    dd(); 
} 

It’s actually more complicated 

because of the way exceptions 

from close() are handled. 
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Project Coin Summary 

 Features add clarity, conciseness, and convenience 

 Methodical and quantitative design approach 

– Decide today what needs to be decided today 

– Consciously leave room for future decisions 

 Language + library co-evolution (but no VM changes) 

 Smooth transition to new features 

– Widespread tool support 

– Use of new features reads well 
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DEMO 
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NIO.2 File System API 



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 52 

Background and Motivation 

 The platform was long overdue something better than java.io.File 

– Doesn’t work consistently across platforms 

– Lack of useful exceptions when a file operation fails 

– Missing basic operations, no file copy, move, ... 

– Limited support for symbolic links 

– Very limited support for file attributes 

– No bulk access to file attributes 

– Badly missing features that many applications require 

– No way to plug-in other file system implementations     
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New File System API 

 Package java.nio.file 

 Also java.nio.file.attribute and java.nio.file.spi 

 Some additions to java.io and java.nio.channels 
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New File System API 

 Path – used to locate a file in a file system 

 Files – defines static methods to operate on files, directories and 

other types of files 

 FileSystem 

– Provides a handle to a file system 

– Factory for objects that access the file system 

– FileSystems.getDefault returns a reference to the default 

FileSystem 

 FileStore – the underlying storage/volume 
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Path 

 Represents an absolute or relative path 

 Create from path String or URI or File.toPath() 

 Consists of one or more name elements, or a root component and 

zero or more name elements 

 Immutable 

 Defines methods to access elements of the path 

 Defines methods to combine paths, return a new path 
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Creating a Path 

Path path = FileSystems.getDefault().getPath("/foo"); 
 



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 57 

Creating a Path 

Path path = Paths.get("/foo");                   
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Creating a Path 

URI u = URI.create("file:///foo"); 
 
Path path = Paths.get(u);  
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Creating a Path 

File f = new File("foo");  
 
Path path = f.toPath();                       
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Accessing Components 

//  foo/bar/gus/baz 
Path path = Paths.get("foo", "bar", "gus", "baz"); 
 
Path name = path.getFileName();    // baz 
 
Path parent = path.getParent();    // foo/bar/gus 
 
Path subpath = path.subpath(1,3);  // bar/gus 
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Combining Paths 

Path dir = Paths.get("/foo/bar");       
 
Path gus = dir.resolve("gus");           //  /foo/bar/gus 
 
Path baz = dir.resolveSibling("baz");    //  /foo/baz 
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Testing Paths 

Path dir = Paths.get("foo/bar");       
 
boolean isAbsolute = dir.isAbsolute(); 
 
boolean isFoo = dir.startsWith("foo"); 
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Other Methods 

Path np = path.normalize(); 
 
Path rel = path.relativize(other); 
 
Path rp = path.toRealPath(); 
 
URI u = path.toUri(); 
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Files class 

 Consists exclusively of static methods that operate on files 

 Most methods take a Path as a parameter to locate the file 

 

Files.createFile(path); 
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Files class 

 In many cases the return value is a Path too 

 

Path foo = Files.createDirectory(dir.resolve("foo")); 
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Files class 

 Methods that access the file system throw a useful IOException if they 

fail 

 Defines range of methods for working with regular files, directories 
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Regular Files 

• Simple operations 
 
 
    Path path = ...                                
 
    byte[] bytes = Files.readAllBytes(path); 
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Regular Files 

 Simple operations 

 

import static java.nio.charsets.StandardCharsets.*; 

 

Path path = ... 

 

List<String> lines =  Files.readAllLines(path, UTF_8); 
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Text Files 

import static java.nio.charsets.StandardCharsets.*;   
 
BufferedReader reader =  
    Files.newBufferedReader(path, UTF_8); 
 
BufferedWriter writer =  
    Files.newBufferedWriter(path, ISO_8859_1); 
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Input and Output Streams 

Path = ... 
 
InputStream in = Files.newInputStream(path); 
 
OutputStream out = Files.newOutputStream(path); 
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Input and Output Streams 

import java.nio.file.StandardOpenOption.*; 
 
Path = ... 
 
OutputStream out =  
    Files.newOutputStream(path, CREATE, APPEND); 
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Channels 

 Files.newByteChannel to open file, returning channel 

 SeekableByteChannel 

– ByteChannel that maintains a file position 

– Channel equivalent of RandomAccessFile 

 
import java.nio.file.StandardOpenOption.*;           
 
SeekableByteChannel sbc =  
    Files.newByteChannel(path, READ, WRITE); 
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Channels 

 FileChannel for more advanced features 

– memory mapped I/O, file locking, ... 

– Implements SeekableByteChannel 

– Now defines open methods to open a file directly  

 AsynchronousFileChannel class for asynchronous file I/O 

– Supports asynchronous read, write, locking  
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Directories 

 DirectoryStream to iterate over entries 

– Scales to large directories 

– Uses less resources 

– Smooth out response times for remote file systems 

– Provides handle to open directory 

– Extends Iterable and Closeable 

 Filtering 

– Built-in support for glob and regex patterns 

– Can also use custom filters 
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DirectoryStream 

Path dir = ... 
 
DirectoryStream<Path> stream = 
    Files.newDirectoryStream(dir); 
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DirectoryStream 

Path dir = ... 
 
try (DirectoryStream<Path> stream = 
         Files.newDirectoryStream(dir)) { 
    for (Path entry: stream) { 
        System.out.println(entry.getFileName()); 
    } 
} 
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DirectoryStream 

 
 
try (DirectoryStream<Path> stream =  
         Files.newDirectoryStream(dir, "*.java")) {  
  
} 
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DirectoryStream 

 
DirectoryStream.Filter<Path> filter = 
        new DirectoryStream.Filter<Path>() { 
    public boolean accept(Path entry) throws IOException { 
        return Files.size(entry) > 8192L; 
    } 
}; 
 
try (DirectoryStream<Path> stream = 
    Files.newDirectoryStream(dir, filter)) { 
  
} 
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Symbolic Links 

  Special file that is a reference to another file  

  Optionally supported based on long standing Unix semantics 

  Followed by default, with some exceptions (detete, move, ...) 
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Symbolic Links 

Path path = ...                                      
 
boolean isSymLink = Files.isSymbolicLink(path); 
 



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 81 

Symbolic Links 

Path link = ...                                      
Path target = ... 
 
Files.createSymbolicLink(link, target); 
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Symbolic Links 

Path link = ...                                      
 
Path target = Files.readSymbolicLink(link); 
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Symbolic Links 

Path path1 = ...                                     
Path path2 = ... 
 
boolean isSame = Files.isSameFile(path1, path2); 
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Symbolic Links 

 
 
Path path = ...                                     
 
BasicFileAttributes attrs =  
    Files.readAttributes(path,  
                         BasicFileAttributes.class);  
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Symbolic Links 

import static java.nio.file.LinkOption.*; 
 
Path path = ...                                     
 
BasicFileAttributes attrs =  
    Files.readAttributes(path,  
                         BasicFileAttributes.class,  
                         NOFOLLOW_LINKS); 
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Other File Operations 

Path source = ...                                 
Path target = ... 
 
Files.copy(source, target); 
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Other File Operations 

import static java.nio.file.StandardCopyOption.*; 
 
Path source = ...                                 
Path target = ... 
 
Files.copy(source, target, REPLACE_EXISTING);  
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Other File Operations 

import static java.nio.file.StandardCopyOption.*; 
 
Path source = ...                                 
Path target = ... 
 
Files.copy(source, target, 
    REPLACE_EXISTING, COPY_ATTRIBUTES);  



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 89 

Other File Operations 

Path source = ...                                 
URI u = ... 
 
try (InputStream in = u.toURL().openStream()) { 
    Files.copy(in, path); 
} 
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Other File Operations 

Path source = ...                                 
Path target = ... 
 
Files.move(source, target); 
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File Attributes 

 Meta-data associated with file 

 Highly platform and file system specific 

 Many applications need access to 

– File permissions 

– File owner 

– Timestamps 

– Extended attributes 

 Long standing performance issues 
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File Attributes 

 Group related attributes 

 Define a view that provides 

– Defines the attributes in the group (name and type) 

– Provides bulk access where appropriate 

– Provides type safe access 

 All implementations required to support a basic view 

 Implementation may support additional views. 
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Basic Attributes 

import java.nio.file.attribute.BasicFileAttributes; 
 
BasicFileAttributes attrs =  
    Files.readAttributes(path, BasicFileAttributes.class); 
 
long size = attrs.size(); 
 
boolean isDirectory = attrs.isDirectory(); 
 
FileTime lastModified = attrs.lastModifiedTime(); 
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Basic Attributes 

interface BasicFileAttributes { 
    FileTime lastModifiedTime(); 
    FileTime lastAccessTime(); 
    FileTime creationTime(); 
    long size(); 
    boolean isRegularFile(); 
    boolean isDirectory(); 
    boolean isSymbolicLink(); 
    boolean isOther(); 
    Object fileKey(); 
} 
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File Attributes 

 API defines several other views 

– POSIX 

– ACL support based on NFSv4 ACL model (RFC 3530) 

– User-defined attributes 

 Implementations may support additional views 

 FileStore defines supportsFileAttributeView method to test if attributes 

are supported by underlying file store. 
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PosixFileAttributes attrs =  
    Files.readAttributes(path, PosixFileAttributes.class); 
 
UserPrincipal owner = attrs.owner(); 
 
UserPrincipal group = attrs.group(); 
 
Set<PosixFilePermission> perms = attrs.permissions(); 
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Setting Initial Attributes 

Set<StandardOpenOption> opts =  
    EnumSet.of(CREATE_NEW, WRITE); 
 
Set<PosixFilePermission> perms = 
    PosixFilePermissions.fromString("rw-r-----"); 
 
WritableByteChannel wbc = Files.newByteChannel(path, opts,  
    PosixFilePermissions.asFileAttribute(perms); 
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Recursive Operations 

 Files.walkFileTree 

– Internal iterator to walk a file tree from a given starting point 

– FileVisitor invoked for each file/directory encountered 

– SimpleFileVisitor with default behavior 

– Depth first, invoked twice for each directory (pre/post) 

– Return value controls iteration 

– When following symbolic links then cycles are detected and reported 

 Most of the samples in the JDK samples directory use it 
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Path start = ...                               
 
Files.walkFileTree(start, new SimpleFileVisitor<Path>() { 
 
 
 
 
 
 
 
 
 
 
 
 
}); 
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Path start = ...                               
 
Files.walkFileTree(start, new SimpleFileVisitor<Path>() { 
 
 
 
 
 
 
    public FileVisitResult  
        visitFile(Path file, BasicFileAttributes attrs) 
    { 
        System.out.println(file); 
        return FileVisitResult.CONTINUE; 
    } 
}); 
 



Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 101 

Path start = ...                               
 
Files.walkFileTree(start, new SimpleFileVisitor<Path>() { 
    public FileVisitResult  
        preVisitDirectory(Path dir, BasicFileAttributes attrs) 
    { 
        System.out.format("%s/%n", dir); 
        return FileVisitResult.CONTINUE; 
    } 
    public FileVisitResult  
        visitFile(Path file, BasicFileAttributes attrs) 
    { 
        System.out.println(file); 
        return FileVisitResult.CONTINUE; 
    } 
}); 
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File Change Notification 

 Watch files and directories for changes 

 Prime motivation is to eliminate the need to poll the file system 

 WatchService 

– Watches registered objects for changes and events 

– Makes use of native event notification facility where available 

– Minimally required to support monitoring directories: events when files in 

directory created, modified or deleted 

– May support watching other types of objects or other events 

– Deliberately a low-level interface to be used in different contexts 
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Registration 

import static java.nio.file.StandardWatchEventKinds.*; 
 
WatchService watcher =  
    FileSystems.getDefault().newWatchService(); 
 
Path dir = .. 
 
WatchKey key = 
    dir.register(watcher, ENTRY_CREATE, ENTRY_DELETE); 
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Retrieving Events 

for (;;) { 
    WatchKey key = watcher.take(); 
 
 
 
 
 
 
    key.reset(); 
} 
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Retrieving Events 

for (;;) { 
    WatchKey key = watcher.take(); 
    for (WatchEvent<?> event: key.pollEvents()) { 
 
 
 
 
    } 
    key.reset(); 
} 
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Retrieving Events 

for (;;) { 
    WatchKey key = watcher.take(); 
    for (WatchEvent<?> event: key.pollEvents()) { 
        if (event.kind() == ENTRY_CREATE) { 
            Path name = (Path)event.context(); 
            System.out.format(“%s created%n”, name); 
        } 
    } 
    key.reset(); 
} 
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Provider Interface 

  Use to develop and deploy custom file system implementations 

  FileSystemProvider is a factory for FileSystem instances 

  Deploy as JAR file on class path or install as extension 

  java.nio.file.FileSystems defines methods to create and obtain 

references to custom file systems 

  Can replace default provider 

  Can interpose on default provider 
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ZIP Provider 

 Sample file system provider shipped with JDK 7 

 Treats the contents of zip or JAR file as a file system 

 Works out of the box 

 Also included as a demo 
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ZIP Provider 

Path zipfile = Paths.get("foo.zip"); 
 
try (FileSystem zipfs = 
        FileSystems.newFileSystem(zipfile, null)) { 
 
 
 
 
 
 
 
} 
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ZIP Provider 

Path zipfile = Paths.get("foo.zip"); 
 
try (FileSystem zipfs = 
        FileSystems.newFileSystem(zipfile, null)) { 
    Path top = zipfs.getPath("/"); 
 
 
 
 
 
 
} 
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ZIP Provider 

Path zipfile = Paths.get("foo.zip"); 
 
try (FileSystem zipfs = 
        FileSystems.newFileSystem(zipfile, null)) { 
    Path top = zipfs.getPath("/"); 
    try (DirectoryStream stream = 
            Files.newDirectoryStream(top)) { 
        for (Path entry: stream) { 
            System.out.println(entry.getFileName());            
        } 
    } 
} 
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Wrap-up 

 The JDK finally gets a comprehensive interface to the file system 

 JDK 7 shipping last July so you can use it now 

 Easy to use, yet powerful 

 Extensible via the provider interface 
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Fork-Join Framework 
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Fork-Join Framework 

 Low overhead work stealing ExecutorService 

 “Large tasks should be split into smaller subtasks, usually via recursive 

decomposition. If tasks are too big, then parallelism cannot improve 

throughput. If too small, then memory and internal task maintenance 

overhead may overwhelm processing.” 
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DEMO 
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Core Libraries Morsels 
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Core Libraries Morsels 

 “Coins” are small language features 

 Small library features are “morsels” 
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java.util.Objects 

 Utility class of static methods 

– compare(obj1,obj2,comparator) 

– requireNonNull(obj), requireNonNull(obj,msg) 

– hashCode(obj), hash(Objects … objs) 

– equals(obj1,obj2) deepEquals(obj1,obj2) 

– toString(obj), toString(obj,nullDefault) 
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java.nio.charset.StandardCharsets 

 Constants for six standard charsets 

– UTF8, UTF16, UTF16_BE, UTF16_LE, US_ASCII, ISO_8859_1 

 Key advantage is ability to use Charset variant methods 

– No more constantly catching UnsupportedCharsetException! 
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Java Collections Framework 

Collections.emptyIterator() 
 

Collections.emptyListIterator() 
 

Collections.emptyEnumeration() 

 

New utilities 
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Java Collections Framework 

 TimSort 

– Capitalizes on runs of partially sorted data 

– Arrays of Object & ArrayList 

– Contributed by Joshua Bloch 

– Designed by Tim Peters 

 Dual Pivot Quicksort 

– 0.8n*ln(n) average comparisons vs Quicksort n*ln(n) 

– Arrays of primitive values 

– Contributed by Vladimir Yaroslavskiy 

– Designed by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch 

Major Sorting improvements 
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TimSort Performance 
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TimSort Performance 
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TimSort Summary 

 Benchmarking from Bentley’s Test Suite (n=1,000,000) 

HotSpot JDK 6 (Merge) JDK 7 (TimSort) 

Client 100% 43% 

Server 100% 26% 

Results courtesy of Vladimir Yaroslavskiy 
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Dual Pivot Quicksort Performance 

 

Results courtesy of Vladimir Yaroslavskiy 
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Dual Pivot Quicksort Performance 

 

Results courtesy of Vladimir Yaroslavskiy 
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Dual-Pivot Quicksort Summary 

 Benchmarking from Bentley’s Test Suite (n=1,000,000) 

HotSpot JDK 6 (Bentley) JDK 7 (Dual-Pivot) 

Client 100% 43% 

Server 100% 28% 

Results courtesy of Vladimir Yaroslavskiy 
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Sorting Comparators 

java.lang.IllegalArgumentException: Comparison method 
violates its general contract! 
   at java.util.TimSort.mergeHi(TimSort.java:868) 
   at java.util.TimSort.mergeAt(TimSort.java:485) 
   at java.util.TimSort.mergeCollapse(TimSort.java:408) 
   at java.util.TimSort.sort(TimSort.java:214) 
   at java.util.TimSort.sort(TimSort.java:173) 
   at java.util.Arrays.sort(Arrays.java:659) 
   at java.util.Collections.sort(Collections.java:217) 
   ... your code ... 

It was there all along 
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Sorting Comparators 

class FooComparator implements Comparator<Foo> { 
    public int compare(Foo o1, Foo o2) { 
        return o1.serial – o2.serial; 
    } 
} 

Beware the overflow 

o1.serial o2.serial Result Valid 

1 1 0 ✔ 

1 2 -1 ✔ 

2 1 1 ✔ 

-1 -2 1 ✔ 

-2,000,000,000 -2,000,000,000 0 ✔ 

2,000,000,000 -2,000,000,000 -294967296 ✘ 
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Sorting Comparators 

class FooComparator implements Comparator<Foo> { 
    public int compare(Foo o1, Foo o2) { 
        return o1.serial – o2.serial; 
    } 
} 

 

 o1 > o2 → o2 < o1 

 o1 == o2 → o2 == o1 

 o1 == o2 → compare(o2,o3) == compare(o1,o3) 

 o1 == o2 → o1.equals(o2)     optional 

Obey all signs 
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Alternative String Hashing 

 Hash based Map performance depends strongly upon hash code 

quality 

 Hash code collisions can lead to O(n) or worse performance 

 Improved hashing for java.lang.String keys with HashMap, 

LinkedHashMap, HashSet, Hashtable, WeakHashMap, 

ConcurrentHashMap 

 Optional behaviour added in Java 7u6. Not optional in Java 8 

 Optional because iterator order becomes unpredictable 

– Smaller the map more likely it’s iteration order is assumed 
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Wrap-Up 
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More Information — Java SE 7 

 Main Java page 

– http://www.oracle.com/technetwork/java/index.html 

 Downloads 

– http://www.oracle.com/technetwork/java/javase/downloads/index.html 

 Features and enhancements (including Project Coin) 

– http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html 

 

 

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
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More Information — NIO 

JavaTM Tutorials 

http://download.oracle.com/javase/tutorial/essential/io/fileio.html 

 

OpenJDK Project 

http://openjdk.java.net/projects/nio 

 

Mailing lists 

nio-dev@openjdk.java.net 

nio-discuss@openjdk.java.net 

 

http://download.oracle.com/javase/tutorial/essential/io/fileio.html
http://openjdk.java.net/projects/nio
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Summary 

 JDK 7 is ready to use today! 

– Many productivity benefits in the language and library 

– Now on the Mac too 

– Regular updates every few months 

 JDK 7 update releases 

– http://jdk7.java.net/ 

– http://openjdk.java.net/projects/jdk7u/ 

http://jdk7.java.net/
http://openjdk.java.net/projects/jdk7u/
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Any Questions? 
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Graphic Section Divider 
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The preceding is intended to outline our general product direction. It is intended 

for information purposes only, and may not be incorporated into any contract. 

It is not a commitment to deliver any material, code, or functionality, and should 

not be relied upon in making purchasing decisions. The development, release, 

and timing of any features or functionality described for Oracle’s products 

remains at the sole discretion of Oracle. 
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