
Java certification success, Part 2:
SCWCD

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Getting started .. 2
2. The servlet model .. 4
3. Structure and deployment of modern servlet Web apps......... 11
4. The servlet container model .. 16
5. Developing servlets to handle server-side exceptions 22
6. Developing servlets using session management 27
7. Developing secure Web applications 32
8. Developing thread-safe servlets 38
9. The JavaServer pages technology model 43
10. Developing reusable Web components........................... 51
11. Developing JSP pages using JavaBeans components 56
12. Developing JSP pages using custom tags 64
13. Developing a custom tag library.................................... 69
14. J2EE design patterns .. 74
15. Wrap-up and resources.. 79

Java certification success, Part 2: SCWCD Page 1 of 81

Section 1. Getting started

Preparing for SCWCD

Sun Certified Web Component Developer (SCWCD) is one of most coveted
certifications in the J2EE domain. If you're considering the SCWCD certification, you
need to be aware that it takes more than just learning the servlet and JSP
technologies. It requires in-depth knowledge of the topics specified in the exam
objectives. It is not uncommon for even experienced programmers to perform poorly in
the exam due to the fact that they might not be well-versed in everything that is
covered by the objectives. For the best chance at success, it is important to follow a
learning approach that is guided by the exam objectives.

Should I take this tutorial?

The SCWCD certification exam can be taken only by Sun Certified Programmers for
Java 2 platform.

This tutorial is intended for professionals experienced in developing Web applications
using the Java technology servlet and Java Server Pages (JSP) APIs. As it is not a
comprehensive tutorial for these technologies, it is not recommended for novices in this
field. The aim of this tutorial is to provide precise coverage of the concepts tested in the
SCWCD exam. It focuses solely on what you need to know to be successful in the
exam.

The SCWCD certification consists of 13 main objectives dealing with servlets as well as
JSP pages, using JavaBeans components in JSP pages, developing and using custom
tags, and dealing with some important J2EE design patterns. The objectives are:

• The servlet model

• Structure and deployment of modern servlet Web apps

• The servlet container model

• Developing servlets to handle server-side exceptions

• Developing servlets using session management

• Developing secure Web applications

• Developing thread-safe servlets

• The JavaServer Pages technology model

• Developing reusable Web components

• Developing JSP pages using JavaBeans components

• Developing JSP pages using custom tags

• Developing a custom tag library

• J2EE design patterns

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 81 Java certification success, Part 2: SCWCD

Each chapter of the tutorial deals with a single objective. The code snippets provided
as examples are easy to understand. This tutorial does not elaborate much on each
topic; rather, it helps you prepare for the exam by concentrating on the key points.

Each chapter contains mock questions in the pattern of the SCWCD exam. These
questions demonstrate the use of the ideas covered in that objective. Explanations
about the correct and incorrect choices are included to give you a better understanding
of the concepts.

About the author

Seema Manivannan has a Bachelor of Technology degree in Electrical and Electronics
Engineering and a PG in Advanced Computing from C-DAC. Her work experience
includes software development, teaching, and content development in Java
programming and related technologies. She holds SCJP, SCWCD, and SCBCD
certifications.

She has been with Whizlabs for over two years, where she has co-authored the Sun
certification exam simulators. She is an experienced corporate trainer and conducts
Instructor-led online training for the SCJP, SCWCD, and SCBCD certification exams for
Whizlabs. She is also the moderator of the Whizlabs SCBCD discussion forum. You
can reach her at seema@whizlabs.com.

Acknowledgements

I would to like to acknowledge and thank Pradeep Chopra for his valuable contribution
in writing this tutorial.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 3 of 81

mailto :seema@whizlabs.com

Section 2. The servlet model

HTTP methods

The HTTP methods indicate the purpose of an HTTP request made by a client to a
server. The four most common HTTP methods are GET, POST, PUT, and HEAD. Let's
look at the features of these methods and how they are triggered.

GET method

The GET method is used to retrieve a resource (like an image or an HTML page) from
the server, which is specified in the request URL. When the user types the request
URL into the browser's location field or clicks on a hyperlink, the GET method is
triggered. If a tag is used, the method attribute can be specified as "GET" to cause the
browser to send a GET request. Even if no method attribute is specified, the browser
uses the GET method by default.

We can pass request parameters by having a query string appended to the request
URL, which is a set of name-value pairs separated by an "&" character. For instance:

http://www.testserver.com/myapp/testservlet?studname=Tom&studno=123

Here we have passed the parameters studname and studno, which have the values
"Tom" and "123" respectively. Because the data passed using the GET method is
visible inside the URL, it is not advisable to send sensitive information in this manner.
The other restrictions for the GET method are that it can pass only text data and not
more than 255 characters.

POST method

The purpose of the POST method is to "post" or send information to the server. It is
possible to send an unlimited amount of data as part of a POST request, and the type of
data can be binary or text.

This method is usually used for sending bulk data, such as uploading files or updating
databases. The method attribute of the <form> tag can be specified as "POST" to
cause the browser to send a POST request to the server.

Because the request parameters are sent as part of the request body, it is not visible
as part of the request URL, which was also the case with the GET method.

PUT method

The PUT method adds a resource to the server and is mainly used for publishing
pages. It is similar to a POST request, because both are directed at server-side
resources. However, the difference is that the POST method causes a resource on the
server to process the request, while the PUT method associates the request data with a
URL on the server.

The method attribute of the <form> tag can be specified as "PUT" to cause the
browser to send a PUT request to the server.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 81 Java certification success, Part 2: SCWCD

HEAD method

The HEAD method is used to retrieve the headers of a particular resource on the
server. You would typically use HEAD for getting the last modified time or content type
of a resource. It can save bandwidth because the meta-information about the resource
is obtained without transferring the resource itself.

The method attribute of the <form> tag can be specified as "HEAD" to cause the
browser to send a HEAD request to the server.

Request handling methods in HttpServlet

When an HTTP request from a client is delegated to a servlet, the service() method
of the HttpServlet class is invoked. The HttpServlet class adds additional
methods, which are automatically called by the service() method in the
HttpServlet class to aid in processing HTTP-based requests. You can override
these methods in your servlet class to provide the handling logic for each HTTP
request.

The methods are listed in the following table:

Table 1. HTTP Methods

HTTP Method Handler method in HttpServlet class

GET doGet()

POST doPost()

HEAD doHead()

PUT doPut()

The methods take HttpServletRequest and HttpServletResponse as the
arguments. All of them throw ServletException and IOException.

Servlet lifecycle

The servlet lifecycle consists of a series of events, which define how the servlet is
loaded and instantiated, initialized, how it handles requests from clients, and how is it
taken out of service.

Loading and instantiation

For each servlet defined in the deployment descriptor of the Web application, the
servlet container locates and loads a class of the type of the servlet. This can happen
when the servlet engine itself is started, or later when a client request is actually
delegated to the servlet. After that, it instantiates one or more object instances of the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 5 of 81

servlet class to service the client requests.

Initialization

After instantiation, the container initializes a servlet before it is ready to handle client
requests. The container initializes the servlet by invoking its init() method, passing
an object implementing the ServletConfig interface. In the init() method, the
servlet can read configuration parameters from the deployment descriptor or perform
any other one-time activities, so the init() method is invoked once and only once by
the servlet container.

Request handling

After the servlet is initialized, the container may keep it ready for handling client
requests. When client requests arrive, they are delegated to the servlet through the
service()method, passing the request and response objects as parameters. In the
case of HTTP requests, the request and response objects are implementations of
HttpServletRequest and HttpServletResponse respectively. In the
HttpServlet class, the service() method invokes a different handler method for
each type of HTTP request, doGet() method for GET requests, doPost() method for
POST requests, and so on.

Removal from service

A servlet container may decide to remove a servlet from service for various reasons,
such as to conserve memory resources. To do this, the servlet container calls the
destroy() method on the servlet. Once the destroy() method has been called, the
servlet may not service any more client requests. Now the servlet instance is eligible
for garbage collection.

Retrieving request parameters and headers

Request parameters are stored by the servlet container as a set of name-value pairs.
The following methods of the ServletRequest interface are used to retrieve the
parameters sent by a client:

public String getParameter(String name);
public java.lang.String[] getParameterValues(String name);
public java.util.Enumeration getParameterNames();

The getParameter() method returns a single value of the named parameter. For
parameters that have more than one value, the getParameterValues() method is
used. The getParameterNames() method is useful when the parameter names are
not known; it gives the names of all the parameters as an Enumeration.

Retrieving request headers

The HTTP request headers can be retrieved using the following methods of the
HttpServletRequest interface:

public String getHeader(String name);
public java.util.Enumeration getHeaders(String name);
public java.util.Enumeration getHeaderNames();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 81 Java certification success, Part 2: SCWCD

For instance:

public void doPost(HttpServletRequest req,HttpServletResponse res){
Enumeration headers=req.getHeaderNames();
while(headers.hasMoreElements()) {

String header=(String)headers.nextElement();
System.out.println("Header is "+header);

}
}

Retrieving initialization parameters

The initialization parameters of a servlet can be retrieved using the following methods
of the ServletConfig interface.

public String getInitParameter(String name);
public java.util.Enumeration getInitParameterNames();

Setting the response

The following methods of the ServletResponse interface can be used to set the
response that is sent back to the client.

public void setContentType(String type);

This method sets the content type of the response that is sent to the client. The default
value is "text/html."

public java.io.PrintWriter getWriter();
public javax.servlet.ServletOutputStream getOutputStream();

The getWriter() method returns a PrintWriter object that can send character
text to the client. The getOutputStream() method returns a
ServletOutputStream suitable for writing binary data in the response. Either of
these methods can be used to write the response, but not both. If you call
getWriter() after calling getOutputStream() or vice versa, an
IllegalStateException will be thrown.

For instance:

public void doGet(HttpServletRequest req,HttpServletResponse res) {
res.setContentType("text/html");
PrintWriter pw=res.getWriter();
pw.println("Hello World");
pw.close();

}

Setting response headers

Response headers provide additional information to the browser about the response
received. Header information is stored as name value pairs. The following methods in
the HttpServletResponse interface are available to set header information.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 7 of 81

public void setHeader(String name, String value);
public void setIntHeader(String name, int value);
public void setDateHeader(String name, long value);

Redirecting requests

It is possible to send a temporary redirect message to the browser, which directs it to
another URL. The method is provided by the HttpServletResponse interface.

public void sendRedirect(String location);

This method can accept relative URLs; the servlet container will convert the relative
URL to an absolute URL before sending the response to the client. If this method is
called after the response is committed, IllegalStateException is thrown.

Using the RequestDispatcher interface

The RequestDispatcher interface provides methods to include or forward a request
to another resource, which can be a servlet, HTML file, or JSP file. These methods are:

public void forward(ServletRequest request, ServletResponse response);
public void include(ServletRequest request, ServletResponse response);

The forward() method allows a servlet to do some processing of its own before the
request is sent to another resource that generates the response. The forward()
method should not be called after the response is committed, in which case it throws
IllegalStateException.

The include() method enables a servlet to include the content of another resource
into its own response. Unlike in the case of the forward() method, the included
resource cannot change the response status code or set headers.

public RequestDispatcher getRequestDispatcher(String path);

Object attributes

A servlet can store data in three different scopes: request, session, and context. Data
is stored as key value pairs, where the key is a String object and the value is any
object. These data objects are called attributes.

The attribute values persist as long as the scope is valid. The ServletRequest,
HttpSession(), and ServletContext() methods provide the following methods to
get, set, and remove attributes:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 81 Java certification success, Part 2: SCWCD

public java.lang.Object getAttribute(String name)

public void setAttribute(String name, Object object)

public void removeAttribute(String name)

The attributes set within the request scope can be shared with other resources by
forwarding the request. However, the attributes are available only for the life of the
request. A servlet can share session attributes with other resources that are serving a
request for the same client session. The attributes are available only while the client is
still active. The context scope is common for all the resources that are part of the same
Web application, so the objects stored within a context can be shared between all
these resources. These are available throughout the life of the Web application.

Summary

In this section, you learned the servlet methods invoked in response to the different
HTTP requests like GET, POST, and PUT. Next, you walked through the servlet lifecycle
methods and the purpose of each one of them. You examined the interfaces and
methods used for operations like reading parameters, setting headers, and so on, and
discovered how to use the RequestDispatcher interface to include or forward to a
Web resource. Finally, you looked at the methods to get and set object attributes in
request, session, and context scopes.

Sample questions

Question 1:
You need to create a database connection in your application after reading the
username, password, and database server URL from the deployment descriptor. Which
will be the best place to do this?

Choices:

• A. Servlet constructor

• B. init() method

• C. service() method

• D. doGet() method

• E. doPost() method

Correct choice:

• B

Explanation:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 9 of 81

The init() method is invoked once and only once by the container, so the creation of
the database connection will be done only once, which is appropriate. The
service(), doGet(), and doPost() methods might be called many times by the
container.

The username, password, and URL are to be read from the deployment descriptor.
These initialization parameters are contained in the ServletConfig object, which is
passed to the init() method. That is why we need to use the init() method
instead of the constructor for this purpose, even though the constructor is also called
only once.

Question 2:

A user can select multiple locations from a list box on an HTML form. Which of the
following methods can be used to retrieve all the selected locations?

Choices:

• A. getParameter()
• B. getParameters()
• C. getParameterValues()
• D. getParamValues()
• E. None of the above

Correct choice:

• C

Explanation:

The getParameterValues(String paraName) method of the ServletRequest
interface returns all the values associated with a parameter. It returns an array of
Strings containing the values. The getParameter() method returns just one of the
values associated with the given parameter, so choice A is incorrect. There are no
methods named getParameters() or getParamValues(), so choices B and D are
incorrect.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 81 Java certification success, Part 2: SCWCD

Section 3. Structure and deployment of modern servlet
Web apps

A Web application is a collection of servlets, JSP pages, static pages, classes, and
other resources that can be packaged in a standard way and run on multiple containers
from multiple vendors.

Application structure

A Web application exists in a structured hierarchy of directories, which is defined by the
Java Servlet Specification. The root directory of the Web application contains all the
public resources, such as images, HTML pages, and so on, stored directly or within
subfolders.

A special directory called WEB-INF exists, which contains any files that are not publicly
accessible to clients.

The WEB-INF directory is organized as follows:

• The /WEB-INF/web.xml deployment descriptor.

• The /WEB-INF/classes/ directory for servlet and utility classes. The container makes
these classes available to the Web application class loader.

• The /WEB-INF/lib/ directory for JAR files. These files contain servlets, beans, and
other utility classes useful to the Web application. The container adds all the JAR
files from this directory to the Web application class path.

Web Archive (WAR) files

Web application directories can be packaged and signed into a Web Archive (WAR)
format (that is, a JAR file with .war extension instead of .jar) file using the standard
Java Archive tools. When the container sees the extension .war, it recognizes that it is
a Web application archive, decompresses the file, and deploys the application
automatically.

A META-INF directory will be present in the WAR file, which contains information useful
to Java Archive tools. This directory must not be publicly accessible, though its
contents can be retrieved in the servlet code using the getResource and
getResourceAsStream calls on the ServletContext interface.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 11 of 81

Deployment descriptor

The deployment descriptor must be a valid XML file, named web.xml, and placed in the
WEB-INF subdirectory of the Web application. This file stores the configuration
information of the Web application. The order in which the configuration elements must
appear is important and is specified by the deployment descriptor DTD, which is
available from java.sun.com (see Resources on page 79).

The root element of the deployment descriptor is the <web-app> element; all other
elements are contained within it.

Specifying the servlet details

Each servlet is defined using a <servlet> element; it contains child elements that
provide details about the servlet.

<servlet-name>: The servlet's unique name within the Web application is specified by
the <servlet-name> element. The clients can access the servlet by specifying this
name in the URL. It is possible to configure the same servlet class under different
names.

<servlet-class>: The fully qualified class name used by the servlet container to
instantiate the servlet is specified by the <servlet-class> element.

<init-param>: Each initialization parameter for a servlet is specified using an
<init-param> element. It has two child elements -- <param-name> and
<param-value> -- which give the name and value of the parameter. The value of the
initialization parameter can be retrieved in the servlet code using the
getInitParameter() method of the ServletConfig interface.

The following code demonstrates the use of the <servlet> element within the
deployment descriptor:

<servlet>
<servlet-name> TestServlet </servlet-name>
<servlet-class> com.whiz.TestServlet </servlet-class>
<init-param>

<param-name>country</param-name>
<param-value>India</param-value>

</init-param>
</servlet>

This code causes the servlet container to instantiate a servlet class
com.whiz.TestServlet and associates it with the name TestServlet. It has one
initialization parameter named "country," which has the value "India."

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 81 Java certification success, Part 2: SCWCD

Servlet mappings

In some cases, it might be required to map different URL patterns to the same servlet.
For this, we use the <servlet-mapping> element.

The <servlet-mapping> element has two sub-elements: <servlet-name> and
<url-pattern>. The <servlet-name> sub-element must match with one of the
servlet names declared in the deployment descriptor. The <url-pattern>
sub-element is the URL string to be mapped with the servlet.

Using URL paths

When a client request arrives for a particular servlet, the Web application that has the
longest context path matching with the start of the request URL is chosen first. Then
the requested servlet is chosen by the container by comparing the remaining part of the
request URI with the mapped URLs. The mapping rules are as follows (the first
successful match is taken):

1. If there is an exact match of the path of the request to the path of a servlet, that
servlet is chosen.

2. The container will recursively try to match the longest path-prefix. This is done by
stepping down the path tree a directory at a time, using the "/" character as a path
separator. The longest match determines the servlet selected.

3. An extension is defined as the part of the last segment after the last "." character. If
the last segment in the URL path contains an extension (for instance, .jsp), the
servlet container will try to match a servlet that handles requests for the extension.

4. If none of the previous three rules results in a servlet match, the container will
attempt to serve content appropriate for the resource requested. If a "default" servlet
is defined for the application, it will be used.

Consider the following sets of servlet mappings in the deployment descriptor:

<servlet-mapping>
<servlet-name>servlet1</servlet-name>
<url-pattern>/my/test/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>servlet2</servlet-name>
<url-pattern>/another </url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>servlet3</servlet-name>
<url-pattern>*.tst </url-pattern>

</servlet-mapping>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 13 of 81

A string beginning with a "/" character and ending with a "/*" postfix is used for path
mapping. If the request path is /my/test/index.html, then servlet1 is invoked to handle
the request. Here the match occurs as was described in step 2 above.

If the request path is /another, then servlet2 services the request. Here the matching
occurs as was describe in step 1 above. But when the path is /another/file1.tst, servlet3
is chosen. This is because the URL mapping for servlet2 requires an exact match,
which is not available, so the extension mapping as described above in step 3 is
chosen.

However, if the request path is /my/test/new.tst, the request would be handled by
servlet1 and not by servlet3 because a match occurs in step 2 itself.

Summary

In this section, you learned the structural details of a servlet Web application, including
the directories to place the deployment descriptor, class files, JAR files, and so on. You
also saw how the servlet details like name, class, and initialization parameters are
specified in the deployment descriptor. Finally, you learned about how to specify
mappings between URL patterns and the servlets to be invoked.

Sample questions

Question 1:
Which of the following are not child elements of the <servlet> element in the
deployment descriptor?

Choices:

• A. <servlet-mapping>
• B. <error-page>
• C. <servlet-name>
• D. <servlet-class>
• E. <init-param>

Correct choices:

• A and B

Explanation:

The <servlet-mapping> and <error-page> elements are sub-elements of the
<web-app> element.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 81 Java certification success, Part 2: SCWCD

The <servlet-name> element defines the name for the servlet, and the
<servlet-class> element specifies the Java class name that should be used to
instantiate the servlet. The <init-param> element is used to pass initialization
parameters to the servlet. The <servlet-mapping> element is used to specify which
URL patterns should be handled by the servlet. The <error-page> element can be
used to specify the error pages to be used for certain exceptions or error codes.

Question 2:

Which of the following requests will not be serviced by MyServlet (assume that the
Web application name is test)?

<servlet-mapping>
<servlet-name> MyServlet </servlet-name>
<url-pattern> /my/my/* </url-pattern>

</servlet-mapping>

Choices:

• A. /test/my/my/my

• B. /test/my/my/a/b

• C. /test/my/my/a.jsp

• D. /test/my/a.jsp

• E. /test/my/my.jsp

Correct choices:

• D and E

Explanation:

To match a request URL with a servlet, the servlet container identifies the context path
and then evaluates the remaining part of the request URL with the servlet mappings
specified in the deployment descriptor. It tries to recursively match the longest path by
stepping down the request URI path tree a directory at a time, using the "/" character
as a path separator, and determining if there is a match with a servlet. If there is a
match, the matching part of the request URL is the servlet path and the remaining part
is the path info. In this case, when the servlet encounters any request with the path
"/test/my/my," it maps that request to MyServlet. In choices A, B, and C, this path is
present, hence they are serviced by MyServlet. Choices and D and E do not have
this complete path, so they are not serviced.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 15 of 81

Section 4. The servlet container model

An object that implements the javax.servlet.ServletContext interface
represents the environment in which a Web application is running. All the servlets
belonging to the same Web application share the same context.

There is one instance of the ServletContext interface associated with each Web
application deployed into a servlet container. If the container is distributed over multiple
JVMs, a Web application will have an instance of the ServletContext for each VM.

Context initialization parameters

We can specify initialization parameters for a servlet context, so that application-wide
information can be shared by all the servlets that belong to the same Web application.
The servlets can retrieve these initialization parameters by invoking the following
methods of the ServletContext interface:

public String getInitParameter(String name);
public Enumeration getInitParameterNames();

The getInitParameter() method returns a String containing the value of the
named context-wide initialization parameter, or null if the parameter does not exist. The
parameter name passed is case sensitive. The getInitParameterNames() method
returns the names of the context's initialization parameters as an Enumeration of
String objects. An empty Enumeration is returned if the context has no initialization
parameters.

The servlet context is initialized when the Web application is loaded, and is contained
in the ServletConfig object that is passed to the init() method. Servlets
implementing the GenericServlet interface (directly or indirectly) can invoke the
getServletContext() method to get the context reference, because
GenericServlet implements the ServletConfig interface.

Declaring initialization parameters

Each servlet context initialization parameter of a Web application must be declared
within a <context-param> element. The sub-elements are <param-name>,
<param-value>, and <description> which is optional.

The following code specifies the name of the company as the context parameter:

<context-param>
<param-name>CompanyName</param-name>
<param-value> IBM </param-value>
<description> Name of the company </description>

</context-param>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 81 Java certification success, Part 2: SCWCD

Note that <context-param> is a direct sub-element of the <web-app> root element.

We can access the value of the CompanyName parameter from the servlet code as
follows:

String name=getServletContext().getInitParameter("CompanyName");

Application events and listeners

It might be necessary to take actions in response to certain events like the starting or
stopping of a Web application. The following section discusses some listener interfaces
that define methods, invoked in response to important events. To receive notifications,
the listener class must be configured in the deployment descriptor.

ServletContextListener

Implementations of the ServletContextListener interface receive notifications
about changes to the servlet context of the Web application of which they are part. The
following methods are defined in the ServletContextListener:

public void contextInitialized(ServletContextEvent sce)
public void contextDestroyed(ServletContextEvent sce)

The contextInitialized() method is invoked when the Web application is ready
for service and the contextDestroyed() method is called when it is about to shut
down. The following code shows how we can use these methods to log the application
events:

public void contextInitialized(ServletContextEvent e) {
e.getServletContext().log("Context initialized");
}

public void contextDestroyed(ServletContextEvent e) {
e.getServletContext().log("Context destroyed");
}

ServletContextAttributeListener

The ServletContextAttributeListener interface can be implemented to receive
notifications of changes to the servlet context attribute list. The following methods are
provided by this interface:

void attributeAdded(ServletContextAttributeEvent scab)
void attributeRemoved(ServletContextAttributeEvent scab)
void attributeReplaced(ServletContextAttributeEvent scab)

The attributeAdded() method is invoked by the container whenever a new
attribute is added. When an existing attribute is removed or replaced, the
attributeRemoved() and attributeReplaced() methods are invoked

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 17 of 81

respectively.

HttpSessionAttributeListener

We can store attributes in the HttpSession object, which are valid until the session
terminates. The HttpSessionAttributeListener interface can be implemented in
order to get notifications of changes to the attribute lists of sessions within the Web
application:

void attributeAdded(HttpSessionBindingEvent se)
void attributeRemoved(HttpSessionBindingEvent se)
void attributeReplaced(HttpSessionBindingEvent se)

The attributeAdded() method is invoked by the container whenever a new
attribute is added to a session. When an existing attribute is removed from a session or
replaced, the attributeRemoved() and attributeReplaced() methods are
invoked respectively.

Configuring the listeners

The <listener> element in the deployment descriptor can be used to configure the
listener implementation classes so that the servlet container can pass the events to the
matching notification methods. There should be a <listener> element for each
custom listener class implementing the ServletContextListener,
ServletContextAttributeListener, or SessionAttributeListener
interface. We do not need to specify which class implements that interface. This will be
found out by the servlet container itself.

The <listener> element has only one <listener> sub-element whose value is
specified as the fully qualified class name of the listener class as shown in the following
code:

<listener>
<listener-class>com.whiz.MyServletContextListener
</listener-class>

</listener>

<listener>
<listener-class>com.whiz.MyServletContextAttributeListener
</listener-class>

</listener>

Distributed applications

A Web application can be marked distributable, by specifying the <distributable>
element within the <web-app> element. Then the servlet container distributes the
application across multiple JVMs. Scalability and failover support are some of the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 81 Java certification success, Part 2: SCWCD

advantages of distributing applications.

In cases where the container is distributed over many VMs, a Web application will have
an instance of the ServletContext for each VM. However, the default
ServletContext is non-distributable and must only exist in one VM. As the context
exists locally in the JVM (where created), the ServletContext object attributes are
not shared between JVMs. Any information that needs to be shared has to be placed
into a session, stored in a database, or set in an Enterprise JavaBeans component.
However, servlet context initialization parameters are available in all JVMs, because
these are specified in the deployment descriptor. ServletContext events are not
propagated from one JVM to another.

All requests that are part of a session must be handled by one virtual machine at a
time. HttpSession events, like context events, may also not be propagated between
JVMs.

Also note that because the container may run in more than one JVM, the developer
cannot depend on static variables for storing an application state.

Summary

Under the third objective, you learned the methods to retrieve the initialization
parameters of the servlet context. You also looked into the various events and listeners
at application and session levels, and learned about configuring initialization
parameters and listeners in the deployment descriptor. Finally, you reviewed the
behavior of servlet context and session in a distributed environment.

Sample questions

Question 1:
Following is the deployment descriptor entry for a Web application using servlet context
initialization parameters:

<web-app>
...

<context-param>
<param-name>Bill Gates</param-name>
// xxx

</context-param>
...

</web-app>

Which of the following elements to be placed at "// xxx" is valid?

Choices:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 19 of 81

• A. <param-size>
• B. <param-type>
• C. <param-value>
• D. <param-class>

Correct choice:

• C

Explanation:

The <context-param> element contains the declaration of a Web application's
servlet context initialization parameters. The <param-name> element contains the
name of a parameter. Each parameter name must be unique in the Web application.
The <param-value> element contains the value of a parameter.

Here is the DTD for the <context-param> element:

<!ELEMENT context-param (param-name, param-value, description?)>

The <param-size>, <param-type>, and <param-class> elements are invalid
elements. Thus choice C is correct.

Question 2:

Which of the following methods will be called when a ServletContext object is
created?

• A. ServletContextListener.contextInitialized()
• B. ServletContextListener.contextCreated()
• C. HttpServletContextListener.contextCreated()
• D. HttpServletContextListener.contextInitialized()
• E. None of the above

Correct choice:

• A

Explanation:

The ServletContext interface defines a set of methods that a servlet uses to
communicate with its servlet container. It is not Http-specific, so the interface is
ServletContext rather than HttpServletContext. The context is initialized at the
time that the Web application is loaded. The method called when the context is
initialized is contextInitialized(ServletContextEvent sce). The method
called when the context is destroyed is
contextDestroyed(ServletContextEvent sce). The ServletContextEvent
object that is passed in the contextInitialized() and contextDestroyed()
methods can be used to retrieve a reference to the ServletContext object of the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 81 Java certification success, Part 2: SCWCD

application.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 21 of 81

Section 5. Developing servlets to handle server-side
exceptions

When a Web application causes errors at the server side, the errors must be handled
appropriately and a suitable response must be sent to the end user. In this section, you
will discuss the programmatic and declarative exception handling techniques used to
provide presentable error pages.

Exception handling in code

The HttpServletResponse interface provides the following methods that will send
an appropriate error page to the client to indicate some error condition on the server
side.

public void sendError(int statusCode);
public void sendError(int statusCode, String message);

The first version of the sendError() method sends an error response page, showing
the given status code. The second version also displays a descriptive message.

The following code demonstrates the use of the sendError() method, handling
FileNotFoundException.

public void doGet(HttpServletRequest req, HttpServletResponse res) {
try {

// code that throws FileNotFoundException
}
catch (FileNotFoundException e) {
res.sendError(res.SC_NOT_FOUND);

}

The setStatus() method provided by the HttpServletResponse interface can be
used to send an HTTP status code to the client. It is used mostly for non-error status
codes such as SC_OK or SC_MOVED_TEMPORARILY.

public void setStatus(int statusCode);

These methods throw an IllegalStateException if the response is already
committed.

RequestDispatcher

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 81 Java certification success, Part 2: SCWCD

When an error occurs, you can use RequestDispatcher to forward a request to
another resource to handle the error. The error attributes can be set in the request
before it is dispatched to the error page, as shown below:

public void doGet(HttpServletRequest req, HttpServletResponse res){
try {

// Code that throws exception
}
catch (Exception ex) {
request.setAttribute("javax.servlet.error.exception," ex.getMessage());
ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher("error.jsp");
rd.forward(request,response);
}
}

Throwing exceptions

The service methods in the servlet class declare only ServletException and
IOException in their throws clauses, so we can throw only the subclasses of
ServletException, IOException, or RuntimeException from these methods.
All other exceptions should be wrapped as ServletException and the root cause of
the exception set to the original exception before being propagated.

Declarative handling of exceptions

It is possible to configure error pages in the deployment descriptor, corresponding to
particular error codes or exceptions. If a servlet sets a status code to indicate an error
on the response, or if the servlet generates an exception that is unhandled, the servlet
container looks up the error page mappings and invokes the associated resource.

The <error-page> element, which is a direct child of the <web-app> element,
contains a mapping between an error code or exception type and the path of a
resource in the Web application.

The following configuration maps the error code 404 to error.jsp and SQLException
to ErrorServlet:

<error-page>
<error-code>404</error-code>
<location>error.jsp</location>

</error-page>

<error-page>
<exception-type>java.sql.SQLException</exception-type>
<location>/error/ErrorServlet</location>

</error-page>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 23 of 81

If the exception generated is ServletException, the container generates the root
cause exception wrapped in it, and then it looks for a matching error-page mapping.

Logging errors

It might be required to report errors and other debug information from the Web
application for later analysis.

The logging methods provided by the GenericServlet and ServletContext
interfaces are:

public void log(String message)
public void log(String message, Throwable t)

The first version of the log() method writes the specified message, while the second
version writes an explanatory message and a stack trace for a given Throwable
exception to the servlet log file. Note that the name and type of the servlet log file is
specific to the servlet container.

Summary

In this section, you learned about handling exceptions and generating appropriate
responses. You saw the sendError() and sendStatus() methods for
programmatically handling exceptions. Next, you discovered the ways to use the
declarative approach, by mapping exceptions and error codes to appropriate error
pages, in the deployment descriptor. You also learned about using
RequestDispatcher for forwarding a request to an error page. Finally, you reviewed
the methods for logging the exception and related messages to the applications log file.

Sample questions

Question 1:
To which of the following classes or interfaces do the sendError() and
setStatus() methods belong?

Choices:

• A. HttpServletRequest
• B. HttpServletResponse
• C. ServletRequest
• D. ServletResponse

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 81 Java certification success, Part 2: SCWCD

• E. None of the above

Correct choice:

• B

Explanation:

The above methods belong to the HttpServletResponse interface. The
sendError() methods (there are two overloaded methods) return an error message
to the client according to the status code. The setStatus() methods are similar to
the sendError() methods. They set the HTTP status code to be included in the
response. Note that the above methods also belong to the
HttpServletResponseWrapper class (in the javax.servlet.http package).
This class provides a convenient implementation of the HttpServletResponse
interface that can be subclassed by developers wishing to adapt the response from a
servlet.

Question 2:

Which of the following statements is true regarding the following deployment descriptor
definitions for an error-page element?

1. <web-app>
...

<error-page>
<error-code>404</error-code>
<location>/404.html</location>

</error-page>
...

<web-app>

2. <web-app>
...

<error-page>
<exception-type>java.sun.com.MyException</exception-type>
<location>/404.html</location>

</error-page>
...

<web-app>

Choices:

• A. Both of the above declarations are correct

• B. None of the above declarations is correct

• C. Only 1 is correct

• D. Only 2 is correct

Correct choice:

• A

Explanation:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 25 of 81

The <error-page> element contains a mapping between an error code or exception
type to the path of a resource in the Web application. Here is the DTD definition for the
<error-page>element:

<!ELEMENT error-page ((error-code | exception-type), location)>

The error-code contains an HTTP error code, ex: 404. The exception type contains a
fully qualified class name of a Java exception type. The location element contains the
location of the resource in the Web application.

According to the above DTD definition, the <error-page> tag must contain either the
error-code or exception-type and location. Thus both of the declarations in the question
are true.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 81 Java certification success, Part 2: SCWCD

Section 6. Developing servlets using session
management

HTTP, being a stateless protocol, has its own disadvantages. Each client request is
treated as a separate transaction. In Web applications, it becomes necessary for the
server to remember the client state across multiple requests. This is made possible by
maintaining sessions for client server interactions. When a user first makes a request
to a site, a new session object is created and a unique session ID is assigned to it. The
session ID, which is then passed as part of every request, matches the user with the
session object. Servlets can add attributes to session objects or read the stored
attribute values.

Session tracking gives servlets the ability to maintain state and user information across
multiple page requests. The servlet container uses the HttpSession interface to
create a session between an HTTP client and the server.

To retrieve the session, we can use the getSession() method of the
HttpServletRequest interface:

HttpSession getSession()
HttpSession getSession(boolean create)

Both the methods return the current session associated with this request. The first
method creates a new session, if there is no existing session. The second version
creates a new session only if there is no existing session and the boolean argument is
true.

Storing and retrieving session objects

The Session object has methods for adding, retrieving, and removing Java objects:

public void setAttribute(String name, Object value);
public Object getAttribute(String name);
public Enumeration getAttributeNames();
public void removeAttribute(String name);

The following example shows how a session is retrieved from the current request and
an Integer attribute is written into the session:

public void doGet(HttpServletRequest request, HttpServletResponse
response)throws ServletException, IOException {

response.setContentType("text/html");
HttpSession httpSession = request.getSession(true);
session.setAttribute("no", new Integer(2));

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 27 of 81

Session events and listeners

In the third objective, The servlet container model on page 16 , you learned about the
HttpSessionAttributeListener and its features. Here we'll discuss two more
listener interfaces related to sessions -- HttpSessionBindingListener and
HttpSessionListener.

HttpSessionBindingListener

An object implementing this interface is notified when it is bound to or unbound from a
session. It is not set in the deployment descriptor of the application because the
container checks the interfaces implemented by the attribute whenever it is added or
removed.

The methods provided by the interface are:

void valueBound(HttpSessionBindingEvent event);
void valueUnbound(HttpSessionBindingEvent event);

It is important to note the difference between HttpSessionAttributeListener
and HttpSessionBindingListener. HttpSessionAttributeListener is
implemented by an object that is interested in receiving events from all the sessions
belonging to the application, while HttpSessionBindingListener is implemented
by the object attributes for the particular session to which they are added or removed.

HttpSessionListener

Implementations of HttpSessionListener are notified when a session is created or
destroyed. The methods provided by the interface are:

public void sessionCreated(HttpSessionEvent e);
public void sessionDestroyed(HttpSessionEvent e);

The implementing class of this interface needs to be configured using the <listener>
element in the deployment descriptor.

The HttpSessionEvent, which is passed to these methods, provides the following
method that returns the associated session:

public HttpSession getSession();

Terminating a session

Sessions may get invalidated automatically due to a session timeout or can be

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 81 Java certification success, Part 2: SCWCD

explicitly ended. When a session terminates, the session object and the information
stored in it are lost permanently.

The HttpSession interface provides the following method to terminate a session
explicitly:

public void invalidate();

This method throws an InvalidStateException if invoked on a session, which has
been invalidated. The container will unbind any objects bound to the session before it
destroys the session. The valueUnbound() method will be invoked on all the session
attributes that implement the HttpSessionBindingListener interface.

Session timeout

It is possible to use the deployment descriptor to set a time period for the session. If the
client is inactive for this duration, the session is automatically invalidated.

The <session-timeout> element defines the default session timeout interval (in
minutes) for all sessions created in the Web application. A negative value or zero value
causes the session never to expire.

The following setting in the deployment descriptor causes the session timeout to be set
to 10 minutes:

<session-config>
<session-timeout>10</session-timeout>

</session-config>

You can also programmatically set a session timeout period. The following method
provided by the HttpSession interface can be used for setting the timeout period (in
seconds) for the current session:

public void setMaxInactiveInterval(int seconds)

If a negative value is passed to this method, the session will never time out.

URL rewriting

Sessions are made possible through the exchange of a unique token known as session
id, between the requesting client and the server. If cookies are enabled in the client
browser, the session ID will be included in the cookie sent with the HTTP
request/response.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 29 of 81

For browsers that do not support cookies, we use a technique called URL rewriting to
enable session handling. If URL rewriting is used, then the session ID should be
appended to the URLs, including hyperlinks that require access to the session and also
the responses from the server.

Methods of HttpServletResponse that support URL rewriting are:

public String encodeURL(String url)
public String encodeRedirectURL(String url)

The encodeURL() method encodes the specified URL by including the session ID in
it, or, if encoding is not needed, returns the URL unchanged.

The encodeRedirectURL() method encodes the specified URL for use in the
sendRedirect() method of HttpServletResponse. This method also returns the
URL unchanged if encoding is not required.

URL rewriting must be consistently used to support clients that do not support or
accept cookies to prevent loss of session information.

Summary

Under the fifth objective, you learned the methods to store and retrieve session objects.
Next, you saw how the various session events and the corresponding listener
interfaces. You also learned about the ways in which a session can be invalidated.
Finally, you examined how URL rewriting is needed to enable session handling for
browsers that do not offer cookie support.

Sample questions

Question 1:
Which of the following will ensure that the session never gets invalidated
automatically?

Choices:

• A. Specify a value of 0 for <session-timeout>

• B. Call the setMaxInactiveInterval() method passing a value of 0

• C. Call the setMaxInactiveInterval() method passing a value of -1

• D. Call the setSessionTimeOut() method passing a value of 0

• E. Specify a value of -1 for <session-timeout>

Correct choices:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 81 Java certification success, Part 2: SCWCD

• A, C, and E

Explanation:

A <session-timeout> value of 0 or less means that the session will never expire, so
choices A and E are correct. The <session-timeout> element is a sub-element of
session-config. The setMaxInactiveInterval() method of HttpSession
specifies the number of seconds between client requests before the servlet container
will invalidate this session. A negative value (not 0) is required to ensure that the
session never expires, so choice C is also correct.

Question 2:

How should you design a class whose objects need to be notified whenever they are
added to or removed from the session?

Choices:

• A. Design the class implementing the SessionBinding interface

• B. Design the class implementing the HttpSessionBindingListener interface

• C. Design the class implementing the HttpSessionListener interface

• D. Design the class implementing the HttpSessionAttributeListener
interface

• E. Configure an HttpSessionAttributeListener object in the deployment
descriptor

Correct choice:

• B

Explanation:

The task can be accomplished by designing a class implementing
HttpSessionBindingListener and then overriding two methods:
valueBound(HttpSessionBindingEvent e) and
valueUnbound(HttpSessionBindingEvent e). The first method will be called
whenever we add this object to a session. valueUnbound() is called whenever this
object is removed from the session.

HttpSessionAttributeListener is used to design a general session attribute
listener object, which always receives a notification whenever any type of attribute is
added to, removed from, or replaced from a session, so choices D and E are incorrect.

Choice A is incorrect as there is no such interface. Choice C is incorrect because
HttpSessionListener is used to receive when a session is created or destroyed.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 31 of 81

Section 7. Developing secure Web applications

Secure communication is essential to protect sensitive data, including personal
information, passed to and from a Web application. Here you'll explore the important
security concepts and configurations to overcome the security issues in servlet-based
Web applications.

Security issues

Authentication is the means by which communicating entities verify their identities to
each other. The username/password combination is usually used for authenticating the
user.

Authorization is the means by which interactions with resources are limited to
collections of users or programs for the purpose of enforcing integrity, confidentiality, or
availability constraints. Even though an account holder can log into a banking system
successfully, he is authorized to access only his own account.

Data integrity proves that information has not been modified by a third party while in
transit. The correctness and originality is usually verified by signing the transmitted
information. Auditing is the process of keeping a record or log of system activities, so
as to monitor users and their actions in the network, such as who accessed certain
resources, which users logged on and off from the system, and the like.

Malicious code is a piece of software that is deliberately designed to cause harm to
computer systems. This kind of code attacks vulnerable systems by exploiting potential
security holes. Viruses, worms, and trojans are examples of malicious code.

A Web site may be attacked to extract sensitive information, to simply crash the server,
or for many other reasons. A denial-of-service attack is characterized by an explicit
attempt by hackers to prevent genuine users of a service from accessing a Web site by
overloading the server with too many fake requests.

Authentication mechanisms

A Web client can authenticate a user to a Web server using one of the following
mechanisms:

• HTTP basic authentication

• HTTP digest authentication

• Form-based authentication

• HTTPS client authentication

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 81 Java certification success, Part 2: SCWCD

HTTP basic authentication

In basic authentication, a Web server requests a Web client to authenticate the user.
The Web client obtains the username and the password from the user through a login
box and transmits them to the Web server. The Web server then authenticates the user
in the specified realm. Though it is quite easy to set up, it is not secure because simple
base64 encoding is used. It is supported by all the common browsers.

HTTP digest authentication

The HTTP digest authentication also gets the username/password details in a manner
similar to that of basic authentication. However, the authentication is performed by
transmitting the password in an encrypted form. Only some Web browsers and
containers support it.

Form-based authentication

Form-based authentication allows a developer to control the look and feel of the login
screens. The login form must contain fields for entering a username and password.
These fields must be named j_username and j_password, respectively.

Form-based authentication has the same lack of security as basic authentication
because the user password is transmitted as plain text and the target server is not
authenticated. However, it is quite easy to implement and is supported by most of the
common browsers.

HTTPS client authentication

End-user authentication using HTTP over SSL (HTTPS) requires the user to possess a
public key certificate (PKC). All the data is transmitted after incorporating public key
encryption. It is the most secure authentication type and is supported by all the
common browsers.

Configuring the authentication mechanism

The <login-config> element is used to configure the authentication method that
should be used, the realm name that should be used for this application, and the
attributes that are needed by the form. It has three sub-elements: <auth-method>,
<realm-name>, and <form-login-config>.

The <auth-method> element is used to configure the authentication mechanism for
the Web application. As a prerequisite to gaining access to any Web resources that are
protected by an authorization constraint, a user must have authenticated using the
configured mechanism. Legal values for this element are "BASIC," "DIGEST," "FORM,"
or "CLIENT-CERT."

The <realm-name> element specifies the realm name to be used; this is required only
in the case of HTTP basic authorization.

The <form-login-config> element specifies the login page URL and the error

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 33 of 81

page URL to be used, if form-based authentication is used.

The following setting in the deployment descriptor defines basic authentication:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>student</realm-name>

</login-config>

Security constraints

A security constraint determines who is authorized to access the resources of a Web
application.

security-constraint

The <security-constraint> element is used to associate security constraints with
one or more Web resource collections. The sub-elements of
<security-constraint> are <display-name> <web-resource-collection>,
<auth-constraint>, and <user-data-constraint>.

web-resource-collection

The <web-resource-collection> element specifies a collection of resources to
which this security constraint will be applied. Its sub-elements are
<web-resource-name>, <description>, <url-pattern>, and <http-method>
as described here:

• <web-resource-name> specifies the name of the resource.

• <description> provides a description for the resource.

• <url-pattern> specifies the URL patterns of the resource to be accessed.

• <http-method> specifies the HTTP methods to which this constraint will be
applied.

If no HTTP methods are specified, the security constraint applies to all the HTTP
methods.

The following configuration specifies that the POST() method of MarksServlet will
be subject to the security constraints of the application:

<security-constraint>
<web-resource-collection>

<web-resource-name> marks </web-resource-name>
<url-pattern> /servlet/MarksServlet </url-pattern>
<http-method>POST</http-method>

</web-resource-collection>
</security-constraint>

auth-constraint

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 81 Java certification success, Part 2: SCWCD

The <auth-constraint> element specifies which security roles can access the
resources to which the security constraint applies. Its sub-elements are
<description> and <role-name>.

The <role-name> element should be a name defined in the <security-role>
element in the deployment descriptor. Note that role names are case sensitive.

The following code indicates that users belonging to the role "teacher" would be given
access to the resources that are protected by the security constraint:

<auth-constraint>
<description>Only for teachers</description>
<role-name>teacher</role-name>

<auth-constraint>

To specify that all roles can access the secure resources, specify the asterisk (*)
character:

<auth-constraint>
<description> For all roles </description>
<role-name>*</role-name>

<auth-constraint>

user-data-constraint

The <user-data-constraint> element specifies how the data transmitted between
the client and the server should be protected. Its sub-elements are <description>
and <transport-guarantee>.

The <transport-guarantee> element can contain any of three values: NONE,
INTEGRAL, or CONFIDENTIAL. Here, NONE means no transport guarantee, INTEGRAL
means data cannot be changed in transit, and CONFIDENTIAL means the contents of
a transmission cannot be observed.

The following example demonstrates the use of the <user-data-constraint>
element:

<user-data-constraint>
<description> Integral Transmission </description>
<transport-guarantee>INTEGRAL</transport-guarantee>

</user-data-constraint>

Summary

The sixth objective deals with security in Web applications and such important security
concepts like authorization and authentication. You also learned about the various
authentication mechanisms like basic and digest. Finally, you saw how to declare the
security constraints and authentication mechanisms in the deployment descriptor.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 35 of 81

Sample questions

Question 1:
Which of the following authentication types uses public-key encryption as a security
mechanism for a Web application?

Choices:

• A. BASIC

• B. DIGEST

• C. FORM

• D. CLIENT-CERT

• E. None of the above

Correct choice:

• D

Explanation:

HTTP basic authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. It is not a secure
authentication mechanism; it sends user information in simple base64 encoding. Hence
choice A is incorrect.

Like the basic authentication type, HTTP digest authentication authenticates a user
based on a username and password. It is more secure; the user information is
encrypted before it's sent to the server. Hence choice B is incorrect.

In form-based authentication, the developer creates custom logic/error screens, the
display of which are managed by the Web server. Hence choice C is incorrect.

End-user authentication (CLIENT-CERT) using HTTPS (HTTP over SSL) is a strong
authentication mechanism. This mechanism requires the user to possess a public key
certificate (PKC). Hence choice D is correct.

Question 2:

Which of the following values may <transport-guarantee> contain?

Choices:

• A. NONE

• B. AUTHORIZED

• C. INTEGRAL

• D. AUTHENTICATED

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 81 Java certification success, Part 2: SCWCD

• E. CONFIDENTIAL

Correct choice:

• A, C, and E

Explanation:

Choice C implies that the Web application requires the data transmission to have data
integrity, whereas choice E implies that the Web application requires the data
transmission to have data confidentiality.

Choice A implies that the application does not need any such guarantee. Plain HTTP is
used when the value is set to NONE. HTTPS is used when the value is set to
INTEGRAL or CONFIDENTIAL.

Choices B and D are incorrect because there are no such values for the
<transport-guarantee> element.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 37 of 81

Section 8. Developing thread-safe servlets

Typically, the servlet container loads only one instance of a servlet to process client
requests.

A servlet instance may receive multiple requests simultaneously, and each time the
service() method is executed in a different thread. In this section, we discuss what
issues can arise when multiple threads execute servlet methods and how to develop
thread-safe servlets.

Multi-threaded model

The multi-threaded model, which is used by default, causes the container to use only
one instance per servlet declaration. By using a separate thread for each request,
efficient processing of client requests is achieved.

The figure below illustrates the multi-threaded model for servlets. One client request
arrives for servlet1 and two for servlet2. The container spawns one thread for executing
the service() method of servlet1 and two for the service() method of servlet2. All
the threads execute simultaneously and the responses generated are returned to the
clients.

SingleThreadModel interface

A very convenient way of ensuring that no two threads will execute concurrently in the
servlet's service() method is to make the servlet implement the
SingleThreadModel interface. The SingleThreadModel interface does not define
any methods. The servlet container guarantees this by either synchronizing access to a
single instance of the servlet or by maintaining a pool of servlet instances and
dispatching each new request to a free servlet.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 81 Java certification success, Part 2: SCWCD

The figure below illustrates the situation when servlet2 implements the
SingleThreadModel interface. Two client requests arrive for servlet2. Here the
container uses a different instance of servlet2 to service each of the two requests.

However, this technique has its own disadvantages. If access to the servlet is
synchronized, the requests get serviced one after the other, which can cause a severe
performance bottleneck. Maintaining multiple servlet instances consumes time and
memory.

Even though multiple threads cannot enter the service() method simultaneously, in
this case thread safety issues are not completely taken care of. Static variables,
attributes stored in session and context scopes, and so on are still being shared
between multiple instances. Also, instance variables cannot be used to share data
among multiple requests because the instances serving each request might be
different.

Thread safety of variables and attributes

A servlet developer has to be aware of the effect of multiple threads on variables and
attributes stored in different scopes.

Local variables

Local variables are always thread safe because each servlet has its own copy of these
variables, so they cannot be used to share data between threads because their scope
is limited to the method in which they are declared.

Instance variables

Instance variables are not thread safe in the case of the multi-threaded servlet model.
In the case of servlets implementing SingleThreadModel, instance variables are
accessed only by one thread at a time.

Static variables

Static variables are never thread safe. These variables are at class level, so they are
shared between all instances. Hence these variables are not thread safe even if the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 39 of 81

servlet is implementing the SingleThreadModel interface. That is why they are
usually used to store only constant/read-only data.

Context scope

The ServletContext object is shared by all the servlets of a Web application, so
multiple threads can set and get attributes simultaneously from this object.
Implementing the SingleThreadModel interface does not make any difference in this
case. Thus the context attributes are not thread safe.

Session scope

The HttpSession object is shared by multiple threads that service requests
belonging to the same session, so the session attributes are also not thread safe. Just
as the case with context attributes, the threading model has no impact on this behavior.

Request scope

The ServletRequest object is thread safe because it is accessible only locally within
the service() method, so the request attributes are safe, irrespective of the
threading model used.

Summary

In this section, you learned about the thread safety issues for servlets. First, you
analyzed the implications of the multi-threaded servlet model, which is used by default,
in the case of servlets. Then, you moved onto the significance of the single threaded
model for servlets. You also identified the effect of multiple threads on variables and
attributes under various scopes, which helps in developing thread safe Web
applications.

Sample questions

Question 1:
Consider the following servlet code:

public class MyServlet extends HttpServlet
{
final static int i=0;
public void doGet(HttpServletRequest req, HttpServletResponse res)
{

private HttpSession session=req.getSession();
private ServletContext ctx=getServletContext();
synchronized(ctx)

{
Object obj=ctx.getAttribute();
// code to alter obj
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 81 Java certification success, Part 2: SCWCD

}
}

Which of the following variables in the above code are thread safe?

Choices:

• A. i
• B. session
• C. ctx
• D. req
• E. obj
• F. res

Correct choices:

• A, C, D, and F

Explanation:

The static variable i is thread safe because it is final (cannot be modified), or else it
would not have been safe. Request and response objects are scoped only for the
lifetime of the request, so they are also thread safe. Session and ServletContext
objects can be accessed from multiple threads while processing multiple requests, so
they are not thread safe. However, in this case, the ServletContext object is
synchronized, so it can be accessed only by one thread at a time. obj is not thread
safe because even though the ServletContext object is synchronized, its attributes
are not. They need to be synchronized separately. Hence choices B and E are
incorrect and choices A, C, D and F are correct.

Question 2:

Which of the following statements are true?

Choices:

• A. Multiple instances may be created on a servlet implementing
SingleThreadModel

• B. No more than one instance is created for a servlet implementing
SingleThreadModel

• C. Even static variables in a SingleThreadModel servlet are thread safe

• D. If no threading model is implemented, by default a servlet is executed in a
multi-threaded model

Correct choices:

• A and D

Explanation:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 41 of 81

When SingleThreadModel is implemented, the servlet container ensures that only
one thread is executing the servlet's method at a time. So what will happen for multiple
requests? In that case, the container may instantiate multiple instances of the servlet to
handle multiple requests, so option A is correct and B is incorrect.

If the SingleThreadModel interface is not implemented, a servlet uses the
multi-threaded model (that is, multiple threads can access the methods of the servlet).
Static variables can be accessed through multiple instances of the same class, so they
are not always thread safe. Hence choices B and C are incorrect and choices A and D
are correct.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 81 Java certification success, Part 2: SCWCD

Section 9. The JavaServer pages technology model

JavaServer Pages (JSP) technology is an extension of the Java Servlet API. JSP
pages are typically comprised of static HTML/XML components, custom JSP tags, and
Java code snippets known as scriptlets.

Even though JSP pages can contain business processing logic, they are mainly used
for generating dynamic content in the presentation layer. Separation of business logic
from presentation logic is one of the main advantages of this technology.

JSP tag types

JSP syntax can be classified into directives, declarations, scriptlets, expressions,
standard actions, and comments.

Directives

A JSP directive provides information about the JSP page to the JSP engine. The types
of directives are page, include, and taglib (a directive starts with a <%@ and ends
with a %>):

• The page directive is used to define certain attributes of the JSP page:
<%@ page import="java.util.*, com.foo.*" %>

• The include directive is used to include the contents of a file in the JSP page:
<%@ include file="/header.jsp" %>

• The taglib directive allows us to use the custom tags in the JSP pages:
<%@ taglib uri="tlds/taglib.tld" prefix="mytag" %>

Declarations

JSP declarations let you define variables and supporting methods that the rest of a JSP
page may need.

To add a declaration, you must use the <%! and %> sequences to enclose your
declarations, starting with a <%! and ending with a %>:

<%! int sum=0; %>

Here the variable sum is initialized only once when the JSP page is loaded.

Scriptlets

Scriptlets are fragments of code that are embedded within <% ... %> tags. They get

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 43 of 81

executed whenever the JSP page is accessed:

<%
int count=0;
count++;
out.println("Count is "+count);
%>

Expressions

An expression is a Java expression that is evaluated when the JSP page is accessed
and its value gets printed in the resultant HTML page. JSP expressions are within <%=
... %> tags and do not include semicolons:

<%= count %>

The above expression prints out the value of the variable count.

Standard actions

JSP actions are instructions that control the behavior of the servlet engine. The six
standard JSP actions are jsp:include, jsp:forward, jsp:useBean, jsp:setProperty,
jsp:getProperty, and jsp:plugin. We will discuss actions in more detail in the following
sections.

Comments

A JSP comment is of the form <%-- Content to be commented --%>. The body
of the content is ignored completely.

JSP documents

JSP files can now use either JSP syntax or XML syntax within their source files.
However, you cannot intermix JSP syntax and XML syntax in a source file.

JSP files using XML syntax are called JSP documents. All JSP documents have a
<jsp:root> element within which all the other elements are enclosed:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" xmlns:prefix1="URI-for-taglib1"
xmlns:prefix2="URI-for-taglib2" ...version="1.2">

// contents of the JSP page
</jsp:root>

Let's view a sample JSP document:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2">
<jsp:directive.page errorPage="error.jsp" />
<jsp:directive.include file="test.jsp"/>
<jsp:declaration> int count=10; </jsp:declaration>
<jsp:text> Hello </jsp:text>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 81 Java certification success, Part 2: SCWCD

<jsp:expression> count * 10 </jsp:expression>
<jsp:scriptlet>

int i=100;
int j=11;
out.println(i+j);

</jsp:scriptlet>
</jsp:root>

You can see that the <jsp:scriptlet> tag is used for scriptlets, the
<jsp:expression> tag is used for expressions, the <jsp:declaration> tag is
used for declarations, and the <jsp:text> tag is used to embed text within a JSP
document. The page directive is represented as <jsp:directive.page> and the
include directive is represented as <jsp:directive.include>.

It is important to note that all the tags are case sensitive.

Page directive attributes

As discussed before, the page directives are used to define attributes that apply to the
JSP page as a whole. These are passed onto the JSP container at translation time.
Let's discuss the important page attributes that are relevant for the SCWCD exam.

import

The import attribute of a page directive is used to import a Java class into the JSP
page. For instance:

<%@ page import="java.util.*, java.io.*,com.whiz.MyClass" %>
<%@ page import="com.whiz.TestClass" %>

It can appear multiple times in a translation unit.

session

The session attribute can have a value of true or false. It specifies whether the page
should take part in an HttpSession. The default value is true. For instance:

<%@ page session="false" %>

errorPage

The errorPage attribute can be used to delegate the exception to another JSP page
that has the error handling code. For instance:

<%@ page errorPage="error.jsp" %>

isErrorPage

The isErrorPage attribute specifies whether the current page can be the error
handler for other JSP pages. The default value is false. For instance:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 45 of 81

<%@ page isErrorPage="true" %>

language

The language attribute specifies the language used by the JSP page; the default
value is "java." For instance:

<%@ page language="java" %>

extends

The extends attribute specifies the superclass of the generated servlet class of the
JSP page. The default value of this attribute is vendor-specific. For instance:

<%@ page extends="mypackage.MyServlet" %>

buffer

The buffer attribute gives the minimum size of the output buffer before the content is
sent to the client. For instance:

<%@ page buffer="32kb" %>

autoFlush

The autoFlush attribute specifies whether the data in the buffer should be sent to the
client as soon as the buffer is full. The default value is true. For instance:

<%@ page autoFlush="false" %>

JSP lifecycle

When a request is mapped to a JSP page for the first time, it translates the JSP page
into a servlet class and compiles the class. It is this servlet that services the client
requests.

A JSP page has seven phases in its lifecycle, as listed below in the sequence of
occurrence:

• Translation

• Compilation

• Loading the class

• Instantiating the class

• jspInit() invocation

• _jspService() invocation

• jspDestroy() invocation

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 81 Java certification success, Part 2: SCWCD

Translation

In this phase, the JSP page is read, parsed, and validated. If there are no errors, a
Java file containing the servlet class is created.

Compilation

The Java file created in the translation phase is compiled into a class file. All the Java
code is validated and syntax errors are reported in this phase.

Loading and instantiating

The servlet class is loaded into memory and instantiated, if the compilation is
successful.

jspInit()

The jspInit() method is called only once in the life of the servlet. It is this method
that we perform any initializations required for the servlet.

_jspService

The request and response objects are passed to this method when each client request
is received for the JSP page. JSP scriptlets and expressions are processed and
included in this method.

jspDestroy()

The jspDestroy() method is called when the servlet instance is taken out of service
by the JSP engine. Any cleanup operation, such as releasing resources, can be
performed in this method. After this method is called, the servlet is unable to serve any
client requests.

JSP implicit objects

The JSP container makes available nine implicit objects that can be used within
scriptlets and expressions because they are defined in the _jspService() method of
the generated servlet.

The nine implicit objects in the JSP API and their purpose are listed in the following
table:

Table 2. Implicit objects

Object Class Purpose

application javax.servlet.ServletContext Refers to the Web
application's environment in
which the JSP is executed.

config javax.servlet.ServletConfig The initialization parameters
given in the deployment

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 47 of 81

descriptor can be retrieved
from this object.

exception java.lang.Throwable Available for pages that set
the page directive attribute
isErrorPage to true. It can
be used for exception
handling.

Out javax.servlet.jsp.JspWriter Refers to the output stream
of the JSP page.

page java.lang.Object Refers to the current
instance of the servlet
generated from the JSP
page.

pageContext javax.servlet.jsp.PageContext Provides certain
convenience methods and
stores references to the
implicit objects.

request Subtype of
javax.servlet.ServletRequest

Refers to the current request
passed to the
_jspService() method.

response Subtype of
javax.servlet.ServletResponse

Refers to the response sent
to the client. It is also passed
to the _jspService()
method.

Conditional and iterative statements

For generating dynamic content based on conditions, we can use conditional
statements, such as if/else blocks. For performing repetitive tasks, there are iterative
statements using for or while loops. Conditional and iterative statements can span
across multiple scriptlets, so that we can include HTML code in between.

For instance, the following scriptlet code uses a conditional statement to check whether
a user's password is valid. If it is valid, the marks are printed using an iterative
statement.

<% if(passwordValid)
{

%>
Welcome, <%= username %>
<%
for(int i=0; i<10; i++)

{
%>

Printing <%=marks[i] %>
<%

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 81 Java certification success, Part 2: SCWCD

}
}

%>

Be careful not to leave out the curly braces at the beginning and end of the Java
fragments.

Summary

In this section, you saw the basics of the JavaServer Pages (JSP) model. You learned
about the various tag types and their purposes, and the various page directive
attributes. Next, you identified the different phases in the JSP page lifecycle, followed
by the nine implicit objects in the JSP API and the purpose of each of them. Finally, we
saw how conditional and iteration statements can span across multiple scriptlets.

Sample questions

Question 1:
What will be the result of accessing the following JSP page, if the associated session
does not have an attribute named str?

<%!
String str;
public void jspInit()
{
str = (String)session.getAttribute("str");
}

%>

The string is: <%= str %>.

Choices:

• A. "null" is printed

• B. NullPointerException is thrown

• C. Code does not compile

• D. None of the above

Correct choice:

• C

Explanation:

The JSP engine declares and initializes nine objects in the _jspService() method.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 49 of 81

These implicit object variables are application, session, request, response,
out, page, pageContext, config, and exception. Because they are declared
locally to the _jspService() method, they are not accessible within the jspInit()
method, which means this code will not compile. If this code was within the
jspService() method, it would have compiled without errors and printed "null."
Hence choices A, B, and D are incorrect, and choice C is correct.

Question 2:

What will be the result of an attempt to access this JSP page?

<% x=10;% >
<% int x=5;% >
<%! int x; %>
x= <%=x%>
x= <%=this.x%>

The string is <%= str %>.

Choices:

• A. Code does not compile because x is used before declaration

• B. Prints x=5 followed by x=10

• C. Prints x=10 followed by x=5

• D. Prints x=10 followed by x=0

• E. None of the above

Correct choice:

• B

Explanation:

This declaration will create an instance variable x and initialize it to 0. Then in the
service() method, you modify it to 10. Then you declare a local variable named x
and give it the value 5. When you print x, it prints the local version of value 5. When
you say this.x, you refer to the instance variable x, which prints 10. Hence choices
A, C, and D are incorrect, and choice B is correct.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 81 Java certification success, Part 2: SCWCD

Section 10. Developing reusable Web components

Reusing Web components reduces redundancy of code and makes your application
more maintainable. There are two mechanisms to reuse content in a JSP page: the
include directive and the <jsp:include> action. The include directive is for
including the contents of a Web component statically, while the <jsp:include>
action enables dynamic inclusion.

Using the include directive

If the inclusion of the component happens when the JSP page is translated into a
servlet class, it is static inclusion. Changes made to the included file later will not affect
the results of the main JSP page.

The JSP syntax for the include directive is:

<%@ include file="relativeURL" %>

The XML syntax is:

<jsp:directive.include file="relativeURL> />

If the relative URL starts with "/", the path is relative to the JSP application's context. If
the relative URL starts with a directory or file name, the path is relative to the JSP file.

The included file can be a JSP page, HTML file, XML document, or text file. If the
included file is a JSP page, its JSP elements are translated and included (along with
any other text) in the JSP page. Once the included file is translated and included, the
translation process resumes with the next line of the including JSP page. For instance,
the following JSP page includes the content of the file another.jsp:

<html>
<head>
<title>JSP Include directive</title>
</head>
<body>
<%
This content is statically included.

<%@ include file="another.jsp" %>
</body>

</html>

The including and included pages can access variables and methods defined in the
other page; they even share the implicit JSP objects. However, the file attribute of the
include directive cannot be an expression. For instance, the following code is not
allowed:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 51 of 81

<% String url="date.html"; %>
<%@ include file="<%=url%>" %>

The file attribute cannot pass parameters to the included page, so the following code is
illegal:

<%@ include file="new.jsp?name=ram" %>

The include directive is typically used to include banner content, date, copyright
information, or any such content that you might want to reuse in multiple pages.

Using the <jsp:include> action

The <jsp:include> action allows you to include either a static or dynamic resource
in a JSP page. If the resource is static, its content is included in the calling JSP page. If
the resource is dynamic, the request is delegated to the included component. When the
<jsp:include> action is finished, control returns to the including page and the JSP
container continues processing the page.

Dynamically included pages do not share the variables and methods of the including
page. The syntax for the jsp:include element is:

<jsp:include page="{relativeURL | <%= expression %>}" flush="true" />

The relative URL can be absolute or relative to the current JSP file. Here is an
example, demonstrating the use of the <jsp:include> action:

<jsp:include page="scripts/login.jsp" />

Note that the value of the page attribute can be an expression that evaluates to a
String, representing the relative URL, as shown here:

<% String url = "another.jsp" %>
<jsp:include page=">%=url%> " />

Because the <jsp:include> element handles both types of resources, you can use
it when you don't know whether the resource is static or dynamic.

<jsp:forward> action

The mechanism for transferring control to another Web component from a JSP page is
provided by the jsp:forward element. The forwarded component, which can be an
HTML file, a JSP file, or a servlet, sends the reply to the client. The syntax is:

<jsp:forward page="{relativeURL | <%= expression %>}" />

For instance, the following code forwards the request to main.jsp:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 81 Java certification success, Part 2: SCWCD

<jsp:forward page="/main.jsp" />

The remaining portion of the forwarding JSP file, after the <sp:forward> element, is
not processed. Note that if any data has already been sent to a client, the
<jsp:forward> element will cause an IllegalStateException.

Passing parameters in dynamic inclusion

When an include or forward action takes place, the original request object is available
to the target page. We can append parameters to the request object using the
<jsp:param> element. The included component should be dynamic, such as a JSP
or a servlet that can process the passed request parameters. For instance, the request
received by another.jsp has two additional parameters:

<jsp:include page="another.jsp">
<jsp:param name="username" value="Tom" />
<jsp:param name="ssn" value="<%=ssnString%>" />

</jsp:include>

As you can see in this example, the values passed can be static or dynamic.

Summary

In this section, which covered the ninth objective, you learned the ways to include the
content of another Web component into a JSP page. You saw how to include the
component statically -- that is, at translation time of the page -- and the ways to
dynamically include or forward the content of components when the JSP page is
requested.

Sample questions

Question 1:
Consider the following code segment:

<%! String filePath = "Helloworld.jsp"%>
<%@ include file="<%= filePath %>"%>

This will include the content of Helloworld.jsp within the current JSP file. Select the right
choice.

Choices:

• A. True

• B. False

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 53 of 81

Correct choice:

• B

Explanation:

When you include a file using the include directive, the inclusion processing is done
at translation time. But request-time attribute values are evaluated at request time, not
translation time. Therefore, the attribute value of the file cannot be an expression, it
must be a string literal value. Also remember that file attribute values cannot pass any
parameters to the included page, so the following example is invalid:

<%@ include file="Helloworld.jsp?planet=Earth" %>

Question 2:

Which of the following can be used to include the file another.jsp in the file test.jsp,
assuming that there are no errors?

File 1: test.jsp

<% String str="hello"; % >

// line 1

<%= str%>
%>

File 2: another.jsp

<% str+="world"; %>

Choices:

• A. <jsp:directive.include file="another.jsp"/>

• B. <%@ include page="another.jsp" %>

• C. <%@ include file="another.jsp" %>

• D. <jsp:include page="another.jsp"/>

• E. <jsp:include file="another.jsp"/>

Correct choice:

• C

Explanation:

Here, another.jsp does not declare the variable str, so it cannot compile on its own.
Note that when a JSP file is dynamically included, it is compiled separately, so the
variables are not shared between the including files and the included one. In this case,
dynamic inclusion is not possible, so choices C and D are incorrect (D also has an

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 81 Java certification success, Part 2: SCWCD

invalid attribute). Choice A is incorrect because XML syntax and JSP syntax cannot be
used on the same page. Choice B is incorrect because the valid attribute for the
include directive is file and not page.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 55 of 81

Section 11. Developing JSP pages using JavaBeans
components

JavaBeans components (or beans) are Java classes that are portable, reusable, and
can be assembled into applications. JSP pages can contain processing and data
access logic in the form of scriptlets. However, if there is a lot of business logic to be
handled that way, it makes the JSP page cluttered and difficult to maintain. Instead,
you can encapsulate the processing logic within beans and use them with JSP
language elements.

Any Java class can be a bean, if it adheres to the following design rules:

• For each readable property of data type "proptype," the bean must have a method of
the following signature:

public proptype getProperty() { }

• For each writable property of data type "proptype," the bean must have a method of
the following signature:

public setProperty(proptype x) { }

In addition, the class must also define a constructor that takes no parameters. For
instance, the following class encapsulates user information and exposes it using getter
and setter methods.

public class User {
private String name;
private String password;
public User() {
}
public void setName(String name) {

this.name=name;
}
public String getName() {

return name;
}
public void setPassword(String password) {

this.password=password;
}
public String getPassword() {

return password;
}

}

Declaring the bean

The <jsp:useBean> action is used to declare that the JSP page will use a bean that

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 81 Java certification success, Part 2: SCWCD

is stored within and accessible from the specified scope.

For instance, the following tag declares a bean of type UserBean and of id user, in
application scope:

<jsp:useBean id="user" class="UserBean" scope="application"/>

The value of the id attribute is the identifier used to reference the bean in other JSP
elements and scriptlets. The scope of the bean can be application, session,
request, or page. The id attribute is mandatory, while scope is optional. The default
value of scope is page.

The other possible attributes are class, type, and beanName. A subset of these
attributes needs to be present in the <jsp:useBean> action in one of the following
combinations:

• class

• class and type

• type

• beanName and type

Using class attribute

The following tag uses the class attribute. This causes the JSP engine to try and
locate an instance of the UserBean class with the id user, in the application scope. If
it is unable to find a matching instance, a new instance is created with the id user,
and stored in the application scope.

<jsp:useBean id="user" class="UserBean" scope="application"/>

Using class and type attributes

If class and type are both used as in the code below, the JSP engine tries to locate
a bean instance of type PersonBean. However, if a matching bean could not be found,
a new instance is created by instantiating the UserBean class. In this case, UserBean
has to be a class that is of type PersonBean.

<"jsp:useBean id="user" type="PersonBean" class="UserBean" scope="application"/>

Using type attribute

The type attribute can be used without class or beanName attributes as in the case
below:

<jsp:useBean id="user" type="PersonBean" scope="session"/>

This will cause the JSP engine to look for a bean of the given type within the mentioned
scope. In this case, if no existing bean matches the type, no new bean instance will be
created and an InstantiationException is thrown.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 57 of 81

Using type and beanName attributes

The beanName attribute can refer to a class name or the name of a serialized file
containing the bean. When you use beanName, the bean is instantiated by the
java.beans.Beans.instantiate method. If the beanName represents a serialized
template, it reads the serialized form using a class loader. Otherwise, the bean is
normally instantiated.

<"jsp:useBean id="user" type="PersonBean" beanName="User.ser" scope="session"/>

JavaBeans code in servlets

The JSP attribute scopes are request, session, and application. We have seen
how to declare a bean within one of these scopes. As we already know, JSP code gets
translated into a servlet and then compiled before execution.

Let's discuss the equivalent servlet code generated for beans declared in different
scopes. In the servlet, objects of type HttpServletRequest, HttpSession, and
ServletContext implement the request, session, and application scopes,
respectively.

Consider the given bean declared within the request scope:

"jsp:useBean id="user" class="UserBean" scope="request"/>

Within the service() method, the equivalent servlet code would be as follows:

UserBean user=(UserBean)request.getAttribute("user");
If(user==null)

{
user=new UserBean();
request.setAttribute("user",user);
}

Now consider the code if the bean is declared in the session scope:

<jsp:useBean id="user" class="UserBean" scope="session" />

Here we need to obtain a reference to the current session by invoking the
getSession() method of the request object. The generated servlet code would be
as shown here:

HttpSession session=request.getSession();
UserBean user=(UserBean)session.getAttribute("user");
if(user==null)

{
user=new UserBean();
session.setAttribute("user",user);

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 58 of 81 Java certification success, Part 2: SCWCD

If the scope is application level, the bean is set as an attribute of the
ServletContext object. The code generated would be:

ServletContext context=getServletContext();
UserBean user=(UserBean)context.getAttribute("user");
If(user==null)

{
user=new UserBean();
context.setAttribute("user",user);
}

Setting bean properties

We can set the property of a bean by using the <jsp:setProperty> action. It has
four attributes: name, property, value, and param.

The name attribute refers to the id of the bean and the property attribute refers to
the bean property that is to be set. These are mandatory attributes.

The value attribute specifies the value to be specified for the bean property. The
param attribute can be the name of a request parameter whose value can be used to
set the bean property. It is obvious that the value and param attributes would never
be used together.

The following code sets the name property of UserBean to the value Tom:

<jsp:setProperty name="user" property="name" value="Tom" />

To set the value of the name property using the request parameter username, we do
the following:

<jsp:setProperty name="user" property="name" param="username" />

Assume that the request parameter has the same name as the bean property that is
to be set. In this case, the above code can be changed like this:

<jsp:setProperty name="user" property="name" />

Now let's see the code to set all the bean properties from the request parameter
values:

<jsp:setProperty name="user" property="*" />

If there is no matching request parameter for a particular property, the value of that
property is not changed. This does not cause any errors.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 59 of 81

Getting bean properties

To retrieve bean properties and print them to the output stream, we use the
<jsp:getProperty> action. It has two attributes, name and propertyname, which
are both mandatory.

The following code causes the value of the bean property "name" to be printed out:

<jsp:getProperty name="user" property="name" />

Accessing JavaBeans components from JSP code

It is possible to access JavaBeans components from JSP code using the id attribute
that is specified in the bean declaration by the <jsp:useBean> action.

For instance, in the following code we need to invoke a bean method, isLoggedIn(),
to check if the user login was successful. For this, we refer to the bean in the scriptlet
using its id attribute:

<jsp:useBean id="user" class="UserBean" scope="session" />

<%
if(user.isLoggedIn()) {

%>

<jsp:forward page="userhome.jsp" />

<% } else { %>

<jsp:forward page="error.jsp" >

<% } %>

Here, we forward the user to the home page if he is already logged in, and to the error
page if he is not.

Summary

In this section, you learned how to declare and use JavaBeans components in JSP
pages. You reviewed the JSP actions for setting and getting bean properties. You saw
the servlet code generated for JavaBeans components declared in different scopes:
request, session, and application. Finally, you learned about accessing
declared beans from JSP scriptlets.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 60 of 81 Java certification success, Part 2: SCWCD

Sample questions

Question 1:
A user fills out a form in a Web application. The information is then stored in a
JavaBeans component, which is used by a JSP page. The first two lines of code for the
JSP page are as follows:

<jsp:useBean id="userBean" class="myapp.UserBean" scope="request"/>
<jsp:setProperty name="useBean" //XXX />

Which of the following should be placed in the position //XXX to parse all the form
element values to the corresponding JavaBeans component property (assuming that
the form input elements have the corresponding variables -- with the same name -- in
the JavaBeans component)?

Choices:

• A. param="*"
• B. param="All"
• C. property="*"
• D. property="All"
• E. None of the above

Correct choice:

• C

Explanation:

The jsp:setProperty action is used in conjunction with the jsp:useBean action to
set the value of bean properties used by the JSP page. The property of the JavaBeans
component can also be set as follows:

<jsp:setProperty name="myBean" property="name" value="<%=expression %>" />

When developing beans for processing form data, you can follow a common design
pattern by matching the names of the bean properties with the names of the form input
elements. You also need to define the corresponding getter/setter methods for each
property within the bean. The advantage in this is that you can now direct the JSP
engine to parse all the incoming values from the HTML form elements that are part of
the request object, then assign them to their corresponding bean properties with a
single statement, like this:

<jsp:setProperty name="user" property="*" />

This runtime magic is possible through a process called introspection, which lets a
class expose its properties on request. The introspection is managed by the JSP

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 61 of 81

engine and implemented through the Java reflection mechanism. This feature alone
can be a lifesaver when processing complex forms containing a significant number of
input elements.

If the names of your bean properties do not match those of the form's input elements,
they can still be mapped explicitly to your property by naming the parameter as:

<jsp:setProperty name="user" property="address" param="parameterName" />

Hence choices A, B, D, and E are incorrect, and choice C is correct.

Question 2:

Which of the following uses of the <jsp:useBean> tag for a JSP page that uses the
java.sun.com.MyBean JavaBeans component are correct?

Choices:

• A. <jsp:useBean id = "java.sun.com.MyBean" scope="page" />

• B. <jsp:useBean id = "MyBean" class="java.sun.com.MyBean" />

• C. <jsp:useBean id = "MyBean" type = "java.lang.String"
scope="page" />

• D. <jsp:useBean id = "MyBean" beanName="java.sun.com.MyBean"
scope="page" />

• E. <jsp:useBean id = "MyBean" beanName="java.sun.com.MyBean"
className="MyBean" type = "java.lang.String" scope="page" />

Correct choices:

• B and C

Explanation:

A jsp:useBean action associates an instance of a Java programming language
object defined within a given scope and available with a given id with a newly declared
scripting variable of the same id.

The syntax of the jsp:useBean action is as follows:

<jsp:useBean id="name" scope="page|request|session|application" beandetails />

where beandetails can be one of:

class="className"
class="className" type="typeName"
beanName="beanName" type="typeName"
type="typeName"

The description of various attributes are:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 62 of 81 Java certification success, Part 2: SCWCD

• id: The case-sensitive name used to identify the object instance.

• scope: The scope within which the reference is available. The default value is page.

• class: The fully qualified (including package name) class name.

• beanName: The name of a Bean, as you would supply to the instantiate()
method in the java.beans.Beans class. This attribute can also be a request time
expression.

• type: This optional attribute specifies the type of class, and follows standard Java
programming casting rules. The type must be a superclass, an interface, or the class
itself. The default value is the same as the value of the class attribute.

From the rules above, we can say:

• Either class or type must be present. Thus choice A is incorrect, and choices B and
C are correct.

• If present, beanName must be accompanied by type. Thus choice D is incorrect.

• Both beanName and class can't be present. Thus choice E is also incorrect.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 63 of 81

Section 12. Developing JSP pages using custom tags

JSP technology uses XML-like tags to encapsulate the logic that dynamically generates
the content for the page. Besides the standard JSP tags, it is possible for the JSP
developer to create custom tags, which encapsulate complex scripting logic. Using
custom tags instead of scriptlets promotes reusability, flexibility, and clarity of the JSP
page.

Tag libraries

JSP custom tags are distributed in the form of tag libraries. A tag library defines a set of
related custom tags and contains the tag handler objects. These handler objects are
instances of classes that implement some special interfaces in the
javax.servlet.jsp.tagext package. The JSP engine invokes the appropriate
methods of these classes when it encounters custom tags in the page.

The tag library needs to be imported into the JSP page before its tags can be used.

Tag library directive

A tag library can be declared by including a taglib directive in the page before any
custom tag is used:

<%@ taglib uri="/WEB-INF/mylib.tld" prefix="test" %>

The uri attribute refers to a URI that uniquely identifies the tag library descriptor (TLD)
that describes the set of custom tags associated with the named tag prefix.

The prefix that precedes the custom tag name is given by the prefix attribute. You
cannot use the tag prefixes jsp, jspx, java, javax, servlet, sun, and sunw, as
these are reserved by Sun Microsystems. You can use more than one taglib directive
in a JSP page, but the prefix defined in each must be unique.

Tag library descriptor file names must have the extension .tld and are stored in the
WEB-INF directory of the WAR or in a subdirectory of WEB-INF.

We'll now discuss the possible values of the uri attribute. The value of the uri
attribute can be the absolute path to the TLD file as shown below:

• <%@ taglib uri="/WEB-INF/mylib.tld" prefix="test" %>

You can specify a logical name, which is mapped to the actual path of the TLD file in
the deployment descriptor as shown here:

• <%@ taglib uri="/mylib" prefix="test" %>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 64 of 81 Java certification success, Part 2: SCWCD

The <taglib> element in the deployment descriptor can be used to map the logical
name to the absolute path of the TLD file. It has two elements: <taglib-uri>
specifies the logical name, and <taglib-location> gives the TLD file path.

For instance, the following mapping can be used to map the short name /mylib to
/WEB-INF/mylib.tld.

<taglib>
<taglib-uri>/mylib</taglib-uri>
<taglib-location> /WEB-INF/tld/mylib.tld </taglib-location>

</taglib>

It is possible to specify a logical name even without configuring in the deployment
descriptor. The container reads the TLD files present in the packaged JAR files present
in the /WEB-INF/lib directory. For each TLD file that contains information about its own
URI, the JSP Engine automatically creates a mapping between the given URI and the
actual location of the TLD file.

We can also give the path to a packaged JAR file as the value for the uri attribute. In
this case, the JAR file must have the tag handler classes for all the tags in the library.
The TLD file must be placed in the META-INF directory of the JAR file.

<%@ taglib uri="/WEB-INF/lib/mylib.jar" prefix="test" %>

The classes implementing the tag handlers can be stored in an unpacked form in the
WEB-INF/classes subdirectory of the Web application. They can also be packaged into
JAR files and stored in the WEB-INF/lib directory of the Web application.

Using custom tags

JSP custom tags are written using XML syntax. The syntax for using a custom tag is
<prefix:tagName>, where the prefix is the value of the prefix attribute in the taglib
directive, which declares the tag library, and tagName is the name specified for the tag
in the corresponding TLD file. Let's see how the different tag types are used in the JSP
page.

Empty tag

A custom tag with no body is called an empty tag and is expressed as follows:

<prefix:tag />

Tag with attributes

A custom tag can have attributes, which can be used to customize the functionality of
the tag. The details of the attributes of a tag are specified in the TLD file. For instance,
the tag named welcome prints the message "Welcome Tom," because we passed
"Tom" as the value for the name attribute.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 65 of 81

<test:welcome name="Tom" />

Tags with JSP code as body

A custom tag can contain JSP content in the form of static text, HTML, and JSP
elements like scriptlets, between the start and end tag. Such a tag is called a body tag.

For instance, the following tag gets the username from the request parameter and
prints an appropriate welcome message.

<test:welcomeyou>
<% String yourName=request.getParameter("name"); %>
Hello <%= yourName %>

</test:welcomeyou>

For body tags with attributes, the processing of the body by the tag handler can be
customized based on the value passed for the attribute:

<test:hello loopcount=3>
Hello World !

</test:hello>

Here, the tag processes the body iteratively; the number of iterations is given by the
value of the loopcount attribute.

Nested tags

A tag can be nested within a parent tag, as illustrated below:

<test:myOuterTag>
<H1>This is the body of myOuterTag</H1>
<test:repeater repeat=4>

Hello World!
</test:repeater>

</test:myOuterTag>

The nested JSP tag is first evaluated and the output becomes part of the evaluated
body of the outer tag. It is important to note that the opening and closing tags of a
nested tag and its parent tag must not overlap.

Summary

Custom tags are useful in reducing the amount of scriptlets in the JSP pages, thereby
allowing better separation of business logic and presentation logic. In this section, you
learned about tag libraries and the role of the taglib directive in informing the JSP
engine about the custom tags used in the page. You also learned the different types of

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 66 of 81 Java certification success, Part 2: SCWCD

custom tags and how to use them in a JSP page.

Sample questions

Question 1:
Consider the following mapping in the web.xml file:

<taglib>
<taglib-uri>/myTagLib</taglib-uri>
<taglib-location>/location/myTagLib.tld</taglib-location>

</taglib>

How would you correctly specify the above tag library in your JSP page?

Choices:

• A. <%@ taglib uri="/myTagLib" id="myLib" %>

• B. <%@ taglib uri="/myTagLib" prefix="myLib" %>

• C. <%@ taglib name="/myTagLib" prefix="myLib" %>

• D. <%@ taglib uri="/myTagLib" name="myLib" %>

Correct choice:

• B

Explanation:

The taglib directive is used to declare a tag library in a JSP page. It has two
attributes: uri and prefix. The value of uri is the same as the value of the
<taglib-uri> element in the deployment descriptor, where it has been mapped to
the location of the library's TLD file. If this mapping is not used, then the uri attribute
must directly point to the TLD file using a root relative URI such as
uri="/location/myTagLib.tld." The prefix attribute is used to identify the tags from this
library, used in the JSP page. Hence choices A, C, and D are incorrect and choice B is
correct.

Question 2:

Which of the following XML syntaxes would you use to import a tag library in a JSP
document?

Choices:

• A. <jsp:directive.taglib>
• B. <jsp:root>
• C. <jsp:taglib>
• D. None of the above

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 67 of 81

Correct choice:

• B

Explanation:

In XML format, the tag library information is provided in the root element itself:

<jsp:root
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:test="sample.tld"
version="1.2">
.....

</jsp:root>

The attribute value pair xmlns:test="sample.tld" tells the JSPEngine that the
page uses custom tags of prefix myLib and the location of the tld file. Hence choices A,
C, and D are incorrect and choice B is correct.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 68 of 81 Java certification success, Part 2: SCWCD

Section 13. Developing a custom tag library

You've already seen how to declare a tag library in a JSP page and how to use the
custom tags belonging to that library. In this section, you'll learn how to develop custom
tag libraries. To develop a tag library, you need to declare the tags in the tag library
descriptor (TLD) file and implement the tag handler classes.

Tag library descriptor

A tag library descriptor (TLD) is an XML file whose elements describe a particular tag
library. All tag definitions must be nested inside the <taglib> element in the TLD.

The <uri> element uniquely identifies the tag library; its value can be specified for the
uri attribute in the taglib directive for the library. The JSP engine implicitly creates a
mapping between the uri and the actual location of the file:

<taglib>
<tlib-version> 1.0 <tlib-version>
<jsp-version>1.2 <jsp-version>
<short-name> test <short-name>
<uri> http://www.whizlabs.com/testLib </uri>
<tag>

<name>welcome</name>
<tag-class>whiz.MyTag</tag-class>
<body-content>empty</body-content>
<attribute>
<name>uname</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

</taglib>

Defining tags

Each tag is defined by a <tag> element. The mandatory elements <name> and
<tag-class> specify the unique tag name and the tag handler class, respectively.

If a tag accepts attributes, then the <tag> element should have one or more
<attribute> sub-elements.

We can indicate that an attribute is mandatory by specifying true value for the
<required> element. If a value is not supplied for the attribute when the tag is used,
this causes an error in the JSP page.

The <rtexprvalue> element specifies whether the attribute can accept request-time
expression values. The default is false.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 69 of 81

<test:welcome uname="<%=request.getParameter("username") %>" />

The <body-content> element can have one of the following values: empty, JSP, or
tagdependent. For tags without a body or empty tags, we specify the value for this
element as "empty."

All the tag usage examples shown are valid for empty tags.

<test:mytag />
<test:mytag uname="Tom" />
<test:mytag></test:mytag>

For tags that can have valid JSP code (can be plain text, HTML, scripts, custom tags)
in their body, we specify the value for <body-content> as "JSP."

The following code illustrates the use of a tag with JSP code in its body:

<test:hello loopcount=3>
Hello World !

</test:hello>

When the <body-content> tag has the value "tagdependent," the body may contain
non-JSP content like SQL statements. For instance:

<test:myList>
select name,age from users
</test:myList>

When the <body-content> tag has the value "tagdependent" or "JSP," the body of
the tag may be empty.

Tag handler interfaces

The tag handlers must implement Tag, BodyTag, or IterationTag interfaces. These
interfaces are contained in the javax.servlet.jsp.tagext package.

Tag handler methods defined by these interfaces are called by the JSP engine at
various points during the evaluation of the tag.

Tag interface

The Tag interface defines the basic protocol between a tag handler and JSP container.
It is the base interface for all tag handlers and declares the main lifecycle methods of
the tag.

• The setPageContext() method is called first by the container. The pageContext
implicit object of the JSP page is passed as the argument.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 70 of 81 Java certification success, Part 2: SCWCD

• The setParent() method is called next, which sets the parent of the tag handler.

• For each attribute of the custom tag, a setter method is invoked next.

• The doStartTag() method can perform initializations. It returns the value
EVAL_BODY_INCLUDE or SKIP_BODY.

• The doEndTag() method can contain the cleanup code for the tag. It returns the
value EVAL_PAGE or SKIP_PAGE.

• The release() method is called when the tag handler object is no longer required.

IterationTag interface

The IterationTag interface extends Tag by defining one additional method that
controls the reevaluation of its body.

• IterationTag provides a new method: doAfterBody().

• If doStartTag() returns SKIP_BODY, the body is skipped and the container calls
doEndTag().

• If doStartTag() returns EVAL_BODY_INCLUDE, the body of the tag is evaluated
and included, and the container invokes doAfterBody().

• The doAfterBody() method is invoked after every body evaluation to control
whether the body will be reevaluated.

• If doAfterBody() returns IterationTag.EVAL_BODY_AGAIN, then the body will
be reevaluated. If doAfterBody() returns Tag.SKIP_BODY, then the body will be
skipped and doEndTag() will be evaluated instead.

BodyTag interface

The BodyTag interface extends IterationTag by defining additional methods that
let a tag handler manipulate the content of evaluating its body:

• The doStartTag() method can return SKIP_BODY, EVAL_BODY_INCLUDE, or
EVAL_BODY_BUFFERED.

• If EVAL_BODY_INCLUDE or SKIP_BODY is returned, then evaluation happens as in
IterationTag.

• If EVAL_BODY_BUFFERED is returned, setBodyContent() is invoked,
doInitBody() is invoked, the body is evaluated, doAfterBody() is invoked, and
then, after zero or more iterations, doEndTag() is invoked. The doAfterBody()
element returns EVAL_BODY_AGAIN or EVAL_BODY_BUFFERED to continue
evaluating the page and SKIP_BODY to stop the iteration.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 71 of 81

Accessing the implicit objects from tag handlers

The tag handler classes can access all the objects that are available to the JSP page,
in which the corresponding custom tags are being used. The PageContext object that
is passed to the setPageContext() method by the JSP engine, represents the
pageContext implicit object.

The PageContext class has the following methods to access the three JSP implicit
objects: request(), session(), and application().

Table 2. Methods of PageContext to access JSP implicit objects

Implicit object Method Name Return Type

Request getRequest() ServletRequest

Session getSession() HttpSession

Application getServletContext() ServletContext

Summary

In this section, you learned how to develop custom tag libraries. First, we walked
through the tag library descriptor and identified the various elements of a TLD file. Next
you learned about the Tag extension API for writing custom tag handlers. Finally, you
examined the important lifecycle methods of the three interfaces: Tag,
IterativeTag, and BodyTag.

Sample questions

Question 1:
Which of the following methods can return the SKIP_PAGE constant?

Choices:

• A. doStartTag()
• B. doAfterBody()
• C. doEndTag()
• D. release()

Correct choice:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 72 of 81 Java certification success, Part 2: SCWCD

• C

Explanation:

Depending on the return value of the doStartTag() method, the container calls the
doEndTag() method. doEndTag() decides whether to continue evaluating the rest of
the JSP page or not. It returns one of the two constants defined in the Tag interface:
EVAL_PAGE or SKIP_PAGE.

A return value of Tag.EVAL_PAGE indicates that the rest of the JSP page must be
evaluated and the output must be included in the response. A return value of
Tag.SKIP_PAGE indicates that the rest of the JSP page must not be evaluated at all
and that the JSP engine should return immediately from the current _jspService()
method.

Question 2:

Which of the following statements is not true?

Choices:

• A. The container invokes the release() method on a tag handler object when it is
no longer required

• B. The setPageContext() method is the first method that is called in a custom tag
lifecycle

• C. The doAfterBody() is the only method defined by the IterationTag
interface

• D. The setBodyContent() method is called only if the doStartTag() method
returns EVAL_BODY_INCLUDE or EVAL_BODY_BUFFERED

Correct choice:

• D

Explanation:

The setBodyContent() method is called and the bodyContent object is set only if
doStartTag() returns EVAL_BODY_BUFFERED. The container may reuse a tag
instance if a custom tag occurs multiple times in a JSP page. The container calls the
release() method only when the tag is to be permanently removed from the pool.
This method can be used to release the tag handler's resources. The
setPageContext() method is the first method called in the lifecycle of a custom tag.
The JSP container calls this method to pass the pageContext implicit object of the
JSP page in which the tag appears. The doAfterBody() method is the only method
defined by the IterationTag interface. It gives the tag handler a chance to
reevaluate its body.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 73 of 81

Section 14. J2EE design patterns

Design patterns are abstractions of solutions to commonly experienced design
problems in software development. J2EE design patterns concentrate on the various
issues encountered in the architecture and implementation of enterprise applications.

In this section, you'll learn about the five important J2EE design patterns covered in the
SCWCD exam.

Value Objects

In an Enterprise JavaBeans (EJB) application, each invocation on a session bean or an
entity bean is usually a remote method invocation across the network layer. Such
invocations on the enterprise beans create an overhead on the network. If the server
receives multiple calls to retrieve or update single attribute values from numerous
clients, system performance would be degraded significantly.

A Value Object is a serializable Java object that can be used to retrieve a group of
related data using just one remote method invocation. After the enterprise bean returns
the Value Object, it is locally available to the client for future access.

If a client wishes to update the attributes, it can do it on the local copy of the Value
Object and then send the updated object to the server. However, update requests from
multiple clients can corrupt the data.

The Value Object is also known as a Transfer Object or Replicate Object.

Model-view-controller

Consider an application that needs to support multiple client types like WAP clients,
browser-based clients, and so on. If we use a single controlling component to interact
with the user, manage business processing, and manage the database, it affects the
flexibility of the system. Whenever support for a new type of view needs to be added,
the whole application will need to be redesigned. Also the business logic will need to be
replicated for each client type.

As a solution to this problem, the model-view-controller (MVC) architecture divides
applications into three layers -- model, view, and controller -- and decouples their
respective responsibilities.

The model represents business data and operations that manage the business data.
The model notifies views when it changes and provides the ability for the view to query

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 74 of 81 Java certification success, Part 2: SCWCD

the model about its state. Typically, entity beans would play the role of model in the
case of enterprise applications.

The view handles the display styles and user interactions with the system. It updates
data presentation formats when the model changes. A view also forwards user input to
a controller. In J2EE applications, the view layer would include JSP and servlets.

A controller dispatches user requests and selects views for presentation. It interprets
user inputs and maps them into actions to be performed by the model. In a standalone
application, user inputs include text inputs and button clicks. In a Web application,
users communicate by sending HTTP requests to the Web tier. Session beans or
servlets would represent the controller layer.

Business Delegate

In a J2EE application, the client code needs to utilize the services provided by the
business components. If the presentation tier components are made to access the
business tier directly, there are some disadvantages. Whenever the business services
API changes, all the client components would need to be altered accordingly. Also, the
client code needs to be aware of the location of the business services.

The Business Delegate object helps to minimize coupling between clients and the
business tier. This object encapsulates access to a business service, thereby hiding
the implementation details of the service, such as lookup and access mechanisms. If
the interfaces of the business service changes, only the Business Delegate object
needs to be modified and the client components are not affected.

Using the Business Delegate can free the client from the complexities of handling
remote method calls. For instance, this object can translate network exceptions into
user-friendly application exceptions.

The Business Delegate may cache business service results. This improves
performance by reducing the number of remote calls across the network. The Business
Delegate object is also called client-side facade or proxy.

Front Controller

In the presentation layer of a Web application, multiple user requests need to be
handled and forwarded to the appropriate resource for processing. The navigation
steps vary according to the user actions. Also, the resources need to ensure that the
user has been authenticated and is authorized to access the particular resource.

If the responsibility to control the navigation, authentication, and other processing is left
to the views, it can give rise to certain problems. Each view component needs to
maintain information about the next or previous component in the navigational
sequence, which causes unnecessary dependency between components. Whenever

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 75 of 81

there is a modification in the processing logic, changes will need to be made in many
view components. Security code for authentication and authorization get mixed up with
the presentation code.

Front Controller is a controlling component that holds the common processing logic that
occurs within the presentation tier. It handles client requests and manages security,
state management, error handling, and navigation. The Front Controller centralizes
control logic that might otherwise be duplicated, and dispatches the requests to
appropriate worker components.

As a component that provides the initial single point of entry for all client requests, it is
also known as Front Component. Multiple Front Controllers can be designed for
different business use cases, which together manage the workflow of a Web
application.

Data Access Object

Most Web applications use a persistent storage mechanism to store data. The data
access methods may differ for different types of data sources, which might range from
relational databases to legacy systems. Even within an RDBMS environment, the
actual syntax and format of the SQL statements may vary depending on the particular
database product. Also, there might be applications that use more than one data
source.

The coupling between the business tier and the database tier can cause difficulties in
migrating the application from one data source to another. When this happens, all the
business components that access the data source need to be altered accordingly. To
overcome these dependencies, the business tier can interact with data sources through
a Data Access Object (DAO).

The DAO implements the access mechanism required to work with the data source.
The business component that relies on the DAO uses the simpler and uniform interface
exposed by the DAO for its clients. By acting as an adapter between the component
and the data source, the DAO enables isolation of the business components from the
data source type, data access method, and connectivity details. Thus the data access
logic is uniform and centralized, and database dependencies are minimized by the use
of this pattern.

Summary

This final section covered some of the most important design patterns used for Web
applications: Value Objects, Model-View-Controller, Business Delegate, Front
Controller, and Data Access Objects. You learned the important characteristics of each
pattern and problems that are resolved by them.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 76 of 81 Java certification success, Part 2: SCWCD

Sample questions

Question 1:
Your Web application that handles all aspects of credit card transactions requires a
component that would receive the requests and dispatch them to appropriate JSP
pages. It should manage the workflow and coordinate sequential processing.
Centralized control of use cases is preferred. Which design pattern would be best
suited to address these concerns?

Choices:

• A. MVC

• B. Business Delegate

• C. Front Component

• D. Value Object

• E. Facade

Correct choice:

• C

Explanation:

Front Component or Front Controller is the design pattern best suited to handle the
given requirements. The Front Controller is a component that provides a common point
of entry for all client requests. It dispatches the requests to appropriate JSP pages and
controls sequential processing. The control of use cases is centralized and a change in
the sequence of steps affects only the Front Controller Component. The requirements
only specify that workflow should be controlled, so MVC is not the right choice. (If
asked about controlling and presenting the data in multiple views, however, MVC
should be chosen.) Hence choices A, B, D, and E are incorrect and choice C is correct.

Question 2:

Consider a Web application where the client tier needs to exchange data with
enterprise beans. All access to an enterprise bean is performed through remote
interfaces to the bean. Every call to an enterprise bean is potentially a remote method
call with network overhead.

In a normal scenario, to read every attribute value of an enterprise bean, the client
would make a remote method call. The number of calls made by the client to the
enterprise bean impacts network performance.

Which of the following design patterns is most suited to solve the above problem?

Choices:

• A. Data Access Object

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 77 of 81

• B. Model View Controller

• C. Value Object

• D. Business Delegate

Correct choice:

• C

Explanation:

In the scenario explained above, a single method call is used to send and retrieve the
Value Object. When the client requests the enterprise bean for the business data, the
enterprise bean can construct the Value Object, populate it with its attribute values, and
pass it by value to the client.

When an enterprise bean uses a Value Object, the client makes a single remote
method invocation to the enterprise bean to request the Value Object instead of
numerous remote method calls to get individual bean attribute values. Hence choices
A, B, and D are incorrect and choice C is correct.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 78 of 81 Java certification success, Part 2: SCWCD

Section 15. Wrap-up and resources

Summing up the tutorial

In this tutorial, we covered a wide range of topics, as defined by the objectives of the
SCWCD exam. Real work experience in Java-based Web technologies needs to be
combined with a systematic learning pattern based on the test objectives to perform
well in the exam. Applying and experimenting with new concepts can reinforce what
you learn and in turn build your confidence. The sample exam questions given at the
end of each chapter in this tutorial provide insight into what you can expect in the
actual exam.

I hope this tutorial has been beneficial in your preparation for the SCWCD exam, and I
wish you the best of luck on your exam.

Resources

• You can download the Servlet 2.3 Specifications and JSP 1.2 Specifications.

• Take "Java certification success, Part 1: SCJP" by Pradeep Chopra
(developerWorks, November 2003).

• Here you can find the DTD for the Servlet 2.3 deployment descriptor.

• You can also refer to the JSP Documentation.

• Download Apache Tomcat 4.0 Server to experiment with servlets and JSP pages.

• Here are some useful JSP tutorials from Sun:
• JSP Tutorial

• JSP Short Course

• JSP Java Beans Tutorial

• You can explore the following tutorials on servlets:
• Servlet Tutorial

• Fundamentals of Java Servlets

• Learn how custom tags are developed and used. Check out the following links:
• Tag Libraries Tutorial

• Jakarta Taglibs Tutorial

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 79 of 81

http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://www-106.ibm.com/developerworks/edu/j-dw-java-scjp-i.html
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/products/jsp/docs.html
http://java.sun.com/products/jsp/docs.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPBeans.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPBeans.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPBeans.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPBeans.html
http://java.sun.com/docs/books/tutorial/servlets/index.html
http://java.sun.com/docs/books/tutorial/servlets/index.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/contents.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/contents.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/contents.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/contents.html
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://jakarta.apache.org/taglibs/tutorial.html
http://jakarta.apache.org/taglibs/tutorial.html
http://jakarta.apache.org/taglibs/tutorial.html

• These SCWCD certification guides will help you focus on the exam topics:
• SCWCD Certification Study Kit (Manning Publications, July 2002) by Hanumant

Deshmukh and Jignesh Malavia

• Professional SCWCD Certification (Wrox Press, November 2002) by Daniel Jepp
and Sam Dalton

• Read more books on servlet and JSP technologies.
• Java Servlet Programming (O'Reilly, April 2001) by Jason Hunter with William

Crawford

• Professional JSP (Wrox Press, April 2001) by Simon Brown, Robert Burdick,
Jayson Falkner, Ben Galbraith, Rod Johnson, Larry Kim, Casey Kochmer, Thor
Kristmundsson, Sing Li, Dan Malks, Mark Nelson, Grant Palmer, Bob Sullivan,
Geoff Taylor, John Timney, Sameer Tyagi, Geert Van Damme, and Steve
Wilkinson.

• Take a look at the J2EE design patterns.

• Check out this comprehensive article on SCWCD certification.

• You can practice and assess your knowledge using the following:
• Whizlabs SCWCD Exam Simulator

• Java Ranch SCWCD Mock Exam

• Sun JSP Quiz

Feedback

Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.

For questions about the content of this tutorial, contact the author, Seema Manivannan,
at seema@whizlabs.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 80 of 81 Java certification success, Part 2: SCWCD

http://www.manning.com/deshmukh/
http://www.manning.com/deshmukh/
http://www.manning.com/deshmukh/
http://www.manning.com/deshmukh/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007701/102-4503527-8965732?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/1861007701/102-4503527-8965732?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/1861007701/102-4503527-8965732?v=glance
http://www.oreilly.com/catalog/jservlet2/
http://www.oreilly.com/catalog/jservlet2/
http://www.oreilly.com/catalog/jservlet2/
http://www.amazon.com/exec/obidos/ASIN/1861004958/electricporkchop
http://www.amazon.com/exec/obidos/ASIN/1861004958/electricporkchop
http://java.sun.com/blueprints/patterns/j2ee_patterns/index.htm
http://java.sun.com/blueprints/patterns/j2ee_patterns/index.htm
http://java.sun.com/blueprints/patterns/j2ee_patterns/index.htm
http://www.whizlabs.com/articles/scwcd-article.html
http://www.whizlabs.com/articles/scwcd-article.html
http://www.whizlabs.com/articles/scwcd-article.html
http://www.whizlabs.com/articles/scwcd-article.html
http://www.whizlabs.com/articles/scwcd-article.html
http://www.whizlabs.com/products/scwcd/scwcd.html
http://www.whizlabs.com/products/scwcd/scwcd.html
http://www.whizlabs.com/products/scwcd/scwcd.html
http://www.whizlabs.com/products/scwcd/scwcd.html
http://www.javaranch.com/carl/scwcd/scwcd_mock_logo.jsp
http://www.javaranch.com/carl/scwcd/scwcd_mock_logo.jsp
http://www.javaranch.com/carl/scwcd/scwcd_mock_logo.jsp
http://www.javaranch.com/carl/scwcd/scwcd_mock_logo.jsp
http://www.javaranch.com/carl/scwcd/scwcd_mock_logo.jsp
http://developer.java.sun.com/developer/Quizzes/javaserverpages.html
http://developer.java.sun.com/developer/Quizzes/javaserverpages.html
http://developer.java.sun.com/developer/Quizzes/javaserverpages.html
mailto :seema@whizlabs.com
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p

Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java certification success, Part 2: SCWCD Page 81 of 81

http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Getting started
	Preparing for SCWCD
	Should I take this tutorial?
	About the author

	The servlet model
	HTTP methods
	Request handling methods in HttpServlet
	Servlet lifecycle
	Using the RequestDispatcher interface
	Object attributes
	Summary
	Sample questions

	Structure and deployment of modern servlet Web apps
	
	Application structure
	Web Archive (WAR) files
	Deployment descriptor
	Specifying the servlet details
	Servlet mappings
	Summary
	Sample questions

	The servlet container model
	
	Context initialization parameters
	Application events and listeners
	Configuring the listeners
	Distributed applications
	Summary
	Sample questions

	Developing servlets to handle server-side exceptions
	
	Exception handling in code
	RequestDispatcher
	Throwing exceptions
	Declarative handling of exceptions
	Logging errors
	Summary
	Sample questions

	Developing servlets using session management
	
	Storing and retrieving session objects
	Session events and listeners
	Terminating a session
	Session timeout
	URL rewriting
	Summary
	Sample questions

	Developing secure Web applications
	
	Security issues
	Authentication mechanisms
	Configuring the authentication mechanism
	Security constraints
	Summary
	Sample questions

	Developing thread-safe servlets
	
	Multi-threaded model
	SingleThreadModel interface
	Thread safety of variables and attributes
	Summary
	Sample questions

	The JavaServer pages technology model
	
	JSP tag types
	JSP documents
	Page directive attributes
	JSP lifecycle
	JSP implicit objects
	Conditional and iterative statements
	Summary
	Sample questions

	Developing reusable Web components
	
	Using the include directive
	Using the <jsp:include> action
	Summary
	Sample questions

	Developing JSP pages using JavaBeans components
	
	Declaring the bean
	JavaBeans code in servlets
	Setting bean properties
	Getting bean properties
	Accessing JavaBeans components from JSP code
	Summary
	Sample questions

	Developing JSP pages using custom tags
	
	Tag libraries
	Using custom tags
	Tags with JSP code as body
	Summary
	Sample questions

	Developing a custom tag library
	
	Tag library descriptor
	Tag handler interfaces
	Accessing the implicit objects from tag handlers
	Summary
	Sample questions

	J2EE design patterns
	
	Value Objects
	Model-view-controller
	Business Delegate
	Front Controller
	Data Access Object
	Summary
	Sample questions

	Wrap-up and resources
	Summing up the tutorial
	Resources
	Feedback

