
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 2

JDK7 In Action

Using New Core Platform Features

In Real Code

Joe Darcy @jddarcy

Mike Duigou @mjduigou

Stuart Marks @stuartmarks

Oracle JDK Team

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 3

Program Agenda

 Project Coin — Small Language Features

 NIO.2 File System APIs

 Fork/Join Framework

 Core Library Morsels

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 4

Audience Poll

 Which JDK version are you using?

– pre-1.4.2

– 1.4.2

– 5

– 6

– 7

– 8 preview builds

 Uptake of 7 features?

 Which IDE?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 5

Project Coin

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 6

Project Coin is a suite of

language and library changes

to make things programmers

do every day easier.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 7

Project Coin Benefits

 Remove extra text to make programs more readable

 Encourage writing programs that are more reliable

 Integrate well with past and future changes

Enjoy improved free code flow today!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 8

Coin Constraints

 Small language changes

– Specification

– Implementation

– Testing

 No JVM changes!

 Coordinate with forthcoming larger language changes

 Beware the hazards of language interactions!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 9

The Six Coin Features and How They Help

 Consistency and clarity

– 1. Improved literals

– 2. Strings in switch

 Easier to use generics

– 3. SafeVarargs (removing varargs warnings)

– 4. Diamond

 More concise error handling

– 5. Multi-catch and precise rethrow

– 6. Try-with-resources

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 10

1. Improved Literals

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 11

Improved Literals

 Binary integral literals

– new “0b” prefix

 Underscores in numeric literals

– can have multiple underscores between digits

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 12

Integral Binary Literals

// An 8-bit 'byte' value:
byte aByte = (byte)0b00100001;

// A 16-bit 'short' value:
short aShort = (short)0b1010000101000101;

// Some 32-bit 'int' values:
int anInt1 = 0b10100001010001011010000101000101;
int anInt3 = 0B101; // The B can be upper or lower case.

// A 64-bit 'long' value. Note the "L" suffix:
long aLong =
0b1010000101000101101000010100010110100001010001011010000101000101L;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 13

Underscores in Literals

long creditCardNumber = 1234_5678_9012_3456L;
long socialSecurityNumber = 999_99_9999L;

long hexWords = 0xCAFE_BABE;
long maxLong = 0x7fff_ffff_ffff_ffffL;

byte nybbles = 0b0010_0101;
long bytes = 0b11010010_01101001_10010100_10010010;

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 14

Underscores in Literals

 Grammar changes a bit tricky to get right;

multiple underscores between digits:

Digits:

 Digit

 Digit DigitsAndUnderscoresopt Digit

DigitsAndUnderscores:

 DigitOrUnderscore

 DigitsAndUnderscores DigitOrUnderscore

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 15

Implication of Multiple Underscores

// Courtesy Josh Bloch
int bond =
 0000_____________0000________0000000000000000__000000000000000000+
 00000000_________00000000______000000000000000__0000000000000000000+
 000____000_______000____000_____000_______0000__00______0+
 000______000_____000______000_____________0000___00______0+
 0000______0000___0000______0000___________0000_____0_____0+
 0000______0000___0000______0000__________0000___________0+
 0000______0000___0000______0000_________000+__0000000000+
 0000______0000___0000______0000________0000+
 000______000_____000______000________0000+
 000____000_______000____000_______00000+
 00000000_________00000000_______0000000+
 0000_____________0000________000000007;

Do we want this to be allowed?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 16

2. Strings in Switch

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 17

Strings in Switch

switch (name) {
 case "Athos":
 case "Porthos":
 case "Aramis":
 System.out.println("One of the Three Musketeers");
 break;
 case "d’Artagnan":
 System.out.println("Not a Musketeer");
 break;
 default:
 throw new IllegalArgumentException();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 18

Strings in Switch Specification

 JLS §14.11 The switch Statement

“The type of the switch expression must be char, byte, short,

int, Character, Byte, Short, Integer, String, or an enum

type (§8.9), or a compile-time error occurs.”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 19

Strings in Switch Specification

 What does switching on a null do? (NullPointerException)

 Can null be a case label? (No.)

 Case-insensitive comparisons? (No.)

 Implementation

– relies on a particular algorithm be used for String.hashCode

– on average faster than if-else chain with >3 cases

What is there to discuss?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 20

3. Safe Varargs

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 21

Safe Varargs

List<String> list1 = ...
List<String> list2 = ...
List<String> list3 = ...

Set<List<String>> setOfLists = new HashSet<List<String>>();

Collections.addAll(setOfLists, list1, list2, list3);
 ^
warning: [unchecked] unchecked generic array
creation of type java.util.List<java.lang.String>[]
for varargs parameter

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 22

“If your entire application has been
compiled without unchecked
warnings, it is type safe.”

Generics Tutorial Extra
http://docs.oracle.com/javase/tutorial/extra/generics/index.html

Gilad Bracha, Computational Theologist (emer.)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 23

Safe Varargs

 Desirable to have a sound system of warnings

– No missed cases (no false negatives)

– But may have false positives

Background

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 24

Unchecked Warnings & Heap Pollution

“To make sure that potential violations of the typing rules are always

flagged, some accesses to members of a raw type will result in compile-

time unchecked warnings.” — JLS §4.8 Raw Types

“Heap pollution can only occur if the program performed some operation

involving a raw type that would give rise to a compile-time unchecked

warning or if the program aliases an array variable of non-reifiable

element type through an array variable of a supertype which is either raw

or non-generic.” — JLS §4.12.2 Variables of Reference Type

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 25

Unchecked Warnings and Soundness

 Unchecked warnings are intended to be a sound analysis

 From a certain point of view, it would be correct (but unhelpful!) to

always emit an unchecked warning

 Pre-JDK 7, all callers always got an unchecked warning when calling

certain varargs library methods (e.g., Collections.addAll)

– Bad, and complicated interaction between generics and arrays

– But usually nothing actually dangerous happens!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 26

The @SafeVarargs Annotation

 Added to the problematic library calls in Java 7

– java.util

 Arrays.asList

 Collections.addAll

 EnumSet.of

– javax.swing

 SwingWorker.publish

 Shuts off annoying warnings to the callers of these methods

– No changes necessary to callers!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 27

@SafeVarargs Design Considerations

 Annotations on methods are not inherited

 @SafeVarargs can therefore only be applied to

– Static methods

– Constructors

– final instance methods

 Additional checks on varargs status, etc.

 Runtime retention policy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 28

4. Diamond <>

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 29

Diamond <>

Set<List<String>> setOfLists = new HashSet<List<String>>();

Set<List<String>> setOfLists = new HashSet<>();

the type in the diamond is

inferred from the declaration

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 30

Diamond Use: Variable Initializer

Set<List<String>> setOfLists = new HashSet<>();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 31

Diamond Use: Assignment Statement

List<Map<String,Integer>> listOfMaps;
...
...
...
listOfMaps = new ArrayList<>();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 32

Diamond Use: Return Statement

public Set<Map<BigInteger,BigInteger>> compute() {
 ...
 ...
 ...
 return new Set<>();

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 33

Diamond <>

 Diamond uses type inference to figure out types so the programmer

doesn’t have to write them

 Primary input to type inference is the target type

– Determined the context within which the expression occurs

 Type inference is a constraint satisfaction problem

– What are the constraints?

– How can they be satisfied?

 Want a unique answer returned by the algorithm

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 34

More Than One Facet

 Two inference schemes proposed, differing in how they gathered

constraints

 Each sometimes more useful than the other

 Use quantitative analysis to help resolve the issue

– Prototype both schemes

– Analyze results on millions of files of code

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 35

Quantitative Results

 Both schemes equally effective

– Each could eliminate a different 90% of the explicit type parameters to

constructor calls

– Verified diamond was a worthwhile feature!

 Choose inference scheme with better evolution and maintenance

properties

 Language designer's notebook: Quantitative language design
http://www.ibm.com/developerworks/java/library/j-ldn1/

http://www.ibm.com/developerworks/java/library/j-ldn1/
http://www.ibm.com/developerworks/java/library/j-ldn1/
http://www.ibm.com/developerworks/java/library/j-ldn1/

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 36

5. Multi-Catch and

Precise Rethrow

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 37

Multi-Catch and Precise Rethrow

 Multi-catch:

– ability to catch multiple exception types in a single catch clause

try {

 ...

} catch (FirstException | SecondException) { ... }

 Precise rethrow:

– change in can-throw analysis of a catch clause

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 38

Multi-Catch and Precise Rethrow

 Java’s checked exceptions must either:

– Be handled by a catch clause; or

– Be declared in the throws clause of the containing method.

 Where do checked exceptions come from?

– The throw statement

– The throws clause of called methods

 Can-throw analysis

– Determines what exceptions can be thrown by a block of code

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 39

Multi-Catch and Precise Rethrow

 The can-throw analysis for a catch block has changed

 Java 6 and earlier:

– the declared type of the exception variable

 Java 7 and later:

– If the exception variable is effectively final (not assigned),

– Only the checked exceptions that can be thrown by the try-block

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 40

Multi-Catch and Precise Rethrow

void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 Object result = future.get(5, SECONDS);
}

How would we catch, clean up, and rethrow?

Declaration has:
throws InterruptedException, ExecutionException, TimeoutException

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 41

Multi-Catch and Precise Rethrow

void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (InterruptedException ex) {
 cleanup();
 throw ex;
 } catch (ExecutionException ex) {
 cleanup();
 throw ex;
 } catch (TimeoutException ex) {
 cleanup();
 throw ex;
 }
}

Java 6: multiple catch clauses

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 42

Multi-Catch and Precise Rethrow

void exampleMethod(Future future) throws
 Exception
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (Exception ex) {
 cleanup();
 throw ex;
 }
}

Java 6: catch “wider” exception type (poor style)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 43

Multi-Catch and Precise Rethrow

void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (InterruptedException | ExecutionException |
 TimeoutException ex) {
 cleanup();
 throw ex;
 }
}

Java 7: multi-catch

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 44

Multi-Catch and Precise Rethrow

void exampleMethod(Future future) throws
 InterruptedException, ExecutionException, TimeoutException
{
 try {
 Object result = future.get(5, SECONDS);
 } catch (Throwable th) {
 cleanup();
 throw th;
 }
}

Java 7: precise rethrow (is this good style now?)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 45

Precise Rethrow — Compatibility

try {
 throw new DaughterOfFoo();
} catch (Foo exception) {
 try {
 throw exception;
 // in JDK6, exception is Foo
 // in JDK7, exception is DaughterOfFoo
 } catch (SonOfFoo anotherException) {
 ; // Reachable? JDK6=yes, JDK7=no
 }
}

Does it matter if this code doesn’t compile in JDK 7?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 46

6. Try-with-resources

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 47

6. Try-with-resources

 A variation of the try-catch-finally statement

 Allows initialization of a resource variable

– Must be of type AutoCloseable

– Its close() method is called from a generated finally-block

– Exceptions thrown by close() added to suppressed exception list

 Useful for avoiding leaks of external objects

– Files, channels, sockets, SQL statements, ...

– Many JDK classes retrofitted to be AutoCloseable

Largest of the Coins

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 48

Try-with-resources
You type this:

try (Resource r = aa()) {
 bb();
} catch (Exception e) {
 cc();
} finally {
 dd();
}

Compiler generates this:

try {
 Resource r = null;
 try {
 r = aa();
 bb();
 } finally {
 if (r != null)
 r.close();
 }
} catch (Exception e) {
 cc();
} finally {
 dd();
}

It’s actually more complicated

because of the way exceptions

from close() are handled.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 49

Project Coin Summary

 Features add clarity, conciseness, and convenience

 Methodical and quantitative design approach

– Decide today what needs to be decided today

– Consciously leave room for future decisions

 Language + library co-evolution (but no VM changes)

 Smooth transition to new features

– Widespread tool support

– Use of new features reads well

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 50

DEMO

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 51

NIO.2 File System API

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 52

Background and Motivation

 The platform was long overdue something better than java.io.File

– Doesn’t work consistently across platforms

– Lack of useful exceptions when a file operation fails

– Missing basic operations, no file copy, move, ...

– Limited support for symbolic links

– Very limited support for file attributes

– No bulk access to file attributes

– Badly missing features that many applications require

– No way to plug-in other file system implementations

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 53

New File System API

 Package java.nio.file

 Also java.nio.file.attribute and java.nio.file.spi

 Some additions to java.io and java.nio.channels

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 54

New File System API

 Path – used to locate a file in a file system

 Files – defines static methods to operate on files, directories and

other types of files

 FileSystem

– Provides a handle to a file system

– Factory for objects that access the file system

– FileSystems.getDefault returns a reference to the default

FileSystem

 FileStore – the underlying storage/volume

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 55

Path

 Represents an absolute or relative path

 Create from path String or URI or File.toPath()

 Consists of one or more name elements, or a root component and

zero or more name elements

 Immutable

 Defines methods to access elements of the path

 Defines methods to combine paths, return a new path

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 56

Creating a Path

Path path = FileSystems.getDefault().getPath("/foo");

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 57

Creating a Path

Path path = Paths.get("/foo");

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 58

Creating a Path

URI u = URI.create("file:///foo");

Path path = Paths.get(u);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 59

Creating a Path

File f = new File("foo");

Path path = f.toPath();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 60

Accessing Components

// foo/bar/gus/baz
Path path = Paths.get("foo", "bar", "gus", "baz");

Path name = path.getFileName(); // baz

Path parent = path.getParent(); // foo/bar/gus

Path subpath = path.subpath(1,3); // bar/gus

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 61

Combining Paths

Path dir = Paths.get("/foo/bar");

Path gus = dir.resolve("gus"); // /foo/bar/gus

Path baz = dir.resolveSibling("baz"); // /foo/baz

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 62

Testing Paths

Path dir = Paths.get("foo/bar");

boolean isAbsolute = dir.isAbsolute();

boolean isFoo = dir.startsWith("foo");

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 63

Other Methods

Path np = path.normalize();

Path rel = path.relativize(other);

Path rp = path.toRealPath();

URI u = path.toUri();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 64

Files class

 Consists exclusively of static methods that operate on files

 Most methods take a Path as a parameter to locate the file

Files.createFile(path);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 65

Files class

 In many cases the return value is a Path too

Path foo = Files.createDirectory(dir.resolve("foo"));

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 66

Files class

 Methods that access the file system throw a useful IOException if they

fail

 Defines range of methods for working with regular files, directories

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 67

Regular Files

• Simple operations

 Path path = ...

 byte[] bytes = Files.readAllBytes(path);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 68

Regular Files

 Simple operations

import static java.nio.charsets.StandardCharsets.*;

Path path = ...

List<String> lines = Files.readAllLines(path, UTF_8);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 69

Text Files

import static java.nio.charsets.StandardCharsets.*;

BufferedReader reader =
 Files.newBufferedReader(path, UTF_8);

BufferedWriter writer =
 Files.newBufferedWriter(path, ISO_8859_1);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 70

Input and Output Streams

Path = ...

InputStream in = Files.newInputStream(path);

OutputStream out = Files.newOutputStream(path);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 71

Input and Output Streams

import java.nio.file.StandardOpenOption.*;

Path = ...

OutputStream out =
 Files.newOutputStream(path, CREATE, APPEND);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 72

Channels

 Files.newByteChannel to open file, returning channel

 SeekableByteChannel

– ByteChannel that maintains a file position

– Channel equivalent of RandomAccessFile

import java.nio.file.StandardOpenOption.*;

SeekableByteChannel sbc =
 Files.newByteChannel(path, READ, WRITE);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 73

Channels

 FileChannel for more advanced features

– memory mapped I/O, file locking, ...

– Implements SeekableByteChannel

– Now defines open methods to open a file directly

 AsynchronousFileChannel class for asynchronous file I/O

– Supports asynchronous read, write, locking

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 74

Directories

 DirectoryStream to iterate over entries

– Scales to large directories

– Uses less resources

– Smooth out response times for remote file systems

– Provides handle to open directory

– Extends Iterable and Closeable

 Filtering

– Built-in support for glob and regex patterns

– Can also use custom filters

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 75

DirectoryStream

Path dir = ...

DirectoryStream<Path> stream =
 Files.newDirectoryStream(dir);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 76

DirectoryStream

Path dir = ...

try (DirectoryStream<Path> stream =
 Files.newDirectoryStream(dir)) {
 for (Path entry: stream) {
 System.out.println(entry.getFileName());
 }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 77

DirectoryStream

try (DirectoryStream<Path> stream =
 Files.newDirectoryStream(dir, "*.java")) {

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 78

DirectoryStream

DirectoryStream.Filter<Path> filter =
 new DirectoryStream.Filter<Path>() {
 public boolean accept(Path entry) throws IOException {
 return Files.size(entry) > 8192L;
 }
};

try (DirectoryStream<Path> stream =
 Files.newDirectoryStream(dir, filter)) {

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 79

Symbolic Links

 Special file that is a reference to another file

 Optionally supported based on long standing Unix semantics

 Followed by default, with some exceptions (detete, move, ...)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 80

Symbolic Links

Path path = ...

boolean isSymLink = Files.isSymbolicLink(path);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 81

Symbolic Links

Path link = ...
Path target = ...

Files.createSymbolicLink(link, target);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 82

Symbolic Links

Path link = ...

Path target = Files.readSymbolicLink(link);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 83

Symbolic Links

Path path1 = ...
Path path2 = ...

boolean isSame = Files.isSameFile(path1, path2);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 84

Symbolic Links

Path path = ...

BasicFileAttributes attrs =
 Files.readAttributes(path,
 BasicFileAttributes.class);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 85

Symbolic Links

import static java.nio.file.LinkOption.*;

Path path = ...

BasicFileAttributes attrs =
 Files.readAttributes(path,
 BasicFileAttributes.class,
 NOFOLLOW_LINKS);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 86

Other File Operations

Path source = ...
Path target = ...

Files.copy(source, target);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 87

Other File Operations

import static java.nio.file.StandardCopyOption.*;

Path source = ...
Path target = ...

Files.copy(source, target, REPLACE_EXISTING);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 88

Other File Operations

import static java.nio.file.StandardCopyOption.*;

Path source = ...
Path target = ...

Files.copy(source, target,
 REPLACE_EXISTING, COPY_ATTRIBUTES);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 89

Other File Operations

Path source = ...
URI u = ...

try (InputStream in = u.toURL().openStream()) {
 Files.copy(in, path);
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 90

Other File Operations

Path source = ...
Path target = ...

Files.move(source, target);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 91

File Attributes

 Meta-data associated with file

 Highly platform and file system specific

 Many applications need access to

– File permissions

– File owner

– Timestamps

– Extended attributes

 Long standing performance issues

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 92

File Attributes

 Group related attributes

 Define a view that provides

– Defines the attributes in the group (name and type)

– Provides bulk access where appropriate

– Provides type safe access

 All implementations required to support a basic view

 Implementation may support additional views.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 93

Basic Attributes

import java.nio.file.attribute.BasicFileAttributes;

BasicFileAttributes attrs =
 Files.readAttributes(path, BasicFileAttributes.class);

long size = attrs.size();

boolean isDirectory = attrs.isDirectory();

FileTime lastModified = attrs.lastModifiedTime();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 94

Basic Attributes

interface BasicFileAttributes {
 FileTime lastModifiedTime();
 FileTime lastAccessTime();
 FileTime creationTime();
 long size();
 boolean isRegularFile();
 boolean isDirectory();
 boolean isSymbolicLink();
 boolean isOther();
 Object fileKey();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 95

File Attributes

 API defines several other views

– POSIX

– ACL support based on NFSv4 ACL model (RFC 3530)

– User-defined attributes

 Implementations may support additional views

 FileStore defines supportsFileAttributeView method to test if attributes

are supported by underlying file store.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 96

PosixFileAttributes attrs =
 Files.readAttributes(path, PosixFileAttributes.class);

UserPrincipal owner = attrs.owner();

UserPrincipal group = attrs.group();

Set<PosixFilePermission> perms = attrs.permissions();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 97

Setting Initial Attributes

Set<StandardOpenOption> opts =
 EnumSet.of(CREATE_NEW, WRITE);

Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rw-r-----");

WritableByteChannel wbc = Files.newByteChannel(path, opts,
 PosixFilePermissions.asFileAttribute(perms);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 98

Recursive Operations

 Files.walkFileTree

– Internal iterator to walk a file tree from a given starting point

– FileVisitor invoked for each file/directory encountered

– SimpleFileVisitor with default behavior

– Depth first, invoked twice for each directory (pre/post)

– Return value controls iteration

– When following symbolic links then cycles are detected and reported

 Most of the samples in the JDK samples directory use it

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 99

Path start = ...

Files.walkFileTree(start, new SimpleFileVisitor<Path>() {

});

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 100

Path start = ...

Files.walkFileTree(start, new SimpleFileVisitor<Path>() {

 public FileVisitResult
 visitFile(Path file, BasicFileAttributes attrs)
 {
 System.out.println(file);
 return FileVisitResult.CONTINUE;
 }
});

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 101

Path start = ...

Files.walkFileTree(start, new SimpleFileVisitor<Path>() {
 public FileVisitResult
 preVisitDirectory(Path dir, BasicFileAttributes attrs)
 {
 System.out.format("%s/%n", dir);
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult
 visitFile(Path file, BasicFileAttributes attrs)
 {
 System.out.println(file);
 return FileVisitResult.CONTINUE;
 }
});

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 102

File Change Notification

 Watch files and directories for changes

 Prime motivation is to eliminate the need to poll the file system

 WatchService

– Watches registered objects for changes and events

– Makes use of native event notification facility where available

– Minimally required to support monitoring directories: events when files in

directory created, modified or deleted

– May support watching other types of objects or other events

– Deliberately a low-level interface to be used in different contexts

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 103

Registration

import static java.nio.file.StandardWatchEventKinds.*;

WatchService watcher =
 FileSystems.getDefault().newWatchService();

Path dir = ..

WatchKey key =
 dir.register(watcher, ENTRY_CREATE, ENTRY_DELETE);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 104

Retrieving Events

for (;;) {
 WatchKey key = watcher.take();

 key.reset();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 105

Retrieving Events

for (;;) {
 WatchKey key = watcher.take();
 for (WatchEvent<?> event: key.pollEvents()) {

 }
 key.reset();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 106

Retrieving Events

for (;;) {
 WatchKey key = watcher.take();
 for (WatchEvent<?> event: key.pollEvents()) {
 if (event.kind() == ENTRY_CREATE) {
 Path name = (Path)event.context();
 System.out.format(“%s created%n”, name);
 }
 }
 key.reset();
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 107

Provider Interface

 Use to develop and deploy custom file system implementations

 FileSystemProvider is a factory for FileSystem instances

 Deploy as JAR file on class path or install as extension

 java.nio.file.FileSystems defines methods to create and obtain

references to custom file systems

 Can replace default provider

 Can interpose on default provider

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 108

ZIP Provider

 Sample file system provider shipped with JDK 7

 Treats the contents of zip or JAR file as a file system

 Works out of the box

 Also included as a demo

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 109

ZIP Provider

Path zipfile = Paths.get("foo.zip");

try (FileSystem zipfs =
 FileSystems.newFileSystem(zipfile, null)) {

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 110

ZIP Provider

Path zipfile = Paths.get("foo.zip");

try (FileSystem zipfs =
 FileSystems.newFileSystem(zipfile, null)) {
 Path top = zipfs.getPath("/");

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 111

ZIP Provider

Path zipfile = Paths.get("foo.zip");

try (FileSystem zipfs =
 FileSystems.newFileSystem(zipfile, null)) {
 Path top = zipfs.getPath("/");
 try (DirectoryStream stream =
 Files.newDirectoryStream(top)) {
 for (Path entry: stream) {
 System.out.println(entry.getFileName());
 }
 }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 112

Wrap-up

 The JDK finally gets a comprehensive interface to the file system

 JDK 7 shipping last July so you can use it now

 Easy to use, yet powerful

 Extensible via the provider interface

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 113

Fork-Join Framework

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 114

Fork-Join Framework

 Low overhead work stealing ExecutorService

 “Large tasks should be split into smaller subtasks, usually via recursive

decomposition. If tasks are too big, then parallelism cannot improve

throughput. If too small, then memory and internal task maintenance

overhead may overwhelm processing.”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 115

DEMO

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 116

Core Libraries Morsels

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 117

Core Libraries Morsels

 “Coins” are small language features

 Small library features are “morsels”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 118

java.util.Objects

 Utility class of static methods

– compare(obj1,obj2,comparator)

– requireNonNull(obj), requireNonNull(obj,msg)

– hashCode(obj), hash(Objects … objs)

– equals(obj1,obj2) deepEquals(obj1,obj2)

– toString(obj), toString(obj,nullDefault)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 119

java.nio.charset.StandardCharsets

 Constants for six standard charsets

– UTF8, UTF16, UTF16_BE, UTF16_LE, US_ASCII, ISO_8859_1

 Key advantage is ability to use Charset variant methods

– No more constantly catching UnsupportedCharsetException!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 120

Java Collections Framework

Collections.emptyIterator()

Collections.emptyListIterator()

Collections.emptyEnumeration()

New utilities

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 121

Java Collections Framework

 TimSort

– Capitalizes on runs of partially sorted data

– Arrays of Object & ArrayList

– Contributed by Joshua Bloch

– Designed by Tim Peters

 Dual Pivot Quicksort

– 0.8n*ln(n) average comparisons vs Quicksort n*ln(n)

– Arrays of primitive values

– Contributed by Vladimir Yaroslavskiy

– Designed by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch

Major Sorting improvements

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 122

TimSort Performance

Random
111%

Period(5)
49%

Random(3)
44%

Period(2)
40%

0

20

40

60

80

100

120

140

JDK 6

JDK 7

Results courtesy of Vladimir Yaroslavskiy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 123

TimSort Performance

Ascending
19%

Descending
7%

Organ pipes
20%

All equal
20%

0

5

10

15

20

25

30

35

40

45

50

JDK 6

JDK 7

Results courtesy of Vladimir Yaroslavskiy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 124

TimSort Summary

 Benchmarking from Bentley’s Test Suite (n=1,000,000)

HotSpot JDK 6 (Merge) JDK 7 (TimSort)

Client 100% 43%

Server 100% 26%

Results courtesy of Vladimir Yaroslavskiy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 125

Dual Pivot Quicksort Performance

Results courtesy of Vladimir Yaroslavskiy

Random
78% (70%)

Ascending
47% (3%)

Descending
51% (7%)

Organ pipes
62% (55%)

0

20

40

60

80

100

120

140

160

180

200

JDK 6

JDK 7

Pending

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 126

Dual Pivot Quicksort Performance

Results courtesy of Vladimir Yaroslavskiy

Period(5)
81% (50%)

Random(3)
72% (66%)

Period(2)
57% (54%)

All equal
52% (50%)

0

5

10

15

20

25

JDK 6

JDK 7

Pending

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 127

Dual-Pivot Quicksort Summary

 Benchmarking from Bentley’s Test Suite (n=1,000,000)

HotSpot JDK 6 (Bentley) JDK 7 (Dual-Pivot)

Client 100% 43%

Server 100% 28%

Results courtesy of Vladimir Yaroslavskiy

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 128

Sorting Comparators

java.lang.IllegalArgumentException: Comparison method
violates its general contract!
 at java.util.TimSort.mergeHi(TimSort.java:868)
 at java.util.TimSort.mergeAt(TimSort.java:485)
 at java.util.TimSort.mergeCollapse(TimSort.java:408)
 at java.util.TimSort.sort(TimSort.java:214)
 at java.util.TimSort.sort(TimSort.java:173)
 at java.util.Arrays.sort(Arrays.java:659)
 at java.util.Collections.sort(Collections.java:217)
 ... your code ...

It was there all along

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 129

Sorting Comparators

class FooComparator implements Comparator<Foo> {
 public int compare(Foo o1, Foo o2) {
 return o1.serial – o2.serial;
 }
}

Beware the overflow

o1.serial o2.serial Result Valid

1 1 0 ✔

1 2 -1 ✔

2 1 1 ✔

-1 -2 1 ✔

-2,000,000,000 -2,000,000,000 0 ✔

2,000,000,000 -2,000,000,000 -294967296 ✘

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 130

Sorting Comparators

class FooComparator implements Comparator<Foo> {
 public int compare(Foo o1, Foo o2) {
 return o1.serial – o2.serial;
 }
}

 o1 > o2 → o2 < o1

 o1 == o2 → o2 == o1

 o1 == o2 → compare(o2,o3) == compare(o1,o3)

 o1 == o2 → o1.equals(o2) optional

Obey all signs

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 131

Alternative String Hashing

 Hash based Map performance depends strongly upon hash code

quality

 Hash code collisions can lead to O(n) or worse performance

 Improved hashing for java.lang.String keys with HashMap,

LinkedHashMap, HashSet, Hashtable, WeakHashMap,

ConcurrentHashMap

 Optional behaviour added in Java 7u6. Not optional in Java 8

 Optional because iterator order becomes unpredictable

– Smaller the map more likely it’s iteration order is assumed

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 132

Wrap-Up

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 133

More Information — Java SE 7

 Main Java page

– http://www.oracle.com/technetwork/java/index.html

 Downloads

– http://www.oracle.com/technetwork/java/javase/downloads/index.html

 Features and enhancements (including Project Coin)

– http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 134

More Information — NIO

JavaTM Tutorials

http://download.oracle.com/javase/tutorial/essential/io/fileio.html

OpenJDK Project

http://openjdk.java.net/projects/nio

Mailing lists

nio-dev@openjdk.java.net

nio-discuss@openjdk.java.net

http://download.oracle.com/javase/tutorial/essential/io/fileio.html
http://openjdk.java.net/projects/nio

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 135

Summary

 JDK 7 is ready to use today!

– Many productivity benefits in the language and library

– Now on the Mac too

– Regular updates every few months

 JDK 7 update releases

– http://jdk7.java.net/

– http://openjdk.java.net/projects/jdk7u/

http://jdk7.java.net/
http://openjdk.java.net/projects/jdk7u/

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 136

Any Questions?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 137

Graphic Section Divider

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 138

The preceding is intended to outline our general product direction. It is intended

for information purposes only, and may not be incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release,

and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 139

