
Java programming with JNI

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Calling C/C++ code from Java programs 4
3. Calling Java code from C/C++ programs 11
4. Advanced topics .. 19
5. Wrap-up and resources ... 25
6. Appendices.. 28

Java programming with JNI Page 1 of 30

Section 1. About this tutorial

What is this tutorial about?
The Java Native Interface (JNI) is a native programming interface that is part of the Java
Software Development Kit (SDK). JNI lets Java code use code and code libraries written in
other languages, such as C and C++. The Invocation API, which is part of JNI, can be used
to embed a Java virtual machine (JVM) into native applications, thereby allowing
programmers to call Java code from within native code.

This tutorial deals with the two most common applications of JNI: calling C/C++ code from
Java programs, and calling Java code from C/C++ programs. We'll cover both the essentials
of the Java Native Interface and some of the more advanced programming challenges that
can arise.

Should I take this tutorial?
This tutorial will walk you through the steps of using the Java Native Interface. You'll learn
how to call native C/C++ code from within a Java application and how to call Java code from
within a native C/C++ application.

All the examples use Java, C, and C++ code, and are written to be portable to both Windows
and UNIX-based platforms. To follow the examples, you must have some experience
programming in the Java language. In addition, you will also need some experience
programming in C or C++. Strictly speaking, a JNI solution could be broken down between
Java programming tasks and C/C++ programming tasks, with separate programmers doing
each task. However, to fully understand how JNI works in both programming environments,
you'll need to be able to understand both the Java and C/C++ code.

We'll also cover a number of advanced topics, including exception handling and
multithreading with native methods. To get the most out of this part of the tutorial, you should
be familiar with the Java platform's security model and have some experience in
multithreaded application development.

The section on Advanced topics on page 19 is separate from the more basic step-by-step
introduction to JNI. Beginning Java programmers may benefit from taking the first two parts
of the tutorial now and returning to the advanced topics at a later time.

See Resources on page 25 for a listing of tutorials, articles, and other references that expand
upon the material presented here.

Tools and components
To run the examples in this tutorial, you will need the following tools and components:

• A Java compiler: javac.exe ships with the SDK.

• A Java virtual machine (JVM): java.exe ships with the SDK.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 30 Java programming with JNI

• A native method C file generator: javah.exe ships with the SDK.

• Library files and native header files that define JNI. The jni.h C header file, jvm.lib, and
jvm.dll or jvm.so files all ship with the SDK.

• A C and C++ compiler that can create a shared library. The two most common C
compilers are Visual C++ for Windows and cc for UNIX-based systems.

Although you may use any development environment you like, the examples we'll work with
in this tutorial were written using the standard tools and components that ship with the SDK.
See Resources on page 25 to download the SDK, complete source files, and other tools
essential for the completion of this tutorial.

About the author
Scott Stricker is an enterprise application developer working in Business Innovation Services,
part of IBM Global Services. He specializes in object-oriented technologies, particularly in
Java and C++ programming.

Scott has a Bachelor of Science degree in Computer Science from the University of
Cincinnati. He is a Sun Certified Java 2 Programmer and Developer. Scott may be reached
at sstricke@us.ibm.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 3 of 30

mailto:sstricke@us.ibm.com

Section 2. Calling C/C++ code from Java programs

Overview
JNI allows you to use native code when an application cannot be written entirely in the Java
language. The following are typical situations where you might decide to use native code:

• You want to implement time-critical code in a lower-level, faster programming language.

• You have legacy code or code libraries that you want to access from Java programs.

• You need platform-dependent features not supported in the standard Java class library.

Six steps to call C/C++ from Java code
The process of calling C or C ++ from Java programs consists of six steps. We'll go over
each step in depth in the panels that follow, but let's start with a quick look at each one.

1. Write the Java code. We'll start by writing Java classes to perform three tasks: declare
the native method we'll be calling; load the shared library containing the native code; and
call the native method.

2. Compile the Java code. We must successfully compile the Java class or classes to
bytecode before we can use them.

3. Create the C/C++ header file. The C/C++ header file will declare the native function
signature that we want to call. This header will then be used with the C/C++ function
implementation (see Step 4) to create the shared library (see Step 5).

4. Write the C/C++ code. This step consists of implementing the function in a C or C++
source code file. The C/C++ source file must include the header file we created in Step 3.

5. Create the shared library file. We'll create a shared library file from the C source code
file we created in Step 4.

6. Run the Java program. We'll run the code and see if it works. We'll also go over some
tips for dealing with the more commonly occurring errors.

Step 1: Write the Java code
We'll start by writing the Java source code file, which will declare the native method (or
methods), load the shared library containing the native code, and actually call the native
method.

Here's our example Java source code file, called Sample1.java:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 30 Java programming with JNI

1. public class Sample1
2. {
3. public native int intMethod(int n);
4. public native boolean booleanMethod(boolean bool);
5. public native String stringMethod(String text);
6. public native int intArrayMethod(int[] intArray);
7.
8. public static void main(String[] args)
9. {
10. System.loadLibrary("Sample1");
11. Sample1 sample = new Sample1();
12. int square = sample.intMethod(5);
13. boolean bool = sample.booleanMethod(true);
14. String text = sample.stringMethod("JAVA");
15. int sum = sample.intArrayMethod(
16. new int[]{1,1,2,3,5,8,13});
17.
18. System.out.println("intMethod: " + square);
19. System.out.println("booleanMethod: " + bool);
20. System.out.println("stringMethod: " + text);
21. System.out.println("intArrayMethod: " + sum);
22. }
23. }

What's happening in this code?
First of all, note the use of the native keyword, which can be used only with methods. The
native keyword tells the Java compiler that a method is implemented in native code outside
of the Java class in which it is being declared. Native methods can only be declared in Java
classes, not implemented, so a native method cannot have a body.

Now, let's look at the code line by line:

• In lines 3 through 6 we declare four native methods.

• On line 10 we load the shared library file containing the implementation for these native
methods. (We'll create the shared library file when we come to Step 5.)

• Finally, in lines 12 through 15 we call the native methods. Note that this operation is no
different from the operation of calling non-native Java methods.

Step 2: Compile the Java code
Next, we need to compile the Java code down to bytecode. One way to do this is to use the
Java compiler, javac, which comes with the SDK. The command we use to compile our
Java code to bytecode is:

javac Sample1.java

Step 3: Create the C/C++ header file

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 5 of 30

The third step is to create a C/C++ header file that defines native function signatures. One
way to do this is to use the native method C stub generator tool, javah.exe, which comes with
the SDK. This tool is designed to create a header file that defines C-style functions for each
native method it finds in a Java source code file. The command to use here is:

javah Sample1

Results of running javah.exe on Sample1.java
Sample1.h, below, is the C/C++ header file generated by running the javah tool on our Java
code:

1. /* DO NOT EDIT THIS FILE - it is machine generated */
2. #include <jni.h>
3. /* Header for class Sample1 */
4.
5. #ifndef _Included_Sample1
6. #define _Included_Sample1
7. #ifdef __cplusplus
8. extern "C" {
9. #endif
10.
11. JNIEXPORT jint JNICALL Java_Sample1_intMethod
12. (JNIEnv *, jobject, jint);
13.
14. JNIEXPORT jboolean JNICALL Java_Sample1_booleanMethod
15. (JNIEnv *, jobject, jboolean);
16.
17. JNIEXPORT jstring JNICALL Java_Sample1_stringMethod
18. (JNIEnv *, jobject, jstring);
19.
20. JNIEXPORT jint JNICALL Java_Sample1_intArrayMethod
21. (JNIEnv *, jobject, jintArray);
22.
23. #ifdef __cplusplus
24. }
25. #endif
26. #endif

About the C/C++ header file
As you've probably noticed, the C/C++ function signatures in Sample1.h are quite different
from the Java native method declarations in Sample1.java. JNIEXPORT and JNICALL are
compiler-dependent specifiers for export functions. The return types are C/C++ types that
map to Java types. These types are fully explained in Appendix A: JNI types on page 28

The parameter lists of all these functions have a pointer to a JNIEnv and a jobject, in
addition to normal parameters in the Java declaration. The pointer to JNIEnv is in fact a
pointer to a table of function pointers. As we'll see in Step 4, these functions provide the
various faculties to manipulate Java data in C and C++.

The jobject parameter refers to the current object. Thus, if the C or C++ code needs to
refer back to the Java side, this jobject acts as a reference, or pointer, back to the calling

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 30 Java programming with JNI

Java object. The function name itself is made by the "Java_" prefix, followed by the fully
qualified class name, followed by an underscore and the method name.

Step 4: Write the C/C++ code
When it comes to writing the C/C++ function implementation, the important thing to keep in
mind is that our signatures must be exactly like the function declarations from Sample1.h.
We'll look at the complete code for both a C implementation and a C++ implementation, then
discuss the differences between the two.

The C function implementation
Here is Sample1.c, an implementation written in C:

1. #include "Sample1.h"
2. #include <string.h>
3.
4. JNIEXPORT jint JNICALL Java_Sample1_intMethod
5. (JNIEnv *env, jobject obj, jint num) {
6. return num * num;
7. }
8.
9. JNIEXPORT jboolean JNICALL Java_Sample1_booleanMethod
10. (JNIEnv *env, jobject obj, jboolean boolean) {
11. return !boolean;
12. }
13.
14. JNIEXPORT jstring JNICALL Java_Sample1_stringMethod
15. (JNIEnv *env, jobject obj, jstring string) {
16. const char *str = (*env)->GetStringUTFChars(env, string, 0);
17. char cap[128];
18. strcpy(cap, str);
19. (*env)->ReleaseStringUTFChars(env, string, str);
20. return (*env)->NewStringUTF(env, strupr(cap));
21. }
22.
23. JNIEXPORT jint JNICALL Java_Sample1_intArrayMethod
24. (JNIEnv *env, jobject obj, jintArray array) {
25. int i, sum = 0;
26. jsize len = (*env)->GetArrayLength(env, array);
27. jint *body = (*env)->GetIntArrayElements(env, array, 0);
28. for (i=0; i<len; i++)
29. { sum += body[i];
30. }
31. (*env)->ReleaseIntArrayElements(env, array, body, 0);
32. return sum;
33. }
34.
35. void main(){}

The C++ function implementation
And here's Sample1.cpp, the C++ implementation:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 7 of 30

1. #include "Sample1.h"
2. #include <string.h>
3.
4.JNIEXPORT jint JNICALL Java_Sample1_intMethod
5. (JNIEnv *env, jobject obj, jint num) {
6. return num * num;
7. }
8.
9. JNIEXPORT jboolean JNICALL Java_Sample1_booleanMethod
10. (JNIEnv *env, jobject obj, jboolean boolean) {
11. return !boolean;
12. }
13.
14. JNIEXPORT jstring JNICALL Java_Sample1_stringMethod
15. (JNIEnv *env, jobject obj, jstring string) {
16. const char *str = env->GetStringUTFChars(string, 0);
17. char cap[128];
18. strcpy(cap, str);
19. env->ReleaseStringUTFChars(string, str);
20. return env->NewStringUTF(strupr(cap));
21. }
22.
23. JNIEXPORT jint JNICALL Java_Sample1_intArrayMethod
24. (JNIEnv *env, jobject obj, jintArray array) {
25. int i, sum = 0;
26. jsize len = env->GetArrayLength(array);
27. jint *body = env->GetIntArrayElements(array, 0);
28. for (i=0; i<len; i++)
29. { sum += body[i];
30. }
31. env->ReleaseIntArrayElements(array, body, 0);
32. return sum;
33. }
34.
35. void main(){}

C and C++ function implementations compared
The C and C++ code is nearly identical; the only difference is the method used to access JNI
functions. In C, JNI function calls are prefixed with "(*env)->" in order to de-reference the
function pointer. In C++, the JNIEnv class has inline member functions that handle the
function pointer lookup. This slight difference is illustrated below, where the two lines of code
access the same function but the syntax is specialized for each language.

C syntax: jsize len = (*env)->GetArrayLength(env,array);

C++ syntax: jsize len =env->GetArrayLength(array);

Step 5: Create the shared library file
Next, we create a shared library file that contains the native code. Most C and C++ compilers
can create shared library files in addition to machine code executables. The command you
use to create the shared library file depends on the compiler you're using. Below are the
commands that will work on Windows and Solaris systems.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 30 Java programming with JNI

Windows: cl -Ic:\jdk\include -Ic:\jdk\include\win32 -LD
Sample1.c -FeSample1.dll

Solaris: cc -G -I/usr/local/jdk/include
-I/user/local/jdk/include/solaris Sample1.c -o
Sample1.so

Step 6: Run the Java program
The last step is to run the Java program and make sure that the code works correctly.
Because all Java code must be executed in a Java virtual machine, we need to use a Java
runtime environment. One way to do this is to use the Java interpreter, java, which comes
with the SDK. The command to use is:

java Sample1

When we run the Sample1.class program, we should get the following result:

PROMPT>java Sample1
intMethod: 25
booleanMethod: false
stringMethod: JAVA
intArrayMethod: 33

PROMPT>

Troubleshooting
You can run into many problems when using JNI to access native code from Java programs.
The three most common errors you'll encounter are:

• A dynamic link cannot be found. This results in the error message:
java.lang.UnsatisfiedLinkError. This usually means that either the shared library
cannot be found, or a specific native method inside the shared library cannot be found.

• The shared library file cannot be found. When you load the library file using the file
name with the System.loadLibrary(String libname) method, make sure that the
file name is spelled correctly and that you do not specify the extension. Also, make sure
that the library file is accessible to the JVM by ensuring that the library file's location is in
the classpath.

• A method with the specified signature cannot be found. Make sure that your C/C++
function implementation has a signature that is identical to the function signature in the
header file.

Conclusion

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 9 of 30

Calling C or C++ native code from Java, while not trivial, is a well-integrated function in the
Java platform. Although JNI supports both C and C++, the C++ interface is somewhat
cleaner and is generally preferred over the C interface.

As you have seen, calling C or C++ native code requires that you give your functions special
names and create a shared library file. When taking advantage of existing code libraries, it is
generally not advisable to change the code. To avoid this, it is common to create proxy code,
or a proxy class in the case of C++, that has the specially named functions required by JNI.
These functions, then, can call the underlying library functions, whose signatures and
implementations remain unchanged.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 30 Java programming with JNI

Section 3. Calling Java code from C/C++ programs

Overview
JNI allows you to invoke Java class methods from within native code. Often, to do this, you
must create and initialize a JVM within the native code using the Invocation API. The
following are typical situations where you might decide to call Java code from C/C++ code:

• You want to implement platform-independent portions of code for functionality that will be
used across multiple platforms.

• You have code or code libraries written in the Java language that you need to access in
native applications.

• You want to take advantage of the standard Java class library from native code.

Four steps to call Java code from a C/C++ program
The four steps in the process of calling Java methods from C/C++ are as follows:

1. Write the Java code. This step consists of writing the Java class or classes that
implement (or call other methods that implement) the functionality you want to access.

2. Compile the Java code. The Java class or classes must be successfully compiled to
bytecode before they can be used.

3. Write the C/C++ code. This code will create and instantiate a JVM and call the correct
Java methods.

4. Run the native C/C++ application. We'll run the application to see if it works. We'll also
go over some tips for dealing with common errors.

Step 1: Write the Java code
We start by writing the Java source code file or files, which will implement the functionality
we want to make available to the native C/C++ code.

Our Java code example, Sample2.java, is shown below:

1. public class Sample2
2. {
3. public static int intMethod(int n) {
4. return n*n;
5. }
6.
7. public static boolean booleanMethod(boolean bool) {
8. return !bool;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 11 of 30

9. }
10. }

Note that Sample2.java implements two static Java methods, intMethod(int n) and
booleanMethod(boolean bool) (lines 3 and 7 respectively). static methods are class
methods that are not associated with object instances. It is easier to call static methods
because we do not have to instantiate an object to invoke them.

Step 2: Compile the Java code
Next, we compile the Java code down to bytecode. One way to do this is to use the Java
compiler, javac, which comes with the SDK. The command to use is:

javac Sample1.java

Step 3: Write the C/C++ code
All Java bytecode must be executed in a JVM, even when running in a native application. So
our C/C++ application must include calls to create a JVM and to initialize it. To assist us, the
SDK includes a JVM as a shared library file (jvm.dll or jvm.so), which can be embedded into
native applications.

We'll start with a look at the complete code for both the C and C++ applications, then
compare the two.

A C application with embedded JVM
Sample2.c is a simple C application with an embedded JVM:

1. #include <jni.h>
2.
3. #ifdef _WIN32
4. #define PATH_SEPARATOR ';'
5. #else
6. #define PATH_SEPARATOR ':'
7. #endif
8.
9. int main()
10. {
11. JavaVMOption options[1];
12. JNIEnv *env;
13. JavaVM *jvm;
14. JavaVMInitArgs vm_args;
15. long status;
16. jclass cls;
17. jmethodID mid;
18. jint square;
19. jboolean not;
20.
21. options[0].optionString = "-Djava.class.path=.";
22. memset(&vm_args, 0, sizeof(vm_args));
23. vm_args.version = JNI_VERSION_1_2;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 30 Java programming with JNI

24. vm_args.nOptions = 1;
25. vm_args.options = options;
26. status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
27.
28. if (status != JNI_ERR)
29. {
30. cls = (*env)->FindClass(env, "Sample2");
31. if(cls !=0)
32. { mid = (*env)->GetStaticMethodID(env, cls, "intMethod", "(I)I");
33. if(mid !=0)
34. { square = (*env)->CallStaticIntMethod(env, cls, mid, 5);
35. printf("Result of intMethod: %d\n", square);
36. }
37.
38. mid = (*env)->GetStaticMethodID(env, cls, "booleanMethod", "(Z)Z");
39. if(mid !=0)
40. { not = (*env)->CallStaticBooleanMethod(env, cls, mid, 1);
41. printf("Result of booleanMethod: %d\n", not);
42. }
43. }
44.
45. (*jvm)->DestroyJavaVM(jvm);
46. return 0;
47/ }
48. else
49. return -1;
50. }

A C++ application with embedded JVM
Sample2.cpp is a C++ application with an embedded JVM:

1. #include <jni.h>
2.
3. #ifdef _WIN32
4. #define PATH_SEPARATOR ';'
5. #else
6. #define PATH_SEPARATOR ':'
7. #endif
8.
9. int main()
10. {
11. JavaVMOption options[1];
12. JNIEnv *env;
13. JavaVM *jvm;
14. JavaVMInitArgs vm_args;
15. long status;
16. jclass cls;
17. jmethodID mid;
18. jint square;
19. jboolean not;
20.
21. options[0].optionString = "-Djava.class.path=.";
22. memset(&vm_args, 0, sizeof(vm_args));
23. vm_args.version = JNI_VERSION_1_2;
24. vm_args.nOptions = 1;
25. vm_args.options = options;
26. status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
27.
28. if (status != JNI_ERR)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 13 of 30

29. {
30. cls = (*env)->FindClass(env, "Sample2");
31. if(cls !=0)
32. { mid = (*env)->GetStaticMethodID(env, cls, "intMethod", "(I)I");
33. if(mid !=0)
34. { square = (*env)->CallStaticIntMethod(env, cls, mid, 5);
35. printf("Result of intMethod: %d\n", square);
36. }
37.
38. mid = (*env)->GetStaticMethodID(env, cls, "booleanMethod", "(Z)Z");
39. if(mid !=0)
40. { not = (*env)->CallStaticBooleanMethod(env, cls, mid, 1);
41. printf("Result of booleanMethod: %d\n", not);
42. }
43. }
44.
45. (*jvm)->DestroyJavaVM(jvm);
46. return 0;
47. }
48. else
49. return -1;
50. }

C and C++ implementations compared
The C and C++ code are nearly identical; the only difference is the method used to access
JNI functions. In C, JNI function calls are prefixed with (*env)-> in order to de-reference
the function pointer. In C++, the JNIEnv class has inline member functions that handle the
function pointer lookup. Thus, these two lines of code access the same function, but the
syntax is specialized for each language, as shown below.

C syntax: cls = (*env)->FindClass(env, "Sample2");

C++ syntax: cls = env->FindClass("Sample2");

A closer look at the C application
We've just produced a lot of code, but what does it all do? Before we move on to Step 4, let's
take a closer look at the code for our C application. We'll walk through the essential steps of
preparing a native application to process Java code, embedding a JVM in a native
application, then finding and calling a Java method from within that application.

Include the jni.h file
We start by including the jni.h C header file in the C application, as shown in the code
sample below.

#include <jni.h>

The jni.h file contains all the type and function definitions we need for JNI on the C side.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 30 Java programming with JNI

Declare the variables
Next, we declare all the variables we want to use in the program. The JavaVMOption
options[] holds various optional settings for the JVM. When declaring variables, be sure
that you declare the JavaVMOption options[] array large enough to hold all the options
you want to use. In this case, the only option we're using is the classpath option. We set the
classpath to the current directory because in this example all of our files are in the same
directory. You can set the classpath to point to any directory structure you would like to use.

Here's the code to declare the variables for Sample2.c:

JavaVMOption options[1];
JNIEnv *env;
JavaVM *jvm;
JavaVMInitArgs vm_args;

Notes:

• JNIEnv *env represents JNI execution environment.

• JavaVM jvm is a pointer to the JVM. We use this primarily to create, initialize, and destroy
the JVM.

• JavaVMInitArgs vm_args represents various JVM arguments that we can use to
initialize our JVM.

Set the initialization arguments
The JavaVMInitArgs structure represents initialization arguments for the JVM. You can
use these arguments to customize the runtime environment before you execute your Java
code. As you can see, the options are one argument and the Java version is another. We set
these arguments as follows:

vm_args.version = JNI_VERSION_1_2;
vm_args.nOptions = 1;
vm_args.options = options;

Set the classpath
Next, we set the classpath for the JVM, to enable it to find the required Java classes. In this
particular case, we set the classpath to the current directory, because the Sample2.class and
Sample2.exe are located in the same directory. The code we use to set the classpath for
Sample2.c is shown below:

options[0].optionString = "-Djava.class.path=.";
// same text as command-line options for the java.exe JVM

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 15 of 30

Set aside memory for vm_args
Before we can use vm_args we need to set aside some memory for it. Once we've set the
memory, we can set the version and option arguments, as shown below:

memset(&vm_args, 0, sizeof(vm_args)); // set aside enough memory for vm_args
vm_args.version = JNI_VERSION_1_2; // version of Java platform
vm_args.nOptions = 1; // same as size of options[1]
vm_args.options = options;

Create the JVM
With all the setup taken care of, we're ready to create a JVM. We start with a call to the
method:

JNI_CreateJavaVM(JavaVM **jvm, void** env, JavaVMInitArgs **vm_args)

This method returns zero if successful or JNI_ERR if the JVM could not be created.

Find and load the Java classes
Once we've created our JVM, we're ready to begin running Java code in the native
application. First, we need to find and load our Java class, using the FindClass() function,
shown here:

cls = (*env)->FindClass(env, "Sample2");

The cls variable stores the result of the FindClass() function. If the class is found, the
cls variable represents a handle to the Java class. If the class cannot be found, cls will be
zero.

Find a Java method
Next, we want to find a method inside of the class using the GetStaticMethodID()
function. We want to find the method intMethod, which takes an int parameter and
returns an int. Here's the code to find intMethod:

mid = (*env)->GetStaticMethodID(env, cls, "intMethod", "(I)I");

The mid variable stores the result of the GetStaticMethodID() function. If the method is
found, the mid variable represents a handle to the method. If the method cannot be found,
mid will be zero.

Remember that in this example, we are calling static Java methods. That is why we're
using the GetStaticMethodID() function. The GetMethodID() function does the same
thing, but it is used to find instance methods.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 30 Java programming with JNI

If we were calling a constructor, the name of the method would have been "<init>". To learn
more about calling a constructor, see Error handling on page 21 . To learn more about the
code used to specify parameter types and about how JNI types map to the Java primitive
types, see Appendices on page 28 .

Call a Java method
Finally, we call the Java method, as shown below:

square = (*env)->CallStaticIntMethod(env, cls, mid, 5);

The CallStaticIntMethod() method takes cls (representing our class), mid
(representing our method), and the parameter or parameters for the method. In this case the
parameter is int 5.

You will also run across methods of the types CallStaticXXXMethod() and
CallXXXMethod(). These call static methods and member methods, respectively,
replacing the variable (XXX) with the return type for the method (for example, Object,
Boolean, Byte, Char, Int, Long, and so on).

Step 4: Run the application
Now we're ready to run the C application and make sure that the code works correctly. When
you run Sample2.exe you should get a result like the following:

PROMPT>Sample2
Result of intMethod: 25
Result of booleanMethod: 0

PROMPT>

Troubleshooting
JNI's Invocation API is somewhat cumbersome because it is defined in C, a language with
minimal object-oriented programming support. As a result, it is easy to run into problems.
Below is a checklist that may help you avoid some of the more common errors.

• Always ensure that references are properly set. For example, when creating a JVM with
the JNI_CreateJavaVM() method, make sure it returns a zero. Also make sure that
references set with the FindClass() and GetMethodID() methods are not zero before
you use them.

• Check to see that your method names are spelled correctly and that you properly mangled
the method signature. Also be sure that you use CallStaticXXXMethod() for static
methods and CallXXXMethod() for member methods.

• Make sure you initialize the JVM with any special arguments or options your Java class

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 17 of 30

may need. For example, if your Java class requires a great deal of memory, you may need
to increase the maximum heap size option.

• Always be sure to set the classpath properly. A native application using an embedded JVM
must be able to find the jvm.dll or jvm.so shared library.

Conclusion
Calling Java methods from C is relatively straightforward for experienced C programmers,
although it does require fairly advanced quasi-object-oriented programming techniques.
Although JNI supports both C and C++, the C++ interface is slightly cleaner and is generally
preferred over the C interface.

One important point to remember is that a single JVM can be used to load and execute
multiple classes and methods. Creating and destroying a JVM every time you interact with
Java from native code can waste resources and decrease performance.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 30 Java programming with JNI

Section 4. Advanced topics

Overview
Calling native code from within a Java program compromises the Java program's portability
and security. Although the compiled Java bytecode remains highly portable, the native code
must be recompiled for each platform on which you intend to run the application. The native
code also executes outside of the JVM, so it is not necessarily constrained by the same
security protocols as Java code.

Calling Java code from within a native program is also complicated. Because the Java
language is object-oriented, calling Java code from a native application typically involves
object-oriented techniques. In native languages that have no support or limited support for
object-oriented programming, such as C, calling Java methods can be problematic. In this
section, we'll explore some of the complexities that arise when working with JNI, and look at
ways to work around them.

Java strings versus C strings
Java strings are stored as sequences of 16-bit Unicode characters, while C strings are stored
as sequences of 8-bit null-terminated characters. JNI provides several useful functions for
converting between and manipulating Java strings and C strings. The code snippet below
demonstrates how to convert C strings to Java strings:

1. /* Convert a C string to a Java String. */
2. char[] str = "To be or not to be.\n";
3. jstring jstr = (*env)->NewStringUTF(env, str);

Next, we'll look at the code to convert Java strings to C strings. Note the call to the
ReleaseStringUTFChars() function on line 5. You should use this function to release
Java strings when you're no longer using them. Be sure you always release your strings
when the native code no longer needs to reference them. Failure to do so could cause a
memory leak.

1. /* Convert a Java String into a C string. */
2. char buf[128;
3. const char *newString = (*env)->GetStringUTFChars(env, jstr, 0);
4. ...
5. (*env)->ReleaseStringUTFChars(env, jstr, newString);

Java arrays versus C arrays
Like strings, Java arrays and C arrays are represented differently in memory. Fortunately, a
set of JNI functions provides you with pointers to the elements in arrays. The image below
shows how Java arrays are mapped to the JNI C types.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 19 of 30

The C type jarray represents a generic array. In C, all of the array types are really just type
synonyms of jobject. In C++, however, all of the array types inherit from jarray, which in
turn inherits from jobject. See Appendix A: JNI types on page 28 for an inheritance diagram
of all the C type objects.

Working with arrays
Generally, the first thing you want to do when dealing with an array is to determine its size.
For this, you should use the GetArrayLength() function, which returns a jsize
representing the array's size.

Next, you'll want to obtain a pointer to the array's elements. You can access elements in an
array using the GetXXXArrayElement() and SetXXXArrayElement() functions
(replace the XXX in the method name according to the type of the array: Object, Boolean,
Byte, Char, Int, Long, and so on).

When the native code is finished using a Java array, it must release it with a call to the
function ReleaseXXXArrayElements(). Otherwise, a memory leak may result. The code
snippet below shows how to loop through an array of integers and up all the elements:

1. /* Looping through the elements in an array. */
2. int* elem = (*env)->GetIntArrayElements(env, intArray, 0);
3. for (i=0; I < (*env)->GetIntArrayLength(env, intArray); i++)
4. sum += elem[i]
5. (*env)->ReleaseIntArrayElements(env, intArray, elem, 0);

Local versus global references
When programming with JNI you will be required to use references to Java objects. By
default, JNI creates local references to ensure that they are liable for garbage collection.
Because of this, you may unintentionally write illegal code by trying to store away a local
reference so that you can reuse it later, as shown in the code sample below:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 30 Java programming with JNI

1. /* This code is invalid! */
2. static jmethodID mid;
3.
4. JNIEXPORT jstring JNICALL
5. Java_Sample1_accessMethod(JNIEnv *env, jobject obj)
6. {
7. ...
8. cls = (*env)->GetObjectClass(env, obj);
9. if (cls != 0)
10. mid = (*env)->GetStaticMethodID(env, cls, "addInt", "(I)I");
11. ...
12. }

This code is not valid because of line 10. mid is a methodID and GetStaticMethodID()
returns a methodID. The methodID returned is a local reference, however, and you should
not assign a local reference to a global reference. And mid is a global reference.

After the Java_Sample1_accessMethod() returns, the mid reference is no longer valid
because it was assigned a local reference that is now out of scope. Trying to use mid will
result in either the wrong results or a crash of the JVM.

Creating a global reference
To correct this problem, you need to create and use a global reference. A global reference
will remain valid until you explicitly free it, which you must remember to do. Failure to free the
reference could cause a memory leak.

Create a global reference with NewGlobalRef() and delete it with DeleteGlobalRef(),
as shown in the code sample below:

1. /* This code is valid! */
2. static jmethodID mid;
3.
4. JNIEXPORT jstring JNICALL
5. Java_Sample1_accessMethod(JNIEnv *env, jobject obj)
6. {
7. ...
8. cls = (*env)->GetObjectClass(env, obj);
9. if (cls != 0)
10. {
11. mid1 = (*env)->GetStaticMethodID(env, cls, "addInt", "(I)I");
12. mid = (*env)->NewGlobalRef(env, mid1);
13. ...
14. }

Error handling
Using native methods in Java programs breaks the Java security model in some fundamental
ways. Because Java programs run in a controlled runtime system (the JVM), the designers of
the Java platform decided to help the programmer by checking common runtime errors like
array indices, out-of-bounds errors, and null pointer errors. C and C++, on the other hand,
use no such runtime error checking, so native method programmers must handle all error
conditions that would otherwise be caught in the JVM at runtime.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 21 of 30

For example, it is common and correct practice in Java programs to report errors to the JVM
by throwing an exception. C has no exceptions, so instead you must use the exception
handling functions of JNI.

JNI's exception handling functions
There are two ways to throw an exception in the native code: you can call the Throw()
function or the ThrowNew() function. Before calling Throw(), you first need to create an
object of type Throwable. By calling ThrowNew() you can skip this step because this
function creates the object for you. In the example code snippet below, we throw an
IOException using both functions:

1. /* Create the Throwable object. */
2. jclass cls = (*env)->FindClass(env, "java/io/IOException");
3. jmethodID mid = (*env)->GetMethodID(env, cls, "<init>", "()V");
4. jthrowable e = (*env)->NewObject(env, cls, mid);
5.
6. /* Now throw the exception */
7. (*env)->Throw(env, e);
8. ...
9.
10. /* Here we do it all in one step and provide a message*/
11. (*env)->ThrowNew(env,
12. (*env)->FindClass("java/io/IOException"),
13. "An IOException occurred!");

The Throw() and ThrowNew() functions do not interrupt the flow of control in the native
method. The exception will not actually be thrown in the JVM until the native method returns.
In C you cannot use the Throw() and ThrowNew() functions to immediately exit a method
on error conditions, as you can in Java programs by using the throw statement. Instead, you
need to use a return statement right after the Throw() and ThrowNew() functions to exit
the native method at a point of error.

JNI's exception catching functions
You may also need to catch exceptions when calling Java from C or C++. Many JNI
functions throw exceptions that you may want to catch. The ExceptionCheck() function
returns a jboolean indicating whether or not an exception was thrown, while the
ExceptionOccured() method returns a jthrowable reference to the current exception
(or NULL if no exception was thrown).

If you're catching exceptions, you may be handling exceptions, in which case you need to
clear out the exception in the JVM. You can do this using the ExceptionClear() function.
The ExceptionDescribed() function is used to display a debugging message for an
exception.

Multithreading in native methods
One of the more advanced issues you'll face when working with JNI is multithreading with
native methods. The Java platform is implemented as a multithreaded system, even when

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 30 Java programming with JNI

running on platforms that don't necessarily support multithreading; so the onus is on you to
ensure that your native functions are thread safe.

In Java programs, you can implement thread-safe code by using synchronized
statements. The syntax of the synchronized statements allows you to obtain a lock on an
object. As long as you're in the synchronized block, you can perform whatever data
manipulation you like without fear that another thread may sneak in and access the object for
which you have the lock.

JNI provides a similar structure using the MonitorEnter() and MonitorExit()
functions. You obtain a monitor (lock) on the object you pass into the MonitorEnter()
function and you keep this lock until you release it with the MonitorExit() function. All of
the code between the MonitorEnter() and MonitorExit() functions is guaranteed to
be thread safe for the object you locked.

Synchronization in native methods
The table below shows how to synchronize a block of code in Java, C, and C++. As you can
see, the C and C++ functions are similar to the synchronized statement in the Java code.

Using synchronized with native methods
Another way to ensure that your native method is synchronized is to use the synchronized
keyword when you declare your native method in a Java class.

Using the synchronized keyword will ensure that whenever the native method is called
from a Java program, it will be synchronized. Although it is a good idea to mark
thread-safe native methods with the synchronized keyword, it is generally best to always
implement synchronization in the native method implementation. The primary reasons for this
are as follows:

• The C or C++ code is distinct from the Java native method declaration, so if the method
declaration changes (that is, if the synchronized keyword is ever removed) the method
may suddenly no longer be thread safe.

• If anyone ever codes other native methods (or other C or C++ functions) that use the
function, they may not be aware that native implementation isn't thread safe.

• If the function is used outside of a Java program as a normal C function it will not be thread
safe.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 23 of 30

Other synchronization techniques
The Object.wait(), Object.notify(), and Object.notifyAll() methods also
support thread synchronization. Since all Java objects have the Object class as a parent
class, all Java objects have these methods. You can call these methods from the native code
as you would any other method, and use them in the same way you would use them in Java
code to implement thread synchronization.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 30 Java programming with JNI

Section 5. Wrap-up and resources

Summary
The Java Native Interface is a well-designed and well-integrated API in the Java platform. It
is designed to allow you to incorporate native code into Java programs as well as providing
you a way to use Java code in programs written in other programming languages.

Using JNI almost always breaks the portability of your Java code. When calling native
methods from Java programs, you will need to distribute native shared library files for every
platform on which you intend to run your program. On the other hand, calling Java code from
native programs can actually improve the portability of your application.

Resources
Downloads

• Download the complete source files, jni-source.zip, for this tutorial.

• Download the Java 2 platform, Standard Edition, version 1.4.

• If you're a Windows user, you'll likely use Visual C++ to compile your C/C++ code.

• If you're a UNIX user, you'll likely use cc to compile your C/C++ code. Of course, GCC is
an equally viable, open-source option.

• IBM's VisualAge for Java is a complete Java development package, including a C/C++
compiler.

• Further explore your options with developerWorks' listing of IBM developer kits for Java
technology.

Articles and tutorials

• To learn more about the differences between programming in C/C++ and programming in
the Java language -- from a C/C++ programmer's perspective -- see the tutorial, "
Introduction to Java for C/C++ programmers" (developerWorks, April 1999)

• The recent article "Weighing in on Java native compilation" (developerWorks, January
2002) uses comparative benchmarks to look at the pros and cons of the Java Native
Interface.

• Learn more about the Java Native Interface, including enhancements to the JNI in the
Java 2 SDK.

• To further your education in Java programming, see the complete listing of
developerWorks tutorials on Java programming.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 25 of 30

jni-source.zip
http://java.sun.com/j2se/1.4/index.html
http://java.sun.com/j2se/1.4/index.html
http://java.sun.com/j2se/1.4/index.html
http://java.sun.com/j2se/1.4/index.html
http://java.sun.com/j2se/1.4/index.html
http://java.sun.com/j2se/1.4/index.html
http://java.sun.com/j2se/1.4/index.html
http://msdn.microsoft.com/visualc/howtobuy/default.asp#2
http://msdn.microsoft.com/visualc/howtobuy/default.asp#2
http://gcc.gnu.org/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/vajava/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/vajava/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/vajava/&origin=j
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/4AA2DCF35C08EECA86256874006E43F7?OpenDocument
http://www-106.ibm.com/developerworks/library/j-native.html
http://www-106.ibm.com/developerworks/library/j-native.html
http://www-106.ibm.com/developerworks/library/j-native.html
http://www-106.ibm.com/developerworks/library/j-native.html
http://www-106.ibm.com/developerworks/library/j-native.html
http://www-106.ibm.com/developerworks/library/j-native.html
http://www-106.ibm.com/developerworks/library/j-native.html
http://robocode.alphaworks.ibm.com/docs/jdk1.3/guide/jni/index.html
http://robocode.alphaworks.ibm.com/docs/jdk1.3/guide/jni/index.html
http://robocode.alphaworks.ibm.com/docs/jdk1.3/guide/jni/index.html
http://robocode.alphaworks.ibm.com/docs/jdk1.3/guide/jni/index.html
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/

• You'll find hundreds of articles about every aspect of Java programming in the IBM
developerWorks Java technology zone.

Recommended books

• To learn more about programming in C++, start with Bjarne Stroustrup's The C++
Programming Language, Third Edition (Addison-Wesley, 1996).

• Another good reference is Kris Jamsa and Lars Klander's Jamsa's C/C++ Programmer's
Bible (Jamsa Press, 1998).

• For a more object-oriented approach, see Cay S. Horstmann's Mastering Object-Oriented
Design in C++ (John Wiley & Sons Inc., 1995).

• Andrew C. Staugaard, Jr., wrote Structured and Object-Oriented Techniques: An
Introduction using C++ (Prentice Hall, 1997).

• Ken Arnold and James Gosling wrote The Java Programming Language: Third Edition
(Addison-Wesley, 2000).

• Learn more about the Java Native Interface with Sheng Liang's Java Native Interface:
Programmer's Guide and Specification (Sun Microsystems Press, 1999).

• Also see Rob Gordon's Essential JNI: Java Native Interface (Prentice Hall, 1998).

• David Flanagan's Java in a Nutshell, Third Edition is essential reading for any Java
programmer (O'Reilly, 1999).

• Also see volumes I and II of the Core Java 2 series by Cay S. Horstmann and Gary Cornell
(Sun Microsystems Press, 2000).

• The Java 2 Developer's Handbook by Philip Heller and Simon Roberts is an excellent
resource (Sybex, 1999).

• To learn more about the Java platform's security model, see Scott Oaks's Java Security,
Second Edition (O'Reilly, 2001).

• For an in-depth look at Java data structures and algorithms, see Robert Lafore's Data
Structures & Algorithms in Java (Waite Group Press, 1998).

• No Java programmer's bookshelf is complete without Design Patterns: Elements of
Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (Addison-Wesley Professional Computing Series, 1995).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 30 Java programming with JNI

http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/1884133258/programmersheave/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1884133258/programmersheave/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1884133258/programmersheave/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1884133258/programmersheave/102-1885448-9572169
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://cseng.aw.com/book/0,,0201704331,00.html
http://cseng.aw.com/book/0,,0201704331,00.html
http://cseng.aw.com/book/0,,0201704331,00.html
http://cseng.aw.com/book/0,,0201704331,00.html
http://cseng.aw.com/book/0,,0201704331,00.html
http://cseng.aw.com/book/0,,0201704331,00.html
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://vig.prenhall.com/catalog/academic/product/1,4096,0136798950,00.html
http://vig.prenhall.com/catalog/academic/product/1,4096,0136798950,00.html
http://vig.prenhall.com/catalog/academic/product/1,4096,0136798950,00.html
http://vig.prenhall.com/catalog/academic/product/1,4096,0136798950,00.html
http://vig.prenhall.com/catalog/academic/product/1,4096,0136798950,00.html
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.horstmann.com/corejava.html
http://www.horstmann.com/corejava.html
http://www.horstmann.com/corejava.html
http://www.sybex.com/SybexBooks.nsf/7f45de36b094d8d4882569730065d483/104655466d48d2758825693d0057f922!OpenDocument
http://www.sybex.com/SybexBooks.nsf/7f45de36b094d8d4882569730065d483/104655466d48d2758825693d0057f922!OpenDocument
http://www.sybex.com/SybexBooks.nsf/7f45de36b094d8d4882569730065d483/104655466d48d2758825693d0057f922!OpenDocument
http://www.sybex.com/SybexBooks.nsf/7f45de36b094d8d4882569730065d483/104655466d48d2758825693d0057f922!OpenDocument
http://www.oreilly.com/catalog/javasec2/
http://www.oreilly.com/catalog/javasec2/
http://www.oreilly.com/catalog/javasec2/
http://www.oreilly.com/catalog/javasec2/
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
http://cseng.aw.com/book/0,3828,0201633612,00.html
http://cseng.aw.com/book/0,3828,0201633612,00.html
http://cseng.aw.com/book/0,3828,0201633612,00.html
http://cseng.aw.com/book/0,3828,0201633612,00.html
http://cseng.aw.com/book/0,3828,0201633612,00.html
http://cseng.aw.com/book/0,3828,0201633612,00.html
http://cseng.aw.com/book/0,3828,0201633612,00.html

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 27 of 30

Section 6. Appendices

Appendix A: JNI types
JNI uses several natively defined C types that map to Java types. These types can be
divided into two categories: primitive types and pseudo-classes. The pseudo-classes are
implemented as structures in C, but they are real classes in C++.

The Java primitive types map directly to C platform-dependent types, as shown here:

The C type jarray represents a generic array. In C, all of the array types are really just type
synonyms of jobject. In C++, however, all of the array types inherit from jarray, which in
turn inherits from jobject. The following table shows how the Java array types map to JNI
C array types.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 30 Java programming with JNI

Here is an object tree that shows how the JNI pseudo-classes are related.

Appendix B: JNI method signature encoding
Native Java method parameter types are rendered, or mangled, into native code using the
encoding specified in the table below.

Notes:
• The semicolon at the end of the class type L expression is the terminator of the type

expression, not a separator between expressions.

• You must use a forward slash (/) instead of a dot (.) to separate the package and class

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming with JNI Page 29 of 30

name. To specify an array type use an open bracket ([). For example, the Java method:

boolean print(String[] parms, int n)

has the following mangled signature:

([Ljava/lang/Sting;I)Z

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 30 Java programming with JNI

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tools and components
	About the author

	Calling C/C++ code from Java programs
	Overview
	Six steps to call C/C++ from Java code
	Step 1: Write the Java code
	What's happening in this code?
	Step 2: Compile the Java code
	Step 3: Create the C/C++ header file
	Results of running javah.exe on Sample1.java
	About the C/C++ header file
	Step 4: Write the C/C++ code
	The C function implementation
	The C++ function implementation
	C and C++ function implementations compared
	Step 5: Create the shared library file
	Step 6: Run the Java program
	Troubleshooting
	Conclusion

	Calling Java code from C/C++ programs
	Overview
	Four steps to call Java code from a C/C++ program
	Step 1: Write the Java code
	Step 2: Compile the Java code
	Step 3: Write the C/C++ code
	A C application with embedded JVM
	A C++ application with embedded JVM
	C and C++ implementations compared
	A closer look at the C application
	Include the jni.h file
	Declare the variables
	Set the initialization arguments
	Set the classpath
	Set aside memory for vm_args
	Create the JVM
	Find and load the Java classes
	Find a Java method
	Call a Java method
	Step 4: Run the application
	Troubleshooting
	Conclusion

	Advanced topics
	Overview
	Java strings versus C strings
	Java arrays versus C arrays
	Working with arrays
	Local versus global references
	Creating a global reference
	Error handling
	JNI's exception handling functions
	JNI's exception catching functions
	Multithreading in native methods
	Synchronization in native methods
	Using synchronized with native methods
	Other synchronization techniques

	Wrap-up and resources
	Summary
	Resources
	Feedback

	Appendices
	Appendix A: JNI types
	Appendix B: JNI method signature encoding

