
Java internationalization basics

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Introduction.. 4
3. Overview of the Java platform support for I18N 6
4. Unicode and Java characters .. 12
5. Providing localized resources .. 16
6. Working with dates, numbers, and currencies 23
7. Putting the pieces together ... 31
8. Wrapup and resources .. 36
9. Appendix A: Complete code listings 39

Java internationalization basics Page 1 of 69

Section 1. About this tutorial

What is this tutorial about?
This tutorial introduces you to the Java programming language's support for multilingual and
multicountry environments. The course begins with a general discussion of
internationalization principles and concepts, and then moves on to an overview of the
specific areas of Java internationalization support. The last few sections provide a more
hands-on discussion -- including example programs for the major discussion areas, and a
final, more complete application that ties them together -- of the areas basic to any
internationalized Java application: Unicode and Java characters; locales and resource
bundles; and formatting dates, numbers, and currencies.

Upon completing the tutorial, you will have a firm understanding of the elements of
internationalization and the areas for which the Java platform provides support. You should
also be able to write applications that use resource bundles and can format and parse dates,
numbers, and currencies.

Should I take this tutorial?
If you are an intermediate Java programmer with some understanding of I/O and Swing, and
have an interest in building international Java applications, then Java internationalization
basics is for you. However, beginning to advanced developers will also be able to glean
useful information and review material. In particular, every Java programmer should have an
understanding of the discussions in the sections Unicode support on page 6 andJava
characters and the char datatype on page 12 . All example code is explained, but the focus is
on areas germane to internationalization, not general Java programming. Any prior exposure
to internationalization is helpful when taking this tutorial, but no particular background is
assumed.

Author's note: While I have some background in German and Russian, the words and
phrases used in the examples are primarily the result of Internet dictionary research. I hope
you will be amused rather than irritated by any poor or inappropriate word choices. Feel free
to contact me with any corrections, linguistic or otherwise.

See Resources on page 36 for a listing of tutorials, articles, and other references that expand
upon the material presented here.

Code samples and installation requirements
Although a release candidate for JDK 1.4 was available at the time the tutorial was written,
JDK 1.3 is used to be applicable to the widest audience. Specifically, J2SE v1.3.1_02 on
Windows NT 4.0, Service Pack 6a was used for testing the examples. There are only a few
new items in 1.4 regarding internationalization and these changes or additions are mentioned
in the appropriate sections. You should, of course, have the international version of any
JDK/JRE.

Note that the code examples are intended to promote understanding of the basics and have
not been optimized for production use.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 69 Java internationalization basics

mailto:joesam@conceptgo.com
mailto:joesam@conceptgo.com

The classes and source code for the examples used in this tutorial are available as a
downloadable JAR file in Resources on page 36 . The individual source files are also listed in
Appendix A: Complete code listings on page 39 .

About the author
For technical questions about the content of this tutorial, contact the author.

Joe Sam Shirah is a principal and developer at conceptGO, which provides

remote consulting and software development services, as well as products, with specialties
in JDBC, I18N, the AS/400, RPG, finance, inventory, and logistics. Joe Sam was presented
with the Java Community Award at JavaOne, 1998, and is the author of the JDBC 2.0
Fundamentals short course at the Java Developer Connection. He is the moderator of the
developerWorks "Java filter" discussion forum and manager for jGuru's JDBC, I18N, and
Java400 FAQs. Joe Sam has a B.B.A. in Economics and a Master's degree in International
Management. You can contact Joe Sam at joesam@conceptgo.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 3 of 69

mailto:joesam@conceptgo.com
mailto:joesam@conceptgo.com
mailto:joesam@conceptgo.com
http://www.conceptgo.com
mailto:joesam@conceptgo.com

Section 2. Introduction

Internationalization
Internationalization, in relation to computer programming, is the process of designing and
writing an application so that it can be used in a global or multinational context. An
internationalized program is capable of supporting different languages, as well as date, time,
currency, and other values, without software modification. This usually involves "soft coding"
or separating textual components from program code and may involve pluggable code
modules.

Internationalization is often shortened to I18N by practitioners. The rationale is that there are
18 letters between the beginning I and final N in internationalization. Try saying and writing
"internationalization" more than a few times and you will appreciate the value of the shorter
version. Additionally, you may see "I18N'ed" as a shortened form of "internationalized." While
grammatically imprecise and technically incorrect, "I18N'ed" is useful and you will see it
frequently in the literature, including this tutorial.

Relational database management systems and operating systems may also provide
underlying support for certain aspects of internationalization, often using the term National
Language Support or NLS.

Localization
Localization is the process of designing and writing an application capable of dealing with a
specific regional, country, language, cultural, business, or political context. In a sense, every
application written for a specific area is localized, although most of these effectively support
only one locale. Usually, though, true localization is achieved by core code that accesses
locale, location, political, or other specific components and modules, along with translating
text as appropriate for the audience. A properly internationalized program facilitates and
provides a foundation for localization.

Localization is often shortened to L10N for the same reasons and logic used to turn
"internationalization" into "I18N".

A tax or accounting package that deals with, say, the United States, Canada, Mexico, and
Brazil could be I18N'ed so that display, reporting, and other programs would not have be
duplicated with customizations for each country. The package would then be L10N'ed to
handle different accounting and reporting procedures as appropriate for the country and
possibly even for state or province.

I18N raison d'etre
The title of this panel itself provides one of the reasons for internationalization: a person who
had not been exposed to "I18N" or French (raison d'etre means, roughly, "reason for being")
would have no idea what this section is about. Sometimes that lack of knowledge is an
advantage, as evidenced by the success of faux diamonds. However, if software cannot be
understood, no matter how intellectually gratifying to the developer, it is useless.
Inconvenient or irritating software is also less useful and less marketable.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 69 Java internationalization basics

In the beginning there was ASCII. Even today, most compilers expect ASCII input. As
computers developed, the need for additional language support was recognized and a
country-specific character set that usually included both ASCII and a local language was
provided with the operating system. Even so, only the one "other" language was generally
supported and most developers designed programs according to their own national or local
culture. Applications on the Internet and Web, for historical and practical reasons, often
followed the same pattern. While the emphasis is usually on the English language, it is easy
to find single-language applications and Web sites of all varieties.

Another consideration is economic; there is a great big market out there beyond your
country's borders. With the rise of GNP in formerly poor countries, the widespread
acceptance of computers, and the increasing population on the Web, markets are changing.
As of December, 2001, according to Global Reach's Global Internet Statistics page, the
Internet population could be broken down to approximately 45 percent English speakers.
Next were Japanese at about 9 percent, followed by Chinese, German, Spanish, Korean,
Italian, French, and others, in that order. It is reasonable to assume that computer access
tracks similar proportions. And while the online population is expected to double from 2001 to
2005 (and online commerce to grow from roughly $1 trillion to over $6 trillion), the
English-speaking percentage of that total is expected to fall to about 39 percent in a
continuing trend.

Other reasons to pay attention to internationalization issues may be closer to home: your
company may open offices in other countries or receive a Request For Proposal (RFP) from
a potential customer in another country.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 5 of 69

Section 3. Overview of the Java platform support for
I18N

Internationalization and the Java programming language
Unlike programmers in most other languages, Java programmers are the beneficiaries of a
significant amount of standard code built into the JDK for I18N support. A large portion of the
code originally came from IBM's Taligent subsidiary (since merged into IBM) and represents
many person-years of work, far more than would be feasible for most companies to
independently provide in their products.

The code and vision has not always been perfect; take a look at the many deprecated
methods in the java.util.Date class, for example. And, many of us can remember when
Pacific Standard Time was also apparently Java World Time. However, even in the "bad old
days," few, if any, other languages had (or have) anything to compare to this built-in
capability. The panels in this section briefly discuss the general I18N areas supported by the
Java platform.

Unicode support
The Java language character set is Unicode, and the primitive char datatype is, accordingly,
two bytes (16 bits) in length to accommodate Unicode values. Because the familiar String
is composed of chars, a String is also Unicode based. Unicode itself is defined so that the
values 0 through 127 match standard ASCII and 0 through 255 match the ISO 8859-1
(Latin-1) standard. Due to this conformity in the beginning values, programmers who don't
use I18N facilities or face I18N issues can write Java programs without understanding or
knowing about Unicode. However, given the ubiquity of Windows, programmers for that
platform should be aware that there are differences between standard ISO 8859-1 and
Windows Latin-1 (cp1252).

The 16-bit char length allows values between 0 and 65535. Unicode escapes are provided
to allow input when the actual character is not supported by the native platform. These are in
the form of "\u" followed by four hexadecimal digits from 0000 to FFFF. The following two
lines of code, for example, are equivalent:

char c1 = 'a';
char c2 = '\u0061';

The 1.3 version of the JDK/JRE supports Unicode 2.1; the 1.4 version supports Unicode 3.0.
For more information about Unicode and a Unicode display program called UniBook, see the
link to the Unicode Consortium in Resources on page 36 .

Character-set conversions and stream input/output
The previous panel mentions that the Java character set is Unicode, but not all platforms
support Unicode. So how is this magic accomplished? The answer is that all input and output
streams that support characters -- that is, the java.io.Reader and java.io.Writer
hierarchies -- automatically invoke a hidden layer of code that converts from the platform's

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 69 Java internationalization basics

native encoding to Unicode and back. Notice that the native encoding is assumed. If the data
is not in the default encoding, you will have to convert the data yourself. Fortunately, the
java.io.InputStreamReader, java.io.OutputStreamWriter, and
java.lang.String classes have methods that allow conversion specification with
supported encodings. You can find these under Supported Encodings in the
Internationalization section of the JDK documentation (accessible from Resources on page 36
). Note that JDK 1.4 now provides support for Thai and Hindi encodings.

As a point of interest, the Java guarantee of big-endian format for numerics is not upheld for
the char datatype. The default format is platform dependent. On NT 4.0 for example, the
system property "sun.io.unicode.encoding" is set to "UnicodeLittle". If, for some reason, you
want to specify the format yourself, you have a documented choice of UnicodeBig,
UnicodeBigUnmarked, UnicodeLittle, UnicodeLittleUnmarked, UTF8, or UTF-16.

Character classification and the Character class
In addition to defining characters for many languages in a standard manner, Unicode also
defines several properties for each character. These properties identify such things as the
general category, bidirectionality, uppercase, lowercase, whether the character is a digit or
control character, and so on. These properties are defined in the UnicodeData file available
at the Unicode Consortium Web site.

The Java Character class provides methods to obtain these properties. While a specific
instance is immutable, many of the methods are static, allowing access to a character's
properties on the fly.

An example of the usefulness of this class comes from a typical ASCII programming
algorithm: many programmers take advantage of the fact that if a character's value is in the
range 0x41 through 0x5A, it is a capital letter (A-Z). By adding 0x20, you get lowercase letter
(a-z). Unfortunately, the algorithm will fail when dealing with languages that contain
characters beyond the ASCII range. The solution is to use Character.isUpperCase()
and Character.toLowerCase(), which work in any circumstance. Another example is
Character.isDigit(), which also works for characters that represent digits outside the
ASCII '0' through '9' range.

Locales
In the Java language, a locale is just an identifier, not a set of localized attributes. An
instance of the java.util.Locale class represents a specific geopolitical area and is
created with arguments for a language and region or country. Each locale-sensitive class
maintains its own set of localized attributes and determines how to respond to a method
request that contains a Locale argument.

Given the preceding statements, it should be clear that there are no constraints regarding
how a programmer may respond to a method request that contains a Locale argument.
However, in Sun's reference Java 2 platform and other conforming implementations, there is
a consistent set of supported localizations. See Supported Locales in the Internationalization
section of the JDK documentation (accessible from Resources on page 36) for more
information. You should note that the documentation lists a number of locales as "also
provided, but not tested." I have personally seen this "not tested" issue arise with the Finnish

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 7 of 69

(fi_FI) locale in JDK 1.3.1; caveat emptor.

AWT/Swing Name and Locale attributes
The java.awt.Component class includes getters and setters for Name and Locale
attributes. While the documentation also discusses constructors for Component and its
subclasses that take the Name argument, I apparently need glasses more than I thought,
because I have never been able to find them. Component is in the hierarchy for most Swing
classes and they automatically support these attributes as well.

The Name attribute is a non-localized String that you can assign programmatically. It may
sound odd that this assists in internationalization, but with most data changing according to
locale, Name provides a set anchor to identify the component. Within a given class, of course,
testing object references for object equality can serve the same purpose. While there are
good reasons for either technique, I customarily use object equality testing in
actionPerformed() methods, as you can see in the code examples. The documentation
states that a default Name is assigned if not programmatically set, but no value or pattern is
given. In the code I've written, Component.getName() returns null if invoked prior to
Component.setName("aName"). As undocumented behavior, of course, results may not
be consistent and could change in the future. Therefore, when the Name attribute is to be
used, good programming practice would call for setting the Name attribute for all components
to a standard value that means "unset", then setting the desired components as appropriate.

The Locale attribute allows a component to track its own locale even when the rest of an
application is using a different locale. This technique can be very useful in certain situations,
although for Components with text values, the text can be localized before being sent to the
Component without the need for setting a specific Component Locale.

Localized resources
java.util.ResourceBundle is an abstract class that provides mechanisms for storing
and locating resources used by an application. The resources are usually localized
Strings, but may be any Java object. ResourceBundles are set up in a sort of hierarchy,
beginning with a general ResourceBundle with a base name, then getting more specific by
adding language and country identifiers (as defined in Supported Locales in the JDK
documentation Internationalization section, which is accessible from Resources on page 36)
to the base name of additional ResourceBundles. The three great advantages of
ResourceBundles are:

• The class loader mechanism is used to locate a ResourceBundle, so no additional I/O
code is needed.

• ResourceBundle "knows" how to search the hierarchy for a locale-appropriate instance,
from specific to general, using the static getBundle(String baseName) or
getBundle(String baseName, Locale locale) methods.

• If a resource is not found in a specific instance, the resource from a more general instance
will be used.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 69 Java internationalization basics

The good news/bad news is that, once loaded, ResourceBundle instances are cached
under the covers as a performance optimization; this cache is never refreshed and there is
no official way to manipulate the cache.

ResourceBundle has two subclasses:

• ListResourceBundle, which is another abstract class, so you must provide your own
implementation. Primarily, you must override getContents(), which returns a
two-dimensional Object array (Object[][]). This kind of ResourceBundle can return
any type of Object.

• PropertyResourceBundle, a concrete class that is backed by a
java.util.Properties file and can return only Strings.

You can provide your own custom subclasses as well. In that case, you must override and
provide implementations for handleGetObject() and getKeys(String key).

ResourceBundles use key/value pairs and provide getString(String key) and
getObject(String key) methods. You can also use getKeys() to obtain an
Enumeration of available keys.

Calendar and time zone support
java.util.Date was originally intended to handle date and time operations, but inherent
flaws have reduced it to representing a specific moment in time. The abstract class
java.util.Calendar and its concrete subclass java.util.GregorianCalendar were
introduced in JDK 1.1 to handle java.util.Date's deficiencies. The Calendar classes
have methods to obtain all date and time fields as well as performing date and time
arithmetic.

The abstract java.util.TimeZone class and its concrete subclass
java.util.SimpleTimeZone maintain standard and daylight savings time offsets from
Universal Coordinated Time (abbreviated UTC, not UCT as you would expect; the
abbreviation is taken from the French form for historical reasons). In addition, TimeZone
also contains methods to obtain both native and localized time zone display names.

Formatting and parsing
Numbers, currencies, dates, times, and program messages are all affected by cultural and
regional differences, and require significant formatting and parsing effort for localization. The
abstract class java.text.Format and its subclasses were created to cope with this I18N
area. All of the subclasses have locale-sensitive format() and parse() methods to
manipulate values in a locale-sensitive manner. The parse() methods will throw
ParseException on invalid values. The concrete subclasses
java.text.SimpleDateFormat and java.text.DecimalFormat allow patterns and
access to the appropriate symbols for the instance. In general, the abstract parent classes
have getInstance() and getXXXInstance() static factory methods that return
appropriately localized objects.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 9 of 69

Following is a list of the direct subclasses of java.text.Format:

• The abstract java.text.DateFormat class and its concrete subclass
java.text.SimpleDateFormat, backed by the java.text.DateFormatSymbols
class, are used to deal with date and time values.

• The abstract java.text.NumberFormat class and its concrete subclasses
java.text.ChoiceFormat and java.text.DecimalFormat, backed by the
java.text.DecimalFormatSymbols class, are used to deal with numbers, currencies
and percentages.

• java.text.MessageFormat allows "soft coded" location and formatting of values to be
inserted into localized messages.

For JDK/JRE 1.4, java.util.Currency has been added so that currencies can be used
independently from locale. java.text.NumberFormat has new methods to deal with
currencies and integers.

Locale-sensitive String operations
As developers, we often need to manipulate, search, and sort Strings. This work can be
incredibly difficult when multiple languages are involved. The Java platform provides the
following classes to assist:

• The abstract java.text.Collator class and its concrete subclass
java.text.RuleBasedCollator allow for locale-sensitive String comparisons.

• The java.text.CollationElementIterator class iterates through each character of
a String and returns its ordering priority in a given collation.

• The java.text.CollationKey class represents a String as governed by a specific
Collator and allows relatively fast ordering comparisons.

• The java.text.BreakIterator class implements conventions on locating breaks in
lines, sentences, words, and characters in a locale-sensitive manner.

• The java.text.StingCharacterIterator class provides for bidirectional iteration
over Unicode characters and is used to search for characters within a String.

Input methods
Virtually all of the preceding discussion has involved manipulating or displaying data.
However, the data must be input by some means. For an end user, that means is most often
the keyboard. But what do you do when the keyboard doesn't support the characters needed
for language input?

Input method is a technical term for software components that allow data input. The Java

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 69 Java internationalization basics

platform allows for the use of host OS input methods as well as Java-language-based input
methods. If you need to implement input methods, you can use the Input Method Framework.
You can find the specification, reference, and tutorials for the Input Method Client API and
the Input Method Engine SPI under Input Method Framework in the Internationalization
section of the JDK documentation (accessible from Resources on page 36).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 11 of 69

Section 4. Unicode and Java characters

Java characters and the char datatype
One of the best-known complaints of Java programmers is "I only see question marks (or
blocks) for my program output. How did my data get corrupted?" In general you, as a Java
developer, should understand what is actually going on and the reasons behind this seeming
problem, but this knowledge is especially important when dealing with internationalization
issues.

The Java Language Specification defines char as a primitive, numeric, integral type. In
addition, char is the only unsigned numeric type, which allows for some interesting (or
nasty, depending on your view) tricks. chars are special in another way as well, because
their values are mapped to glyphs from a character map or a font when sent to output
devices like displays or printers. At its base, however, char is a numeric type and supports
all integer operations. Unicode support on page 6 noted that a char could be set using a
letter or with the Unicode escape. Because char is a numeric, you can also use octal,
decimal, or hex notation or even flip bits for assignment.

Given that background and assuming no program bugs, the answer to the question above is
that the character map or font just doesn't support the character and a question mark or
block is substituted for display. The value of the char itself is still valid. However, in that
case you can't verify the data visually; you have to check the numerical value. The following
example displays this behavior.

This image shows the Japanese ideograph for "Go" or 5, represented in Unicode as

'\u4E94'. The character causes the question mark and block display in the charExample
program below:

import javax.swing.*;

public class charExample
{
public static void main(String[] args)
{
boolean bFirst = true;
char aChar[] = {

'A', // character
65, // decimal
0x41, // hex
0101, // octal
'\u0041' // Unicode escape

};

char myChar = 256;

for(int i = 0; i < aChar.length; i++)
{
System.out.print(aChar[i]++ + " ");
if(i == (aChar.length - 1))
{
System.out.println("\n---------");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 69 Java internationalization basics

if(bFirst)
{
i = -1;
bFirst = !bFirst;

}
}

} // end for
// the result of adding two chars is an int
System.out.println("aChar[0] + aChar[1] equals: " +

(aChar[0] + aChar[1]));
System.out.println("myChar at 256: " + myChar);
System.out.println("myChar at 20116 or \\u4E94: " +

(myChar = 20116));
// show integer value of the char
System.out.println("myChar numeric value: " +

(int)myChar);

JFrame jf = new JFrame();
JOptionPane.showMessageDialog(jf,
"myChar at 20116 or \\u4E94: " +
(myChar = 20116) +
"\nmyChar numeric value: " +
(int)myChar,
"charExample", JOptionPane.ERROR_MESSAGE);

jf.dispose();
System.exit(0);

} // end main

} // End class charExample

First, the program initializes a char array with the letter 'A', using various representations,
and a char variable is set to 256 ('\u0100'). The program prints its values twice in a loop.
Each element is incremented after printing (a char is numeric, remember?). Next, the first
two elements are added together, and the result (an int) is printed. Then, the char variable
is printed, first with its initial value, then with a value of 20116 or '\u4E94', which is the
Japanese ideogram "Go" for 5. These two values print as question marks on the display, as
expected on Windows NT using code page cp1252. Depending on the code page for your
system, the display may be slightly different. To check the value, the variable is then printed
as an int. Last, a JOptionPane displays the value, showing a block for the unsupported
char '\u4E94'.

This is the output from charExample:

A A A A A

B B B B B

aChar[0] + aChar[1] equals: 134
myChar at 256: ?
myChar at 20116 or \u4E94: ?
myChar numeric value: 20116

The JOptionPane display:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 13 of 69

Fonts, font properties, and the Lucida font
The Java platform recognizes both logical and physical fonts.

Logical fonts are those that are automatically mapped to host system fonts. These are the
familiar Serif, Sans-serif, Monospaced, Dialog, and DialogInput fonts. There are also four
logical font styles: plain, bold, italic, and bolditalic. The mapping from host to logical fonts is
done with a font.properties file, located in the JRE/lib directory. While specifics vary from
system to system, the default font.properties file is usually set for English speakers, although
there is a localized Japanese version of the JDK available. Additional font.properties files are
shipped; JDK 1.3.1 for Windows includes files for Arabic, Hebrew, Japanese, Korean,
Russian, Thai, and several versions for Chinese. The search for an appropriate
font.properties is similar (but not identical) to the method used for ResourceBundles, as is
the naming convention. If a language-specific font.properties file matches your system's
locale and the expected fonts (normally shipped with that version of the OS) are installed,
automatic mapping is done for that language. Otherwise, the default, usually English, file
mapping is used.

Automatic mapping will also occur if you install the appropriate font and pass the
corresponding language and country code when invoking a Java application. This behavior is
very useful for development if the desired font.properties file exists. You can also effectively
make that language/font the default by copying the initial default font.properties file to
something else and renaming the specific file to "font.properties". While easy enough for
developers, that's obviously not something end users should have to do.

Matters are completely different and more difficult if you must customize or create a new
font.properties file yourself. Instructions for dealing with font.properties files are available in
Font Properties in the Internationalization section of the JDK documentation.

Physical fonts are the normal fonts we use all the time. Fonts based on ASCII and ISO
8859-1 are not a problem. Once we get outside that range, however, the host platform
obviously must understand them, and they must be Unicode-encoded to work in your Java
programs. These fonts are not as difficult to find as once was the case. The Windows MS
Mincho TrueType font (mostly Japanese), for example, is Unicode-encoded and may be
used immediately in the standard manner. When an appropriate physical font is loaded on
the system, you can let users select the font they want and save their preferences or set the
font as a standard for an entire package without getting into font.properties files.

The Java 2 SDK also provides three physical font families: Lucida Sans, Lucida Bright, and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 69 Java internationalization basics

Lucida Sans Typewriter. Each family contains four fonts -- for plain, italic, bold, and bolditalic
styles -- for a total of 12 fonts. While information is scarce on the exact capabilities of these
fonts, the Lucida Sans font handles most European and mid-Eastern languages. The Asian
languages are not included. Because this font comes with the JDK, all the graphical
application examples in the tutorial use the Lucida Sans font. For more information, see
Physical Fonts in the Internationalization section of the JDK documentation (accessible from
Resources on page 36).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 15 of 69

Section 5. Providing localized resources

Creating locales
The first thing you should do when providing localized resources of any type is to create an
appropriate locale (see Locales on page 7). While there is a constructor that includes a
platform/browser variant, normally you will use

Locale l = new Locale(String language, String country);

where language is a lowercase, two-letter code defined by ISO-639, and country is an
uppercase, two-letter code defined by ISO-3166.

The following is for a German-language locale specific to Germany:

Locale l = new Locale("de", "DE");

Locale has a static getAvailableLocales() method that returns an array of
supported locales. In fact, all of the Java 2 Platform APIs that are locale sensitive have a
getAvailableLocales() method, which you can expect to return consistent values.
Other useful methods are static getDefault(), which returns the default locale, and
getDisplayName() and getDisplayName(Locale inLocale), which return names
appropriate for display in the default or requested locale language, respectively. You can
also get codes and names for country and language. These methods allow the programmer,
with no knowledge of the specific language, to provide an end user with the capability to
read, select, and return localized locale information.

Using resource bundles
ResourceBundles contain key/value combinations. The key is always a String, and the
value is always a String in PropertyResourceBundles, but can be any object in
ListResourceBundles or custom subclasses. If a requested resource is not found, a
MissingResourceException is thrown by ResourceBundle access methods.

See Localized resources on page 8 for more general information. This tutorial will focus on
PropertyResourceBundles because they fit most situations and are easily generated and
modified without having to write any new code.

ResourceBundle.getBundle(String baseName) and
ResourceBundle.getBundle(String baseName, Locale locale) provide a built-in
search mechanism that works very well when the bundles are structured properly. The
normal search goes from base_language_country_variant to base_language_country to
base_language to base. Note that if a specific, non-default locale is requested, and a default
locale bundle exists with the resource, the search will stop there rather than continuing to the
base bundle. Our example program (see PropertyResourceBundle code example on page 18)
supports English, French, German and Russian and uses PropertyResourceBundles.
The backing .properties files are named:

• ByTheNumbersrb.properties

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 69 Java internationalization basics

• ByTheNumbersrb_de.properties

• ByTheNumbersrb_en.properties

• ByTheNumbersrb_fr.properties

• ByTheNumbersrb_ru.properties

All files contain all resources needed. English is used as the default, and
ByTheNumbersrb.properties and ByTheNumbersrb_en.properties are duplicates. This
approach deviates slightly from conventional wisdom, which says that a specifically named
.properties file is not needed for the base default, so we don't need
ByTheNumbersrb_en.properties. However, this type of setup is necessary when a specific
piece of information uses a non-default locale, which is the case in our example program.
Let's say that an English locale will be used to display an item on a French default locale
machine. If the same key exists in the _fr bundle, that value will be selected when the _en
search failed. That's not exactly what was requested or expected. If only one locale is used in
any given run of the program, then the specifically named duplicate is not necessary. But in
any event, this approach doesn't require any new code and works in any situation.

If we required more specific locale support, say Austria, Switzerland, and Germany (_de_AT,
_de_CH and _de_DE, respectively), then it would make sense to put only the country
specifics in the appropriate country-named property file (myprops_de_CH.properties, for
instance), and the more general elements at the _de bundle level. In that case, the _de
bundle would always be found when the other elements were needed.

You should also implement some sort of naming convention for the bundles. Our examples
use this general format: Object.getClass().getName() + "rb". The main rule is this:
do not use just the class name for the base name with .properties files. Ignoring that rule will
work on some platforms, but on others you will get quite a surprise. The documented
guideline is: if a class and a .properties file with the same name both exist, the class wins
and will be loaded. Period. One good result of this behavior is that, with properly named
bundles, you can shift between ListResourceBundles and
PropertyResourceBundles with no code changes; just move the desired type to the
classpath.

You may find it more appropriate to have multiple ResourceBundles for separate types of
information. These could provide resources for many different programs. Specific prefix or
suffix conventions remain useful to avoid class name clashes.

Using PropertyResourceBundles
The semantics of PropertyResourceBundles are the same as the parent,
ResourceBundle. The difference is where the data is stored.
PropertyResourceBundles are backed up by .properties files that meet Properties
conventions. Here's what you need to know to create the files:

• The file is formatted as basic text with ISO 8859-1 encoding, so you can use just about any
editor to create and edit the file.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 17 of 69

• Lines starting with # are comments.

• Each resource is set up as a key/value pair, in the form key=value.

• The file extension must be .properties. The name must adhere to the following format
where language is defined by ISO-639, and country is defined by ISO-3166 (see Creating
locales on page 16):

• baseName.properties

• baseName_language.properties

• baseName_language_country.properties

• baseName_language_country_variant.properties

Here is an example entry from ByTheNumbersrb_en.properties:

1=One:

And here is an example entry from ByTheNumbersrb_ru.properties:

1=\u041E\u0434\u0438\u043D:

The colon in these examples is actually part of the value and not a required entry. Note that
once we are past ISO 8859-1 into other Unicode ranges, we must use Java Unicode
escapes. You can use the JDK native2ascii tool to convert from different encodings.

PropertyResourceBundle code example

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 69 Java internationalization basics

The ByTheNumbers example shown on the right uses the Russian locale -- ru_RU.

ByTheNumbers.java (see ByTheNumbers.java: PropertyResourceBundle example on page 40
) displays the names of the numbers 0 through 10 in several different languages. On entry,
the default locale is compared to those supported (English, French, German and Russian). If
the default locale does not match one of these, English is selected as the default and the
base ResourceBundle is used for resources; otherwise, the default locale
ResourceBundle is used. Locale Display Names of the supported languages are obtained
using the default locale and loaded into a JComboBox. The user can key-in the numbers for
the appropriate names and press OK. The program validates the entries and displays either
a congratulatory or retry message. We provide a button to display the number names in
random order. The user can select any of the languages from the JComboBox, and the fields
will initially appear in numerical order in the selected language. The program uses the Lucida
Sans font and can therefore properly display all of the supported languages. Unfortunately,
our translators have not yet returned our request for title translation, so the "title=Key in
numbers to match the words:" key/value pair appears only in the basename file, giving us an
opportunity to see that keys not located lower in the hierarchy will be found in ancestor files.

To run the program, use any of the following:

• java ByTheNumbers // uses the default locale if supported, otherwise English.

• java -Duser.language=de -Duser.region=DE ByTheNumbers // German

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 19 of 69

• java -Duser.language=en -Duser.region=US ByTheNumbers // English

• java -Duser.language=fr -Duser.region=FR ByTheNumbers // French

• java -Duser.language=ru -Duser.region=RU ByTheNumbers // Russian

Two of the five .properties files are shown below:

ByTheNumbersrb.properties (same as ByTheNumbersrb_en.properties)

Default properties in English
0=Zero:
1=One:
2=Two:
3=Three:
4=Four:
5=Five:
6=Six:
7=Seven:
8=Eight:
9=Nine:
10=Ten:
random=Random
title=Key in numbers to match the words:

ByTheNumbersrb_ru.properties

Default properties in Russian
0=\u041D\u0443\u043B\u044C:
1=\u041E\u0434\u0438\u043D:
2=\u0414\u0432\u0430:
3=\u0422\u0440\u0438:
4=\u0427\u0435\u0442\u044B\u0440\u0435:
5=\u041F\u044F\u0442\u044C:
6=\u0428\u0435\u0441\u0442\u044C:
7=\u0441\u0435\u043C\u044C:
8=\u0412\u043E\u0441\u0435\u043C\u044C:
9=\u0414\u0435\u0432\u044F\u0442\u044C:
10=\u0414\u0435\u0441\u044F\u0442\u044C:
random=\u041D\u0430\u0443\u0433\u0430\u0434

PropertyResourceBundle code example: I18N details
Let's take a look at the portions of the code related to I18N. First, the supported locales and
the ResourceBundle base name are established:

Locale[] alSupported = {
Locale.US,
Locale.FRANCE,
Locale.GERMANY,
new Locale("ru", "RU")

};
...

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 69 Java internationalization basics

String sRBName = getClass().getName() + "rb";

Next, a Lucida Sans font is created using the same style and size as the OK button's font,
and the Display Names for the supported languages in the default locale language are
obtained. In addition, the default locale is compared to determine if it is supported. If not,
English numbers will be the first set displayed.

Font fJB = jbOK.getFont();
fLucida = new Font("Lucida Sans",

fJB.getStyle(),
fJB.getSize());

...

asDNames = new String[alSupported.length];
Locale lDefault = Locale.getDefault();
for(i = 0; i < alSupported.length; i++)
{
asDNames[i] =

alSupported[i].getDisplayName();

if(iSelIndex == 0 &&
lDefault.equals(alSupported[i]))

{ iSelIndex = i; }
} // end for

Next, JLabels and JTextFields are created in a loop and loaded into arrays. Each
JLabel's font and Name are set. Once the arrays are built,
loadFromResourceBundle() is invoked to set each JLabel's text value. The localized
jbRandom button and title text are set next. Notice that the attributes for these two
components are set only once, which is the normal case for all components in the typical
program wherein the locale doesn't change during a given run.

jlTemp.setFont(fLucida);
jlTemp.setName(i + ""); // set Name
...

loadFromResourceBundle(); // get localized labels
...

jbRandom.setFont(fLucida);
jbRandom.setText(rb.getString("random"));
...

jlTemp = new JLabel(rb.getString("title"));
jlTemp.setFont(fLucida);

Following is the loadFromResourceBundle() method, which accesses the appropriate
ResourceBundle, using the selected locale. The JLabel's text is set, using the
JLabel.Name attribute as a key for getString(String key). If a particular resource is
not found, an error dialog is displayed. This method is also called when a language is
selected from the JComboBox.

public void loadFromResourceBundle()
{
try
{ // get the PropertyResourceBundle
rb = ResourceBundle.getBundle(

sRBName,
alSupported[iSelIndex]);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 21 of 69

// get data associated with keys
for(int i = 0; i < sfiSIZE; i++)
{
aiOrder[i] = i;
ajl[i].setText(rb.getString(ajl[i].getName()));

}
bRandomize = false;

} // end try
catch(MissingResourceException mre)
{
JOptionPane.showMessageDialog(this,
"ResourceBundle problem;\n" +
"Specific error: " + mre.getMessage(),
"", JOptionPane.ERROR_MESSAGE);

}
} // end loadFromResourceBundle

Again, for the complete program listing and contents of all .properties files, see
ByTheNumbers.java: PropertyResourceBundle example on page 40 .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 69 Java internationalization basics

Section 6. Working with dates, numbers, and currencies

Dates, numbers, and currencies
Formatting and parsing dates, numbers, and currencies appears straightforward to anyone
who has never been outside his own country or otherwise been exposed to "foreign" usage
of these values. After all, everyone can understand lundi 1 avril 2002 or at least the month
and day portions of 4.1.02, right? And, while few of us could actually purchase 32 1500,7

items at 150,75 , we can easily understand how many items at what price in euros. Or

maybe not. These examples may not seem typical, but they do occur and demonstrate why
non-natives often have problems understanding native date, number, and currency formats.

It turns out that there are a variety of orders and symbols used in dates around the world. It's
the same for numbers and currencies. In addition, currency symbols may be more than one
character and can appear at the beginning or end of the value, with or without spacing. In
most programming languages, you are pretty much on your own to handle these situations.
The Java API, however, can deal with all of the various formats for every supported locale.
And, by using the DateFormatSymbols and DecimalFormatSymbols classes, you can
obtain information like localized long and short month and day names, decimal and monetary
separators, and currency and percent signs.

The API documentation encourages you to use the getInstance() and
getXXXInstance() methods of the parent abstract classes DateFormat and
NumberFormat for I18N applications. As of the 1.3 (and 1.4) reference implementation,
instances of SimpleDateFormat and DecimalFormat, respectively, are returned. Both
classes have default patterns and symbols for formatting and parsing, and also allow for
customization.

The example programs in the following panels all use default patterns to help you to
understand how these work. You will see that, because of the API design, the code is very
similar in all three examples. They are also similar from an end-user perspective: an input
field is provided in the native locale. When the user presses the OK button, the value is
displayed in separate fields for the user-selected locale and the standard parsed "raw" value.
All three examples will handle every locale supported by the JDK API. The Lucida Sans font
is used for all displays. The "Toggle Display Names" button toggles the display of locale
names from the user's native language to the specific locale's native language. When the
font does not have a glyph for the first character of the localized display name, " - font can't
display." has been appended to the locale name in the drop-down box. The program will still
work, but in that case you will probably see the familiar boxes or question marks for some
portion of the output.

The programs are invoked using:

java AppName

Because all API locales are supported, you may also call them using

java -Duser.language=lc -Duser.region=cc AppName

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 23 of 69

where lc is the ISO-639 language code, and cc is the ISO-3166 country code for API
supported locales, to have the inputs formatted in that locale's style.

Note that these applications will take longer than normal to start up due to accessing both
entire locale Display Names sets.

Date formatting example
This JIBDateGUI example uses German as the default locale -- de_DE.

JIBDateGUI (see JIBDateGUI.java: DateFormat example on page 46) allows the user to input
a date in his native format. The native locale is determined on input and displayed next to the
OK button. When the user presses OK, the input date is parsed and displayed in the selected
locale. This value is also parsed and displayed separately in ISO format. The program may
be invoked with arguments of "full", "long", "medium" or "short". If no argument or values
other than these are sent, "short" is used. These values correspond to DateFormat.FULL,
DateFormat.LONG, DateFormat.MEDIUM, and DateFormat.SHORT, and are used to
create DateFormats in the selected style.

The program begins by defining default and selected DateFormats and locales. A
java.sql.Date is initialized to the current date to show standard ISO date values (note
that the date is not normalized for the example), then a Lucida font, a default locale, arrays
for supported locales, and native and localized Locale Display Names are defined.

DateFormat dfLocal,
dfSelected;

java.sql.Date jsqlDate = new java.sql.Date(
System.currentTimeMillis());

Font fLucida;
...
Locale lDefault = Locale.getDefault();
Locale[] alSupported;

String[] asDNames,
asLDNames;

In the constructor, the Lucida Sans font is created and assigned to display fields. The
requested style is captured and the default DateFormat is created. Next, all available
Display Names are gathered in both default and localized formats. The first character of each
localized Display Name is checked by Font.canDisplay(); if false is returned, " - font
can't display." is appended to the name. If the default locale is supported by the Java API,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 69 Java internationalization basics

the corresponding Display Name is selected; otherwise, the selection is row zero. In addition,
the input field is set and formatted using the value of the java.sql.Date.
DateFormat.setLenient(false) is applied to the default DateFormat and the default
Display Name is obtained for display.

Font fJCB = jbToggle.getFont();
fLucida = new Font("Lucida Sans",

fJCB.getStyle(),
fJCB.getSize());

iFormat = argiFormat;
dfLocal = DateFormat.getDateInstance(
iFormat);

alSupported = Locale.getAvailableLocales();
asDNames = new String[alSupported.length];
asLDNames = new String[alSupported.length];
for(int i = 0; i < alSupported.length; i++)
{
asDNames[i] =

alSupported[i].getDisplayName();

s1 =
alSupported[i].getDisplayName(alSupported[i]);

if(fLucida.canDisplay(s1.charAt(0)))
{ asLDNames[i] = s1; }
else
{ asLDNames[i] = s1 + " - font can't display."; }

if(iSelIndex == 0 &&
lDefault.equals(alSupported[i]))

{ iSelIndex = i; }
} // end for
...
jtI.setText(dfLocal.format(jsqlDate));
...
dfLocal.setLenient(false);
...
JLabel jlTemp = new JLabel("Default = " +

lDefault.getDisplayName());
jlTemp.setFont(fLucida);

All other I18N functionality is handled in the ActionListener (actionPerformed()
method) for the Display Names JComboBox, jcb: a new DateFormat is created, based on
the selection, and the display fields are cleared. If any errors occur in the next section, a
dialog displays the ParseException message. The code attempts to parse a
java.util.Date from the input and reformats it using the default DateFormat for output.
Next, the display for the selected DateFormat is formatted. Finally, this value is parsed and
used to create a java.sql.Date, which is used to show the ISO value.

if(oSource == jcb)
{
dfSelected = DateFormat.getDateInstance(

iFormat,
alSupported[jcb.getSelectedIndex()]);

} // end if jcb, continue on

jtD.setText("");
jtP.setText("");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 25 of 69

try
{
java.util.Date d = dfLocal.parse(

jtI.getText());
jtI.setText(dfLocal.format(d));
jtI.setCaretPosition(0);
jtD.setText(dfSelected.format(d));
jtD.setCaretPosition(0);
d = dfSelected.parse(jtD.getText());
// get new java.sql.Date
jsqlDate = new java.sql.Date(d.getTime());

jtP.setText(jsqlDate.toString());
}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);

}

Again, the complete program is listed at JIBDateGUI.java: DateFormat example on page 46 .

Number formatting example
This JIBNumberGUI example uses French as the default locale -- fr_FR.

JIBNumberGUI (see JIBNumberGUI.java: NumberFormat example on page 50) intentionally
operates very much like the Date formatting example on page 24 . The app allows the user
to input a number or a percent (if selected) in his native format. The native locale is
determined on input and displayed next to the OK button. When the user presses OK, the
input number is parsed and displayed in the selected locale. This value is also parsed and
displayed separately as a standard numeric value.

The code is also very similar. The program begins by defining a Lucida font, a default locale,
and default and selected NumberFormats. Arrays for supported locales, and native and
localized Locale Display Names are defined. An array is also defined to display a Number or
Percent drop-down box.

Font fLucida;
...
Locale lDefault = Locale.getDefault();
Locale[] alSupported;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 69 Java internationalization basics

NumberFormat nfLocal = NumberFormat.getNumberInstance(),
nfSelected;

String[] asDNames,
asLDNames,
asDP = { "Number", "Percent"};

In the constructor, the code is nearly identical to that in JIBDateGUI.java, except that the
input field is initialized to a number and an additional JComboBox, jcbDP is added for
Number/Percent input.

jtI.setText(nfLocal.format(123456.7));
...
jcbDP = new JComboBox(asDP);

Again, the other I18N functionality is handled in the ActionListener. If there was a
change between Number and Percent input, the flag that tracks input type is set and the
current input value is parsed with the existing local NumberFormat. Then a new
NumberFormat is created as appropriate, using NumberFormat.getNumberInstance()
or NumberFormat.getPercentInstance(). The input value is reformatted using the new
local NumberFormat and the code continues on to do the same work for the selected
NumberFormat.

if(oSource == jcbDP)
{
if(jcbDP.getSelectedIndex() == 0)
{
bNumberFormat = true;
try { n = nfLocal.parse(jtI.getText()); }
catch(ParseException pe) {}
nfLocal = NumberFormat.getNumberInstance();

}
else
{
bNumberFormat = false;
try { n = nfLocal.parse(jtI.getText()); }
catch(ParseException pe) {}
nfLocal = NumberFormat.getPercentInstance();

}
jtI.setText(nfLocal.format(n));
// set to perform jcb operation
oSource = jcb;

}

If the Display Names drop-down changed, an appropriate new NumberFormat is created for
the selected locale. The code then continues on to apply the new NumberFormat(s) to the
input and display values.

if(oSource == jcb)
{
if(bNumberFormat)
{
nfSelected = NumberFormat.getNumberInstance(

alSupported[jcb.getSelectedIndex()]);
}
else
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 27 of 69

nfSelected = NumberFormat.getPercentInstance(
alSupported[jcb.getSelectedIndex()]);

}
} // end if jcb, continue on

Whether continuing from actions caused by combo box changes or directly by the OK button,
the display fields are cleared. The code attempts to parse a Number from the input and
reformats it using the default, local NumberFormat for output. Next, the display for the
selected NumberFormat is formatted. Last, this value is parsed and used to create a
Number, which is then used to show the raw value.

jtD.setText("");
jtP.setText("");

try
{
n = nfLocal.parse(jtI.getText());
jtI.setText(nfLocal.format(n));
jtD.setText(nfSelected.format(n));
n = nfSelected.parse(jtD.getText());
jtP.setText(n.toString());

}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);

}

Again, the complete program is listed at JIBNumberGUI.java: NumberFormat example on
page 50 .

Currency formatting example
This JIBCurrencyGUI example uses Russian for the default locale -- ru_RU.

JIBCurrencyGUI (see JIBCurrencyGUI.java: CurrencyFormat example on page 54), again,
operates very much like the previous examples. The app allows the user to input a currency
value in the native format. The native locale is determined on input and displayed next to the
"Require Symbol" checkbox. When the user presses OK, the input value is parsed and
displayed using the selected locale's currency symbol. This is purely mechanical formatting;
there is no automatic value conversion between the two currencies. In real life, you will have
to handle exchange rates yourself. The selected format text is also parsed and displayed
separately as a standard numeric value.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 69 Java internationalization basics

The examples so far have used standard formatting and parsing, warts and all. If you play
with values in these programs, you will see that these can be inflexible or irritating at times.
This example will address a major inconvenience: while we expect a NumberFormat
CurrencyInstance to display a currency symbol, we usually don't want to force the end
user to include it when keying. If the "Require Symbol" checkbox is checked, the user must
include the currency symbol on input to avoid a ParseException. This is standard
behavior. If the checkbox is not selected, just the numeric value can be input. In the course
of providing this behavior, we will briefly delve into DecimalFormatSymbols.

First, the by-now-familiar I18N-related data types are defined. The primary changes are that
default and selected NumberFormats now contain CurrencyInstances. We also define a
standard NumberFormat to deal with entries that don't contain currency symbols, and a
String to contain the current currency symbol. This is a String rather than a char
because more than one character can be in the symbol, for example, "DM" - Deutschmarks.

NumberFormat cfLocal = NumberFormat.getCurrencyInstance(),
cfSelected,
nfLocal = NumberFormat.getInstance();

...
String sCurSymbol = "";

In the constructor, other than adding the new checkbox, everything is the same as in
JIBNumberGUI until the last code block. First, the code ensures that a DecimalFormat
was returned by the NumberFormat.getCurrencyInstance() request. If not, we can't
get the information needed and the checkbox is disabled, meaning that "Symbol Required"
will be true for the duration of this program run. Otherwise, we obtain the DecimalFormat's
related DecimalFormatSymbols and get the default currency symbol. The code also
checks whether the MonetaryDecimalSeparator and DecimalSeparator are the
same. If not, the DecimalSeparator is set to the MonetaryDecimalSeparator. Then
the DecimalFormatSymbols for the alternate NumberFormat is set to that of the
CurrencyInstance.

if(cfLocal instanceof DecimalFormat)
{
DecimalFormatSymbols dfs =
((DecimalFormat)cfLocal).getDecimalFormatSymbols();
sCurSymbol = dfs.getCurrencySymbol();

char chMDS = dfs.getMonetaryDecimalSeparator();
if(chMDS != dfs.getDecimalSeparator())
{
dfs.setDecimalSeparator(chMDS);

}

if(nfLocal instanceof DecimalFormat)
{
((DecimalFormat)nfLocal).setDecimalFormatSymbols(

dfs);
}
else
{ jchkb.setEnabled(false); }

} // end if cfLocal instanceof DecimalFormat
else
{ jchkb.setEnabled(false); }

In actionPerformed(), if the selected locale changed, an appropriate new

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 29 of 69

CurrencyInstance is obtained, then the code for the OK button is applied. If the user
presses OK, the display fields are cleared.

if(oSource == jcb)
{
cfSelected = NumberFormat.getCurrencyInstance(

alSupported[jcb.getSelectedIndex()]);
} // end if jcb, continue on

Next is the code that makes it possible to accept the input without keying currency symbols:
the code checks whether the currency symbol is required. If so, the local
CurrencyInstance is used to parse the input; otherwise, the code determines whether a
currency symbol was included in the input. If so, the CurrencyInstance is used;
otherwise, the local DecimalFormat is used for parsing. The remainder of the code is
similar to the previous examples, except that CurrencyInstances are used for formatting.

jtD.setText("");
jtP.setText("");

try
{
if(bRequireSymbol)
{

n = cfLocal.parse(sText);
}
else
{ // currency symbol may still be present, check
if(sText.indexOf(sCurSymbol) == -1)
{
n = nfLocal.parse(sText);

}
else
{
n = cfLocal.parse(sText);

}
}

jtI.setText(cfLocal.format(n));
jtD.setText(cfSelected.format(n));
n = cfSelected.parse(jtD.getText());
jtP.setText(n.toString());

}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);

}

See the complete listing at JIBCurrencyGUI.java: CurrencyFormat example on page 54 .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 69 Java internationalization basics

Section 7. Putting the pieces together

Sanitation Engineer Maintenance overview
This JIBSEM example uses German for the default locale -- de_DE.

This last example puts everything together.

In our faux scenario, we will deal with a profession where the practitioners really clean up --
Sanitation Engineering. Fortunately for us, there are engineers in enough countries that the
boss wants to be able to talk trash in any language. There will actually be two final programs
required: 1) An inquiry that will be limited to selecting engineers from the user's specific
country, to be used by low-level managers; and 2) A maintenance program that displays all
engineers and allows editing of salary, hire date, and responsible tonnage, using the
selected engineer's locale-specific formats. Only upper-level management will have access
to this program.

JIBSEM.java is a prototype designed to handle both aspects to ensure that we can provide
the desired functionality. Initially, the application will specifically handle U.S., French,
German, and Russian locales, with the default being the U.S. On entry, the descriptive labels
in the program are displayed in the native locale, if supported. The data should display and
be parsed and formatted in the locale of the specific engineer. This is required because the
data is normally input locally at specific sites in the local formats and kept that way in the
database. The database includes locale information for each engineer to support this
capability. For simplicity, our prototype just matches the four rows to the four supported
locales. We will, of course, need to modify and optimize the program for production, but it
serves our purposes for now.

JIBSEM presents a JTable with mock data for each supported locale. When a row is
selected, the appropriate data is displayed at the bottom of the screen twice: once in an

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 31 of 69

editable field and again in a non-editable field so that the user can track its current value. The
user can change the values and apply them by pressing OK. If the values pass editing, the
new values are displayed in both fields, and the backing store is updated; otherwise, an error
dialog is displayed.

You'll notice quite a bit of Swing code in this example, but the I18N relevant sections should
be familiar. The backing classes JIBSEMATM.java (an AbstractTableModel
implementation) and JIBSEMRow.java (to contain row data) are provided, as are the
following properties files:

• JIBSEMrb.properties (default with US values)

• JIBSEMrb_de_DE.properties (German)

• JIBSEMrb_fr_FR.properties (French)

• JIBSEMrb_ru_RU.properties (Russian)

Notice that there is no need for duplication of the default file in this case, although it would do
no harm; we only query the ResourceBundle on startup, and the locale is never changed
for ResourceBundle access.

Sanitation Engineer Maintenance: I18N details
The I18N-related data types defined are:

DateFormat[] aDF;
DateFormat dfSelected;

Font fLucida,
fLucidaNormal,
fLucidaTitle;

...
Locale lDefault = Locale.getDefault();
Locale[] alSupported = {

Locale.US,
Locale.FRANCE,
Locale.GERMANY,
new Locale("ru", "RU")

};
NumberFormat[] aCF,

aNF;
NumberFormat cfSelected,

nfSelected;
...
ResourceBundle rb;

String[] asHeaders = new String[2];
String sRBName = getClass().getName() + "rb";

In the constructor, arrays containing formatters for currencies, dates, and numbers are
loaded for supported locales. The code also determines if the default locale is supported; if
not, the U.S. locale is used for the default. Next, labels are loaded from the appropriate

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 69 Java internationalization basics

ResourceBundle via a call to loadFromResourceBundle(). Note that we also set the
Lucida Sans font for the table display.

aCF = new NumberFormat[alSupported.length];
aDF = new DateFormat[alSupported.length];
aNF = new NumberFormat[alSupported.length];

boolean bLocaleMatched = false;
Locale lTemp;
for(i = 0; i < alSupported.length; i++)
{
lTemp = alSupported[i];
aCF[i] = NumberFormat.getCurrencyInstance(

lTemp);

aDF[i] = DateFormat.getDateInstance(
DateFormat.SHORT,
lTemp);

aDF[i].setLenient(false);

aNF[i] = NumberFormat.getNumberInstance(
lTemp);

if(lDefault.equals(lTemp))
{
bLocaleMatched = true;

}
} // end for
if(!bLocaleMatched) { lDefault = Locale.US; }
...
loadFromResourceBundle(); // get localized labels
...
jtbl.setFont(fLucidaNormal);
jtbl.getTableHeader().setFont(fLucidaNormal);

Three formatting methods are defined to handle the three types of values:
formatCurrency(double dSalary), formatDate(java.util.Date d), and
formatNumber(double dTonnage). Notice the similarity of the code.

public String formatCurrency(double dSalary)
{
cfSelected = aCF[iRowIndex];
return cfSelected.format(dSalary);

} // end formatCurrency

public String formatDate(java.util.Date d)
{
dfSelected = aDF[iRowIndex];
return dfSelected.format(d);

} // end formatDate

public String formatNumber(double dTonnage)
{
nfSelected = aNF[iRowIndex];
return nfSelected.format(dTonnage);

} // end formatDate

Here's the loadFromResourceBundle() method. As with most I18N programs, this
method (and resource loading) is invoked only once, at startup:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 33 of 69

public void loadFromResourceBundle()
{
try
{ // get the PropertyResourceBundle
rb = ResourceBundle.getBundle(sRBName,

getLocale());
// get data associated with keys
jlTitle.setText(rb.getString("title"));
asHeaders[0] = rb.getString("Engineer");
asHeaders[1] = rb.getString("Name");

jlE.setText(asHeaders[0] + ":");
jlEdit.setText(rb.getString("Edit"));
jlCurrent.setText(rb.getString("Current"));
jlCI.setText(rb.getString("Salary"));
jlDI.setText(rb.getString("Date"));
jlNI.setText(rb.getString("Tons"));

} // end try
catch(MissingResourceException mre)
{
JOptionPane.showMessageDialog(this,
"ResourceBundle problem;\n" +
"Specific error: " + mre.getMessage(),
"", JOptionPane.ERROR_MESSAGE);

}
} // end loadFromResourceBundle

Most of the action, as usual, is in actionPerformed(). When the user presses OK, the
code attempts to parse the currency, date, and number values, using the selected formatters.
If an exception is thrown, an error dialog is displayed and no further work is done before the
method returns. Otherwise, the data is updated, both sets of fields show the new values, and
we're ready for a new row. The iRowIndex field, used for indexing, is captured when a
specific row is selected in valueChanged(). As mentioned previously, at this point the
prototype's rows and array elements match.

public void actionPerformed(ActionEvent ae)
{
Object oSource = ae.getSource();

boolean bError = false;
java.util.Date d = null;
Number n = null,

nCur = null;

try
{
nCur = cfSelected.parse(jtCI.getText());
d = dfSelected.parse(jtDI.getText());
n = nfSelected.parse(jtNI.getText());

}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);
bError = true;

}

if(bError == false)
{
aRows[iRowIndex].setSalary(nCur.floatValue());

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 69 Java internationalization basics

jtCD.setText(jtCI.getText());
aRows[iRowIndex].setHireDate(d);
jtDD.setText(jtDI.getText());
aRows[iRowIndex].setTonnage(n.doubleValue());
jtND.setText(jtDI.getText());
jtbl.requestFocus();

}
} // End actionPerformed

See the listings for the complete application at JIBSEM.java: Sanitation Engineer
Maintenance example on page 58 .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 35 of 69

Section 8. Wrapup and resources

Summary
While this tutorial has only touched the tip of the iceberg of dealing with internationalization at
the programming level, at this point you should have enough information and material to
handle the majority of issues that I18N programmers typically face:

• Java characters and the char datatype on page 12

• Fonts, font properties, and the Lucida font on page 14

• Creating locales on page 16

• Using resource bundles on page 16

• Dates, numbers, and currencies on page 23

We also briefly covered I18N in general in Internationalization on page 4 and described Java
API support at Internationalization and the Java programming language on page 6 .
Resources on page 36 are provided for your further exploration. Finally, we worked though
several examples, including Sanitation Engineer Maintenance overview on page 31 , which
brought all the specific elements together in one application.

Resources
• Download i18n-source.jar, the complete source code and classes used in this tutorial. (In

Netscape, right click and select "save link as.")

• The Java Language Specification
(http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html) is the definitive
documentation on the Java language.

• Read the official JDK 1.3 internationalization documentation
(http://java.sun.com/j2se/1.3/docs/guide/intl/index.html).

• The Java Tutorial from Sun Microsystems includes a section on Internationalization

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 69 Java internationalization basics

i18n-source.jar
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html
http://java.sun.com/docs/books/tutorial/i18n/index.html

(http://java.sun.com/docs/books/tutorial/i18n/index.html).

• Introduction to i18n (http://www.debian.org/doc/manuals/intro-i18n/index.html#contents) by
Tomohiro Kubota offers guidelines for I18N from the Linux perspective.

• Still have questions on I18N? Visit the jGuru I18N FAQ (http://www.jguru.com/faq/I18N),
where Joe Sam Shirah serves as FAQ manager.

• In his article "Introducing inheritance to PropertyResourceBundles " (developerWorks, May
2001, http://www-106.ibm.com/developerworks/library/j-bundles/), Eric Olson discusses
the problems that can crop up when creating a fully internationalized Java application
using PropertyResourceBundles and demonstrates a solution that maximizes bundle
reuse while promoting resource bundle relationships.

• The RBManager (http://www.alphaworks.ibm.com/tech/rbmanager), a tool from IBM
alphaWorks that automates many of the tasks associated with creating, updating, and
managing resource bundle files, is described by Jared Jackson in his article "Harnessing
internationalization" (developerWorks, December 2000,
http://www-106.ibm.com/developerworks/library/j-rbmgr/).

• Global Internet Statistics (http://www.glreach.com/globstats/index.php3), maintained by
Global Reach, is a collection of Internet statistics from a variety of sources.

• Chuck McManis, one of the original members of the Oak team, provides insight into
decisions about Java characters, Readers, and Writers in his article "An in-depth look at
Java's character type" (JavaWorld, 1998,
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html).

• In "Getting Java ready for the world: A brief history of IBM and Sun's internationalization
efforts" (developerWorks, July 1999,
http://www-106.ibm.com/developerworks/library/sun-ibm-java.html) Laura Werner offers an
interesting look at the origin of Java Internationalization support.

• In "Efficient text searching in Java: Finding the right string in any language"
(developerWorks, April 1999,
http://www-106.ibm.com/developerworks/library/text-searching.html) Laura Werner
examines the challenges associated with sorting and searching international text.

• The Unicode Consortium (http://www.unicode.org/) is the official Unicode site with
standards, documentation, and programs for dealing with Unicode.

• The developerWorks Unicode special topic (http://www.ibm.com/developerworks/unicode/)
offers Unicode-related code, articles, and announcements.

• macchiato.com, a site maintained by Mark Davis, provides code, articles, and commentary
from a notable figure in Unicode and I18N development.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 37 of 69

http://www.debian.org/doc/manuals/intro-i18n/index.html#contents
http://www.debian.org/doc/manuals/intro-i18n/index.html#contents
http://www.debian.org/doc/manuals/intro-i18n/index.html#contents
http://www.jguru.com/faq/I18N
http://www.jguru.com/faq/I18N
http://www.jguru.com/faq/I18N
http://www-106.ibm.com/developerworks/java/library/j-bundles/
http://www-106.ibm.com/developerworks/java/library/j-bundles/
http://www-106.ibm.com/developerworks/java/library/j-bundles/
http://www-106.ibm.com/developerworks/java/library/j-bundles/
http://www-106.ibm.com/developerworks/java/library/j-bundles/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/rbmanager&origin=j
http://www-106.ibm.com/developerworks/java/library/j-rbmgr/index.html
http://www-106.ibm.com/developerworks/java/library/j-rbmgr/index.html
http://www-106.ibm.com/developerworks/java/library/j-rbmgr/index.html
http://www.glreach.com/globstats/index.php3
http://www.glreach.com/globstats/index.php3
http://www.glreach.com/globstats/index.php3
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www.javaworld.com/jw-01-1998/jw-01-indepth_p.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/sun-ibm-java.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www-106.ibm.com/developerworks/java/library/text-searching.html
http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/
http://www-106.ibm.com/developerworks/unicode/
http://www-106.ibm.com/developerworks/unicode/
http://www-106.ibm.com/developerworks/unicode/
http://www.macchiato.com/

• In his article "The Java International API: Beyond JDK 1.1" (developerWorks, October
1998, http://www-106.ibm.com/developerworks/library/intljava.html), Mark Davis discusses
changes in internationalization support for the Java 2 platform.

• In Appendix C of Java Look and Feel Design Guidelines, 2nd edition
(http://java.sun.com/products/jlf/ed2/book/index.html), you'll find stock computer words and
phrases in several languages.

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 69 Java internationalization basics

http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://www-106.ibm.com/developerworks/java/library/intljava.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html
http://java.sun.com/products/jlf/ed2/book/index.html

Section 9. Appendix A: Complete code listings

charExample.java: character example

import javax.swing.*;

public class charExample
{
public static void main(String[] args)
{
boolean bFirst = true;
char aChar[] = {

'A', // character
65, // decimal
0x41, // hex
0101, // octal
'\u0041' // Unicode escape

};

char myChar = 256;

for(int i = 0; i < aChar.length; i++)
{
System.out.print(aChar[i]++ + " ");
if(i == (aChar.length - 1))
{
System.out.println("\n---------");
if(bFirst)
{
i = -1;
bFirst = !bFirst;

}
}

} // end for
// the result of adding two chars is an int
System.out.println("aChar[0] + aChar[1] equals: " +

(aChar[0] + aChar[1]));
System.out.println("myChar at 256: " + myChar);
System.out.println("myChar at 20116 or \\u4E94: " +

(myChar = 20116));
// show integer value of the char
System.out.println("myChar numeric value: " +

(int)myChar);

JFrame jf = new JFrame();
JOptionPane.showMessageDialog(jf,
"myChar at 20116 or \\u4E94: " +
(myChar = 20116) +
"\nmyChar numeric value: " +
(int)myChar,
"charExample", JOptionPane.ERROR_MESSAGE);

jf.dispose();
System.exit(0);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 39 of 69

} // end main

} // End class charExample

ByTheNumbers.java: PropertyResourceBundle example

ByTheNumbersrb.properties

Default properties in English
0=Zero:
1=One:
2=Two:
3=Three:
4=Four:
5=Five:
6=Six:
7=Seven:
8=Eight:
9=Nine:
10=Ten:
random=Random
title=Key in numbers to match the words:

ByTheNumbersrb_de.properties

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 69 Java internationalization basics

Default properties in German
0=Null:
1=Eins:
2=Zwei:
3=Drei:
4=Vier:
5=Fünf:
6=Sechs:
7=Sieben:
8=Acht:
9=Neun:
10=Zehn:
random=aufs Geratewohl

ByTheNumbersrb_en.properties

Default properties in English
0=Zero:
1=One:
2=Two:
3=Three:
4=Four:
5=Five:
6=Six:
7=Seven:
8=Eight:
9=Nine:
10=Ten:
random=Random
title=Key in numbers to match the words:

ByTheNumbersrb_fr.properties

Default properties in French
0=Z#:
1=Uun:
2=deux:
3=Trois:
4=Quatre:
5=cinq:
6=Six:
7=Sept:
8=Huit:
9=Neuf:
10=Dix:
random=au hasard

ByTheNumbersrb_ru.properties

Default properties in Russian
0=\u041D\u0443\u043B\u044C:
1=\u041E\u0434\u0438\u043D:
2=\u0414\u0432\u0430:
3=\u0422\u0440\u0438:
4=\u0427\u0435\u0442\u044B\u0440\u0435:
5=\u041F\u044F\u0442\u044C:
6=\u0428\u0435\u0441\u0442\u044C:
7=\u0441\u0435\u043C\u044C:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 41 of 69

8=\u0412\u043E\u0441\u0435\u043C\u044C:
9=\u0414\u0435\u0432\u044F\u0442\u044C:
10=\u0414\u0435\u0441\u044F\u0442\u044C:
random=\u041D\u0430\u0443\u0433\u0430\u0434

ByTheNumbers.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class ByTheNumbers extends JFrame
implements ActionListener,

WindowListener
{
static final int sfiSIZE = 11;

boolean bRandomize = false;

Font fLucida;

int iSelIndex = 0;
int[] aiOrder = new int[sfiSIZE];

JButton jbOK = new JButton("OK"),
jbRandom = new JButton();

JComboBox jcb = null;
JLabel[] ajl = new JLabel[sfiSIZE];
JTextField[] ajtf = new JTextField[sfiSIZE];
JPanel jpNorth = new JPanel(

new GridLayout(0,1)),
jpCenter = new JPanel(),
jpCenterNest = new JPanel(

new GridLayout(0,2)),
jpSouth = new JPanel();

Locale[] alSupported = {
Locale.US,
Locale.FRANCE,
Locale.GERMANY,
new Locale("ru", "RU")

};
Random rNumber = new Random();
ResourceBundle rb;

String sRBName = getClass().getName() + "rb";
String[] asDNames;

public ByTheNumbers()
{
int i = 0;
JLabel jlTemp = null;
JTextField jtfTemp = null;

setTitle("ByTheNumbers");
addWindowListener(this);

Font fJB = jbOK.getFont();
fLucida = new Font("Lucida Sans",

fJB.getStyle(),

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 69 Java internationalization basics

fJB.getSize());

Container cp = getContentPane();

asDNames = new String[alSupported.length];
Locale lDefault = Locale.getDefault();
for(i = 0; i < alSupported.length; i++)
{
asDNames[i] =

alSupported[i].getDisplayName();

if(iSelIndex == 0 &&
lDefault.equals(alSupported[i]))

{ iSelIndex = i; }
} // end for

jcb = new JComboBox(asDNames);
jcb.setFont(fLucida);
jcb.setSelectedIndex(iSelIndex);
jcb.addActionListener(this);

for(i = 0; i < ajl.length; i++)
{
jlTemp = new JLabel();
jlTemp.setFont(fLucida);
jlTemp.setName(i + ""); // set Name
jtfTemp = new JTextField(3);
jtfTemp.setHorizontalAlignment(JTextField.RIGHT);

ajl[i] = jlTemp;
ajtf[i] = jtfTemp;

jpCenterNest.add(jlTemp);
jpCenterNest.add(jtfTemp);

}
loadFromResourceBundle(); // get localized labels

jbOK.addActionListener(this);
jbRandom.setFont(fLucida);
jbRandom.setText(rb.getString("random"));
jbRandom.addActionListener(this);

jpNorth.add(jcb);
jlTemp = new JLabel(rb.getString("title"));
jlTemp.setFont(fLucida);
jpNorth.add(jlTemp);
jpCenter.add(jpCenterNest);
jpSouth.add(jbOK);
jpSouth.add(jbRandom);

cp.add(jpNorth, BorderLayout.NORTH);
cp.add(jpCenter, BorderLayout.CENTER);
cp.add(jpSouth, BorderLayout.SOUTH);
pack();
setResizable(false);

show();

} // end constructor

public void checkAnswers()
{
boolean b = true;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 43 of 69

JTextField jtf = null;
String s = null;

for(int i = 0; i < sfiSIZE; i++)
{
jtf = ajtf[i];
s = jtf.getText().trim();
if(!s.equals(ajl[i].getName()))
{
jtf.requestFocus();
jtf.selectAll();
b = false;
break;

}
} // end for
JOptionPane.showMessageDialog(this,
b ? "Congratulations!" : "Keep Trying!",
"", JOptionPane.ERROR_MESSAGE);

} // end checkAnswers

public void loadFromResourceBundle()
{
try
{ // get the PropertyResourceBundle
rb = ResourceBundle.getBundle(

sRBName,
alSupported[iSelIndex]);

// get data associated with keys
for(int i = 0; i < sfiSIZE; i++)
{
aiOrder[i] = i;
ajl[i].setText(rb.getString(ajl[i].getName()));

}
bRandomize = false;

} // end try
catch(MissingResourceException mre)
{
JOptionPane.showMessageDialog(this,
"ResourceBundle problem;\n" +
"Specific error: " + mre.getMessage(),
"", JOptionPane.ERROR_MESSAGE);

}
} // end loadFromResourceBundle

public void loadGUI()
{
boolean bFirst = true;
int i = 0,

j = 0;

if(bRandomize)
{
for(i = 0; i < sfiSIZE; i++)
{
if(bFirst)
{ // init array to known value
aiOrder[i] = 99;
if(i == (sfiSIZE - 1))
{
bFirst = !bFirst;
i = -1;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 69 Java internationalization basics

}
continue;

} // end if bFirst

while(true)
{
j = rNumber.nextInt(sfiSIZE);
if(aiOrder[j] == 99)
{
aiOrder[j] = i;
break;

}
} // end while

} // end for
} // end if bRandomize

jpCenterNest.removeAll();

for(i = 0; i < sfiSIZE; i++)
{
j = aiOrder[i];
ajtf[j].setText("");
jpCenterNest.add(ajl[j]);
jpCenterNest.add(ajtf[j]);

}
jpCenterNest.revalidate();

} // loadGUI

// ActionListener Implementation
public void actionPerformed(ActionEvent ae)
{
Object oSource = ae.getSource();

if(oSource == jbRandom)
{
bRandomize = true;
loadGUI();
return;

}

if(oSource == jbOK)
{
checkAnswers();
return;

}

if(oSource == jcb)
{
iSelIndex = jcb.getSelectedIndex();
loadFromResourceBundle();
loadGUI();
return;

}
} // End actionPerformed

// Window Listener Implementation
public void windowOpened(WindowEvent we) {}
public void windowClosing(WindowEvent we)
{
dispose();
System.exit(0);

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 45 of 69

public void windowClosed(WindowEvent we) {}
public void windowIconified(WindowEvent we) {}
public void windowDeiconified(WindowEvent we) {}
public void windowActivated(WindowEvent we) {}
public void windowDeactivated(WindowEvent we) {}

// End Window Listener Implementation

public static void main(String[] args)
{
new ByTheNumbers();

} // end main

} // end class ByTheNumbers

JIBDateGUI.java: DateFormat example

JIBDateGUI.java

import java.sql.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

public class JIBDateGUI extends JFrame
implements ActionListener,

WindowListener
{
boolean bToggleFlag = true;

DateFormat dfLocal,
dfSelected;

java.sql.Date jsqlDate = new java.sql.Date(
System.currentTimeMillis());

Font fLucida;

int iFormat,
iSelIndex = 0;

JButton jbOK = new JButton("OK"),
jbToggle = new JButton(
"Toggle Display Names");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 69 Java internationalization basics

JComboBox jcb = null;
JPanel jpNorth = new JPanel(),

jpCenter = new JPanel(),
jpSouth = new JPanel();

JTextField jtI = new JTextField(10),
jtD = new JTextField(10),
jtP = new JTextField(10);

Locale lDefault = Locale.getDefault();
Locale[] alSupported;

String[] asDNames,
asLDNames;

public JIBDateGUI()
{
this(DateFormat.SHORT);

} // end default constructor

public JIBDateGUI(int argiFormat)
{
String s1 = null;

setTitle("JIBDateGUI");
addWindowListener(this);

Font fJCB = jbToggle.getFont();
fLucida = new Font("Lucida Sans",

fJCB.getStyle(),
fJCB.getSize());

iFormat = argiFormat;
dfLocal = DateFormat.getDateInstance(
iFormat);

alSupported = Locale.getAvailableLocales();
asDNames = new String[alSupported.length];
asLDNames = new String[alSupported.length];
for(int i = 0; i < alSupported.length; i++)
{
asDNames[i] =

alSupported[i].getDisplayName();

s1 =
alSupported[i].getDisplayName(alSupported[i]);

if(fLucida.canDisplay(s1.charAt(0)))
{ asLDNames[i] = s1; }
else
{ asLDNames[i] = s1 + " - font can't display."; }

if(iSelIndex == 0 &&
lDefault.equals(alSupported[i]))

{ iSelIndex = i; }
} // end for

toggleDisplayNames();
jtI.setText(dfLocal.format(jsqlDate));
// cause ActionPerformed event
jcb.setSelectedIndex(iSelIndex);

jbOK.addActionListener(this);
jbToggle.addActionListener(this);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 47 of 69

jtD.setEditable(false);
jtD.setFont(fLucida);
jtP.setEditable(false);
jtP.setFont(fLucida);

dfLocal.setLenient(false);

jpNorth.add(new JLabel("Input a Date:"));
jpNorth.add(jtI);
jpNorth.add(jbOK);
JLabel jlTemp = new JLabel("Default = " +

lDefault.getDisplayName());
jlTemp.setFont(fLucida);
jpNorth.add(jlTemp);
jpCenter.add(new JLabel("Display:"));
jpCenter.add(jtD);
jpCenter.add(new JLabel("Parsed ISO:"));
jpCenter.add(jtP);

Container cp = getContentPane();
cp.add(jpNorth, BorderLayout.NORTH);
cp.add(jpCenter, BorderLayout.CENTER);
cp.add(jpSouth, BorderLayout.SOUTH);
pack();

show();

} // end constructor

public void toggleDisplayNames()
{
boolean bjcbExist = false;

if(jcb != null)
{
jpSouth.remove(jcb);
jpSouth.remove(jbToggle);
iSelIndex = jcb.getSelectedIndex();
bjcbExist = true;

}

if(bToggleFlag)
{ jcb = new JComboBox(asDNames); }
else
{ jcb = new JComboBox(asLDNames); }

bToggleFlag = !bToggleFlag;

if(bjcbExist)
{ jcb.setSelectedIndex(iSelIndex); }
jcb.setFont(fLucida);
jcb.addActionListener(this);
jpSouth.add(jcb);
jpSouth.add(jbToggle);

} // end toggleDisplayNames

// ActionListener Implementation
public void actionPerformed(ActionEvent ae)
{
Object oSource = ae.getSource();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 69 Java internationalization basics

if(oSource == jbToggle)
{
toggleDisplayNames();
pack();
return;

}

if(oSource == jcb)
{
dfSelected = DateFormat.getDateInstance(

iFormat,
alSupported[jcb.getSelectedIndex()]);

} // end if jcb, continue on

jtD.setText("");
jtP.setText("");

try
{
java.util.Date d = dfLocal.parse(

jtI.getText());
jtI.setText(dfLocal.format(d));
jtI.setCaretPosition(0);
jtD.setText(dfSelected.format(d));
jtD.setCaretPosition(0);
d = dfSelected.parse(jtD.getText());
// get new java.sql.Date
jsqlDate = new java.sql.Date(d.getTime());

jtP.setText(jsqlDate.toString());
}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);

}

} // End actionPerformed

// Window Listener Implementation
public void windowOpened(WindowEvent we) {}
public void windowClosing(WindowEvent we)
{
dispose();
System.exit(0);

}
public void windowClosed(WindowEvent we) {}
public void windowIconified(WindowEvent we) {}
public void windowDeiconified(WindowEvent we) {}
public void windowActivated(WindowEvent we) {}
public void windowDeactivated(WindowEvent we) {}

// End Window Listener Implementation

public static void main(String[] args)
{
int i = DateFormat.SHORT;
String s = null;
if(args.length == 1)
{
if(args[0].equals("full"))
{ i = DateFormat.FULL; }

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 49 of 69

else
if(args[0].equals("long"))
{ i = DateFormat.LONG; }
else
if(args[0].equals("medium"))
{ i = DateFormat.MEDIUM; }

}

new JIBDateGUI(i);

} // end main

} // end class JIBDateGUI

JIBNumberGUI.java: NumberFormat example

JIBNumberGUI.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

public class JIBNumberGUI extends JFrame
implements ActionListener,

WindowListener
{
boolean bToggleFlag = true,

bNumberFormat = true;

Font fLucida;

int iSelIndex = 0;

JButton jbOK = new JButton("OK"),
jbToggle = new JButton(
"Toggle Display Names");

JComboBox jcb = null,
jcbDP = null;

JPanel jpNorth = new JPanel(),
jpCenter = new JPanel(),
jpSouth = new JPanel();

JTextField jtI = new JTextField(10),
jtD = new JTextField(10),
jtP = new JTextField(10);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 50 of 69 Java internationalization basics

Locale lDefault = Locale.getDefault();
Locale[] alSupported;

NumberFormat nfLocal = NumberFormat.getNumberInstance(),
nfSelected;

String[] asDNames,
asLDNames,
asDP = { "Number", "Percent"};

public JIBNumberGUI()
{
String s1 = null;

setTitle("JIBNumberGUI");
addWindowListener(this);

Font fJCB = jbToggle.getFont();
fLucida = new Font("Lucida Sans",

fJCB.getStyle(),
fJCB.getSize());

alSupported = Locale.getAvailableLocales();
asDNames = new String[alSupported.length];
asLDNames = new String[alSupported.length];
for(int i = 0; i < alSupported.length; i++)
{
asDNames[i] =

alSupported[i].getDisplayName();

s1 =
alSupported[i].getDisplayName(alSupported[i]);

if(fLucida.canDisplay(s1.charAt(0)))
{ asLDNames[i] = s1; }
else
{ asLDNames[i] = s1 + " - font can't display."; }

if(iSelIndex == 0 &&
lDefault.equals(alSupported[i]))

{ iSelIndex = i; }
} // end for

toggleDisplayNames();
jtI.setText(nfLocal.format(123456.7));
// cause ActionPerformed event
jcb.setSelectedIndex(iSelIndex);

jcbDP = new JComboBox(asDP);
jcbDP.addActionListener(this);
jbOK.addActionListener(this);
jbToggle.addActionListener(this);

jtD.setEditable(false);
jtD.setFont(fLucida);
jtP.setEditable(false);
jtP.setFont(fLucida);

jpNorth.add(new JLabel("Input:"));
jpNorth.add(jcbDP);
jpNorth.add(jtI);
jpNorth.add(jbOK);
JLabel jlTemp = new JLabel("Default = " +

lDefault.getDisplayName());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 51 of 69

jlTemp.setFont(fLucida);
jpNorth.add(jlTemp);
jpCenter.add(new JLabel("Display:"));
jpCenter.add(jtD);
jpCenter.add(new JLabel("Parsed:"));
jpCenter.add(jtP);

Container cp = getContentPane();
cp.add(jpNorth, BorderLayout.NORTH);
cp.add(jpCenter, BorderLayout.CENTER);
cp.add(jpSouth, BorderLayout.SOUTH);
pack();

show();

} // end constructor

public void toggleDisplayNames()
{
boolean bjcbExisted = false;

if(jcb != null)
{
jpSouth.remove(jcb);
jpSouth.remove(jbToggle);
iSelIndex = jcb.getSelectedIndex();
bjcbExisted = true;

}

if(bToggleFlag)
{ jcb = new JComboBox(asDNames); }
else
{ jcb = new JComboBox(asLDNames); }

bToggleFlag = !bToggleFlag;

if(bjcbExisted)
{ jcb.setSelectedIndex(iSelIndex); }
jcb.setFont(fLucida);
jcb.addActionListener(this);
jpSouth.add(jcb);
jpSouth.add(jbToggle);

} // end toggleDisplayNames

// ActionListener Implementation
public void actionPerformed(ActionEvent ae)
{
Number n = null;
Object oSource = ae.getSource();

if(oSource == jbToggle)
{
toggleDisplayNames();
pack();
return;

}

if(oSource == jcbDP)
{
if(jcbDP.getSelectedIndex() == 0)
{

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 52 of 69 Java internationalization basics

bNumberFormat = true;
try { n = nfLocal.parse(jtI.getText()); }
catch(ParseException pe) {}
nfLocal = NumberFormat.getNumberInstance();

}
else
{
bNumberFormat = false;
try { n = nfLocal.parse(jtI.getText()); }
catch(ParseException pe) {}
nfLocal = NumberFormat.getPercentInstance();

}
jtI.setText(nfLocal.format(n));
// set to perform jcb operation
oSource = jcb;

}

if(oSource == jcb)
{
if(bNumberFormat)
{
nfSelected = NumberFormat.getNumberInstance(

alSupported[jcb.getSelectedIndex()]);
}
else
{
nfSelected = NumberFormat.getPercentInstance(

alSupported[jcb.getSelectedIndex()]);
}

} // end if jcb, continue on

jtD.setText("");
jtP.setText("");

try
{
n = nfLocal.parse(jtI.getText());
jtI.setText(nfLocal.format(n));
jtD.setText(nfSelected.format(n));
n = nfSelected.parse(jtD.getText());
jtP.setText(n.toString());

}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);

}

} // End actionPerformed

// Window Listener Implementation
public void windowOpened(WindowEvent we) {}
public void windowClosing(WindowEvent we)
{
dispose();
System.exit(0);

}
public void windowClosed(WindowEvent we) {}
public void windowIconified(WindowEvent we) {}
public void windowDeiconified(WindowEvent we) {}
public void windowActivated(WindowEvent we) {}
public void windowDeactivated(WindowEvent we) {}

// End Window Listener Implementation

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 53 of 69

public static void main(String[] args)
{
new JIBNumberGUI();

} // end main

} // end class JIBNumberGUI

JIBCurrencyGUI.java: CurrencyFormat example

JIBCurrencyGUI.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

public class JIBCurrencyGUI extends JFrame
implements ActionListener,

ItemListener,
WindowListener

{
boolean bRequireSymbol = true,

bToggleFlag = true;

Font fLucida;

int iSelIndex = 0;

JButton jbOK = new JButton("OK"),
jbToggle = new JButton(
"Toggle Display Names");

JCheckBox jchkb = new JCheckBox(
"Require Symbol");

JComboBox jcb = null;
JPanel jpNorth = new JPanel(),

jpCenter = new JPanel(),
jpSouth = new JPanel();

JTextField jtI = new JTextField(10),
jtD = new JTextField(10),
jtP = new JTextField(10);

Locale lDefault = Locale.getDefault();
Locale[] alSupported;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 54 of 69 Java internationalization basics

NumberFormat cfLocal = NumberFormat.getCurrencyInstance(),
cfSelected,
nfLocal = NumberFormat.getInstance();

String[] asDNames,
asLDNames;

String sCurSymbol = "";

public JIBCurrencyGUI()
{
int i;
String s1 = null;

setTitle("JIBCurrencyGUI");
addWindowListener(this);

Font fJCB = jbToggle.getFont();
fLucida = new Font("Lucida Sans",

fJCB.getStyle(),
fJCB.getSize());

alSupported = Locale.getAvailableLocales();
asDNames = new String[alSupported.length];
asLDNames = new String[alSupported.length];
for(i = 0; i < alSupported.length; i++)
{
asDNames[i] =

alSupported[i].getDisplayName();

s1 =
alSupported[i].getDisplayName(alSupported[i]);

if(fLucida.canDisplay(s1.charAt(0)))
{ asLDNames[i] = s1; }
else
{ asLDNames[i] = s1 + " - font can't display."; }

if(iSelIndex == 0 &&
lDefault.equals(alSupported[i]))

{ iSelIndex = i; }
} // end for

toggleDisplayNames();
jtI.setText(cfLocal.format(150.75));
// cause ActionPerformed event
jcb.setSelectedIndex(iSelIndex);

jbOK.addActionListener(this);
jbToggle.addActionListener(this);

jchkb.setSelected(true);
jchkb.addItemListener(this);

jtD.setEditable(false);
jtD.setFont(fLucida);
jtP.setEditable(false);
jtP.setFont(fLucida);

jpNorth.add(new JLabel("Input:"));
jpNorth.add(jtI);
jpNorth.add(jbOK);
jpNorth.add(jchkb);
JLabel jlTemp = new JLabel("Default = " +

lDefault.getDisplayName());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 55 of 69

jlTemp.setFont(fLucida);
jpNorth.add(jlTemp);
jpCenter.add(new JLabel("Display:"));
jpCenter.add(jtD);
jpCenter.add(new JLabel("Parsed:"));
jpCenter.add(jtP);

Container cp = getContentPane();
cp.add(jpNorth, BorderLayout.NORTH);
cp.add(jpCenter, BorderLayout.CENTER);
cp.add(jpSouth, BorderLayout.SOUTH);
pack();

show();

if(cfLocal instanceof DecimalFormat)
{
DecimalFormatSymbols dfs =
((DecimalFormat)cfLocal).getDecimalFormatSymbols();
sCurSymbol = dfs.getCurrencySymbol();

char chMDS = dfs.getMonetaryDecimalSeparator();
if(chMDS != dfs.getDecimalSeparator())
{
dfs.setDecimalSeparator(chMDS);

}

if(nfLocal instanceof DecimalFormat)
{
((DecimalFormat)nfLocal).setDecimalFormatSymbols(

dfs);
}
else
{ jchkb.setEnabled(false); }

} // end if cfLocal instanceof DecimalFormat
else
{ jchkb.setEnabled(false); }

} // end constructor

public void toggleDisplayNames()
{

boolean bjcbExist = false;

if(jcb != null)
{
jpSouth.remove(jcb);
jpSouth.remove(jbToggle);
iSelIndex = jcb.getSelectedIndex();
bjcbExist = true;

}

if(bToggleFlag)
{ jcb = new JComboBox(asDNames); }
else
{ jcb = new JComboBox(asLDNames); }

bToggleFlag = !bToggleFlag;

if(bjcbExist)
{ jcb.setSelectedIndex(iSelIndex); }
jcb.setFont(fLucida);
jcb.addActionListener(this);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 56 of 69 Java internationalization basics

jpSouth.add(jcb);
jpSouth.add(jbToggle);

} // end toggleDisplayNames

// ActionListener Implementation
public void actionPerformed(ActionEvent ae)
{
Object oSource = ae.getSource();

Number n = null;
String sText = jtI.getText();

if(oSource == jbToggle)
{
toggleDisplayNames();
pack();
return;

}

if(oSource == jcb)
{
cfSelected = NumberFormat.getCurrencyInstance(

alSupported[jcb.getSelectedIndex()]);
} // end if jcb, continue on

jtD.setText("");
jtP.setText("");

try
{
if(bRequireSymbol)
{

n = cfLocal.parse(sText);
}
else
{ // currency symbol may still be present, check
if(sText.indexOf(sCurSymbol) == -1)
{
n = nfLocal.parse(sText);

}
else
{
n = cfLocal.parse(sText);

}
}

jtI.setText(cfLocal.format(n));
jtD.setText(cfSelected.format(n));
n = cfSelected.parse(jtD.getText());
jtP.setText(n.toString());

}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);

}

} // End actionPerformed

// ItemListener Implementation
public void itemStateChanged(ItemEvent ie)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 57 of 69

{
bRequireSymbol = !bRequireSymbol;

} // End itemStateChanged

// Window Listener Implementation
public void windowOpened(WindowEvent we) {}
public void windowClosing(WindowEvent we)
{
dispose();
System.exit(0);

}
public void windowClosed(WindowEvent we) {}
public void windowIconified(WindowEvent we) {}
public void windowDeiconified(WindowEvent we) {}
public void windowActivated(WindowEvent we) {}
public void windowDeactivated(WindowEvent we) {}

// End Window Listener Implementation

public static void main(String[] args)
{
new JIBCurrencyGUI();

} // end main

} // end class JIBCurrencyGUI

JIBSEM.java: Sanitation Engineer Maintenance example

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 58 of 69 Java internationalization basics

JIBSEMrb.properties

Default properties in English
Label for Title
title=Sanitation Engineer Maintenance
Engineer Table Column 1 Title and Employee label
Engineer=Engineer
Name Table Column 2 Title
Name=Name
Label for Edit
Edit=Edit
Label for Current
Current=Current
Label for Salary input field
Salary=Salary:
Label for Hire Date input field
Date=Date:
Label for Tons input field
Tons=Tons:

JIBSEMrb_de.properties

Default properties in German
Engineer Table Column 1 Title and Employee label
Engineer=Ingenieur
Name Table Column 2 Title
Name=Name
Label for Edit
Edit=Bearbeiten
Label for Current
Current=Aktuell
Label for Salary input field
Salary=Löhne:
Label for Hire Date input field
Date=Date:
Label for Tons input field
Tons=Tonne:

JIBSEMrb_fr.properties

Default properties in French
Engineer Table Column 1 Title and Employee label
Engineer=Ing#eur
Name Table Column 2 Title
Name=Nom
Label for Edit
Edit=Editer
Label for Current
Current=Actuel
Label for Salary input field
Salary=Salaire:
Label for Hire Date input field
Date=Date:
Label for Tons input field
Tons=Tonne:

JIBSEMrb_ru.properties

Default properties in Russian

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 59 of 69

Engineer Table Column 1 Title and Employee label
Engineer=\u0418\u043D\u0436\u0435\u043D\u0435\u0440
Name Table Column 2 Title
Name=\u0418\u043C\u044F
Label for Edit
Edit=\u0420\u0435\u0434\u0430\u043A\u0442\u043E\u0440
Label for Current
Current=\u0422\u0435\u043A\u0443\u0449\u0438\u0439
Label for Salary input field
Salary=\u041E\u043A\u043B\u0430\u0434:
Label for Hire Date input field
Date=\u0414\u0430\u0442\u0430:
Label for Tons input field
Tons=\u0422\u043E\u043D\u043D\u044b:

JIBSEM.java

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.table.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
import java.util.*;

public class JIBSEM extends JFrame
implements ActionListener,

FocusListener,
ListSelectionListener,
WindowListener

{
DateFormat[] aDF;
DateFormat dfSelected;

Font fLucida,
fLucidaNormal,
fLucidaTitle;

int iRowIndex = 0;

JIBSEMATM ATM;
JIBSEMRow[] aRows = new JIBSEMRow[4];

JButton jbOK = new JButton("OK");
JLabel jlCI = new JLabel(),

jlCurrent = new JLabel(
"",
SwingConstants.CENTER),

jlDI = new JLabel(),
jlE = new JLabel(),
jlEID = new JLabel(),
jlEName = new JLabel(),
jlEdit = new JLabel(
"",
SwingConstants.CENTER),

jlLName = new JLabel(),
jlNI = new JLabel(),
jlNow,
jlTitle = new JLabel();

JPanel jpNorth = new JPanel(
new BorderLayout()),

jpNorthFlow = new JPanel(),

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 60 of 69 Java internationalization basics

jpCenter = new JPanel(
new BorderLayout()),

jpCenterNorth = new JPanel(),
jpCenterSouth = new JPanel(),
jpCenterSouthNest = new JPanel(

new GridLayout(0,3)),
jpSouth = new JPanel();

JScrollPane jsp;
JTable jtbl;
JTextField jtCD = new JTextField(9),

jtCI = new JTextField(9),
jtDD = new JTextField(9),
jtDI = new JTextField(9),
jtND = new JTextField(9),
jtNI = new JTextField(9);

Locale lDefault = Locale.getDefault();
Locale[] alSupported = {

Locale.US,
Locale.FRANCE,
Locale.GERMANY,
new Locale("ru", "RU")

};
NumberFormat[] aCF,

aNF;
NumberFormat cfSelected,

nfSelected;

Object[][] aoTableData = new Object[4][2];

ResourceBundle rb;

String[] asHeaders = new String[2];
String sRBName = getClass().getName() + "rb";

public JIBSEM()
{
int i = 0;

setTitle("JIBSEM");
addWindowListener(this);

Font fJB = jbOK.getFont();
fLucida = new Font("Lucida Sans",

fJB.getStyle(),
fJB.getSize());

fLucidaNormal = new Font("Lucida Sans",
Font.PLAIN,
fJB.getSize());

fLucidaTitle = new Font("Lucida Sans",
fJB.getStyle(),
fJB.getSize() + 4);

aCF = new NumberFormat[alSupported.length];
aDF = new DateFormat[alSupported.length];
aNF = new NumberFormat[alSupported.length];

boolean bLocaleMatched = false;
Locale lTemp;
for(i = 0; i < alSupported.length; i++)
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 61 of 69

lTemp = alSupported[i];
aCF[i] = NumberFormat.getCurrencyInstance(

lTemp);

aDF[i] = DateFormat.getDateInstance(
DateFormat.SHORT,
lTemp);

aDF[i].setLenient(false);

aNF[i] = NumberFormat.getNumberInstance(
lTemp);

if(lDefault.equals(lTemp))
{
bLocaleMatched = true;

}
} // end for
if(!bLocaleMatched) { lDefault = Locale.US; }
jlNow = new JLabel(DateFormat.getDateInstance(

DateFormat.FULL, lDefault).format(new Date(
System.currentTimeMillis())) +

" Default = " +
lDefault.getDisplayName(),
SwingConstants.CENTER);

loadFromResourceBundle(); // get localized labels

jbOK.addActionListener(this);

jlTitle.setFont(fLucidaTitle);
jlNow.setFont(fLucidaNormal);
jlTitle.setHorizontalAlignment(SwingConstants.CENTER);
jlCI.setFont(fLucida);
jlDI.setFont(fLucida);
jlCurrent.setFont(fLucida);
jlE.setFont(fLucida);
jlE.setText(asHeaders[0] + ":");
jlEdit.setFont(fLucida);
jlEID.setFont(fLucida);
jlEID.setForeground(Color.black);
jlEName.setFont(fLucida);
jlLName.setFont(fLucidaNormal);
jlEName.setForeground(Color.black);
jlNI.setFont(fLucida);

jtCD.addFocusListener(this);
jtCD.setForeground(Color.green.darker().darker());
jtCD.setHorizontalAlignment(JTextField.RIGHT);
jtCI.setHorizontalAlignment(JTextField.RIGHT);
jtDD.addFocusListener(this);
jtDD.setForeground(Color.green.darker().darker());
jtDD.setHorizontalAlignment(JTextField.RIGHT);
jtDI.setHorizontalAlignment(JTextField.RIGHT);
jtND.addFocusListener(this);
jtND.setForeground(Color.green.darker().darker());
jtND.setHorizontalAlignment(JTextField.RIGHT);
jtNI.setHorizontalAlignment(JTextField.RIGHT);

loadData();
ATM = new JIBSEMATM(aoTableData, asHeaders);
jtbl = new JTable(ATM);
jtbl.setFont(fLucidaNormal);
jtbl.getTableHeader().setFont(fLucidaNormal);

Dimension dim = jtCI.getPreferredSize();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 62 of 69 Java internationalization basics

TableColumnModel tcm = jtbl.getColumnModel();

TableColumn tc = tcm.getColumn(0);
dim.width = tc.getPreferredWidth();
tc = tcm.getColumn(1);
i = tc.getPreferredWidth() * 3;
tc.setPreferredWidth(i);
dim.width += i;
dim.height = jtbl.getRowHeight() * 4;

jtbl.setPreferredScrollableViewportSize(dim);
jtbl.setSelectionMode(

ListSelectionModel.SINGLE_SELECTION);
jtbl.getSelectionModel().

addListSelectionListener(this);
jtbl.setRowSelectionInterval(0, 0);
jsp = new JScrollPane(jtbl);

jpNorth.add(jlTitle, BorderLayout.NORTH);
jpNorth.add(jlNow, BorderLayout.CENTER);
jpNorthFlow.add(jsp);
jpNorth.add(jpNorthFlow, BorderLayout.SOUTH);
jpCenterNorth.add(jlE);
jpCenterNorth.add(jlEID);
jpCenterNorth.add(new JLabel(" "));
jpCenterNorth.add(jlEName);
jpCenterNorth.add(jlLName);
jpCenterSouthNest.add(new JLabel(" "));
jpCenterSouthNest.add(jlEdit);
jpCenterSouthNest.add(jlCurrent);
jpCenterSouthNest.add(jlCI);
jpCenterSouthNest.add(jtCI);
jpCenterSouthNest.add(jtCD);
jpCenterSouthNest.add(jlDI);
jpCenterSouthNest.add(jtDI);
jpCenterSouthNest.add(jtDD);
jpCenterSouthNest.add(jlNI);
jpCenterSouthNest.add(jtNI);
jpCenterSouthNest.add(jtND);
jpCenterSouth.add(jpCenterSouthNest);
jpCenter.add(jpCenterNorth, BorderLayout.NORTH);
jpCenter.add(jpCenterSouth, BorderLayout.SOUTH);
jpSouth.add(jbOK);

Container cp = getContentPane();
cp.add(jpNorth, BorderLayout.NORTH);
cp.add(jpCenter, BorderLayout.CENTER);
cp.add(jpSouth, BorderLayout.SOUTH);
pack();

show();
} // end constructor

public String formatCurrency(double dSalary)
{
cfSelected = aCF[iRowIndex];

return cfSelected.format(dSalary);
} // end formatCurrency

public String formatDate(java.util.Date d)
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 63 of 69

dfSelected = aDF[iRowIndex];

return dfSelected.format(d);
} // end formatDate

public String formatNumber(double dTonnage)
{
nfSelected = aNF[iRowIndex];

return nfSelected.format(dTonnage);
} // end formatDate

public void loadData()
{
aRows[0] = new JIBSEMRow(

12345, "Annie Oakley",
50000.00f, java.sql.Date.valueOf("1998-05-19"),
25000.5, Locale.US);

aRows[1] = new JIBSEMRow(
22345, "Jeanne d'Arc",
379077.5f, java.sql.Date.valueOf("1999-06-15"),
25000.5, Locale.FRANCE);

aRows[2] = new JIBSEMRow(
32345, "Ludi Beethoven",
113027.5f, java.sql.Date.valueOf("2000-12-01"),
25000.5, Locale.GERMANY);

aRows[3] = new JIBSEMRow(
42345, "\u0414\u044f\u0434\u044f " +

"\u0412\u0430\u043D\u044F",
1551500f, java.sql.Date.valueOf("2001-03-15"),
25000.5, new Locale("ru", "RU"));

for(int i = 0; i < aRows.length; i++)
{
aoTableData[i][0] = new Integer(aRows[i].getID());
aoTableData[i][1] = aRows[i].getName();

}
} // end loadData

public void loadFromResourceBundle()
{
try
{ // get the PropertyResourceBundle
rb = ResourceBundle.getBundle(sRBName,

getLocale());
// get data associated with keys
jlTitle.setText(rb.getString("title"));
asHeaders[0] = rb.getString("Engineer");
asHeaders[1] = rb.getString("Name");

jlE.setText(asHeaders[0] + ":");
jlEdit.setText(rb.getString("Edit"));
jlCurrent.setText(rb.getString("Current"));
jlCI.setText(rb.getString("Salary"));
jlDI.setText(rb.getString("Date"));
jlNI.setText(rb.getString("Tons"));

} // end try
catch(MissingResourceException mre)
{

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 64 of 69 Java internationalization basics

JOptionPane.showMessageDialog(this,
"ResourceBundle problem;\n" +
"Specific error: " + mre.getMessage(),
"", JOptionPane.ERROR_MESSAGE);

}
} // end loadFromResourceBundle

// ActionListener Implementation
public void actionPerformed(ActionEvent ae)
{
Object oSource = ae.getSource();

boolean bError = false;
java.util.Date d = null;
Number n = null,

nCur = null;

try
{
nCur = cfSelected.parse(jtCI.getText());
d = dfSelected.parse(jtDI.getText());
n = nfSelected.parse(jtNI.getText());

}
catch(ParseException pe)
{
JOptionPane.showMessageDialog(this,
pe.getMessage(), "", JOptionPane.ERROR_MESSAGE);
bError = true;

}

if(bError == false)
{
aRows[iRowIndex].setSalary(nCur.floatValue());
jtCD.setText(jtCI.getText());
aRows[iRowIndex].setHireDate(d);
jtDD.setText(jtDI.getText());
aRows[iRowIndex].setTonnage(n.doubleValue());
jtND.setText(jtDI.getText());
jtbl.requestFocus();

}
} // End actionPerformed

// FocusListener Implementation
public void focusGained(FocusEvent fe)
{
((Component)fe.getSource()).transferFocus();

} // End focusGained
public void focusLost(FocusEvent fe) {}

// ListSelectionListener Implementation
public void valueChanged(ListSelectionEvent lse)
{
if(lse.getValueIsAdjusting()) { return; }

iRowIndex = jtbl.getSelectedRow();

JIBSEMRow row = aRows[iRowIndex];
jlEID.setText("" + row.getID());
jlEName.setText(row.getName());
jlLName.setText(row.getLocale().getDisplayName());
cfSelected = aCF[iRowIndex];

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 65 of 69

nfSelected = aNF[iRowIndex];

jtCI.setText(formatCurrency(row.getSalary()));
jtCD.setText(jtCI.getText());
jtDI.setText(formatDate(row.getHireDate()));
jtDD.setText(jtDI.getText());
jtNI.setText(formatNumber(row.getTonnage()));
jtND.setText(jtNI.getText());

} // end valueChanged

// Window Listener Implementation
public void windowOpened(WindowEvent we) {}
public void windowClosing(WindowEvent we)
{
dispose();
System.exit(0);

}
public void windowClosed(WindowEvent we) {}
public void windowIconified(WindowEvent we) {}
public void windowDeiconified(WindowEvent we) {}
public void windowActivated(WindowEvent we) {}
public void windowDeactivated(WindowEvent we) {}

// End Window Listener Implementation

public static void main(String[] args)
{
new JIBSEM();

} // end main

} // end class JIBSEM

JIBSEMATM.java

import javax.swing.*;
import javax.swing.table.*;
import java.awt.*;

public class JIBSEMATM extends AbstractTableModel
{
Object rowData[][];

Object columnNames[];

public JIBSEMATM(Object[][] oData,
Object[] oCloumns)

{
rowData = oData;
columnNames = oCloumns;

} // end constructor

public String getColumnName(int column)
{
return columnNames[column].toString();

}

public int getRowCount()
{
return rowData.length;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 66 of 69 Java internationalization basics

}

public int getColumnCount()
{
return columnNames.length;

}

public Object getValueAt(int row, int col)
{
return rowData[row][col];

}

} // end class JIBSEMATM

JIBSEMRow.java

import java.util.*;

public class JIBSEMRow
{
// Employee ID
private int ID;

// Employee name
private String Name;

// Salary
private float Salary;

// Hire Date
private Date HireDate;

// Responsible Tonnage
private double Tonnage;

// Locale
private Locale Locale;

public JIBSEMRow(int iID, String sName,
float fSalary, Date dHireDate,
double dTonnage, Locale lLocale)

{
ID = iID;
Name = sName;
Salary = fSalary;
HireDate = dHireDate;
Tonnage = dTonnage;
this.Locale = lLocale;

} // end constructor

public int getID()
{
return ID;

}

public String getName()

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 67 of 69

{
return Name;

}

public float getSalary()
{
return Salary;

}

public Date getHireDate()
{
return HireDate;

}

public double getTonnage()
{
return Tonnage;

}

public java.util.Locale getLocale()
{
return this.Locale;

}

public void setID(int iID)
{
ID = iID;

}

public void setName(String sName)
{
Name = sName;

}

public void setSalary(float fSalary)
{
Salary = fSalary;

}

public void setHireDate(Date dHireDate)
{
HireDate = dHireDate;

}

public void setTonnage(double dTonnage)
{
Tonnage = dTonnage;

}

public void setLocale(java.util.Locale lLocale)
{
this.Locale = lLocale;

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 68 of 69 Java internationalization basics

public void report()
{
System.out.println("JIBSEMRow reporting: ");
System.out.println(toString());

}

public String toString()
{
return ("ID is: " + ID +

", Name is: " + Name +
", Salary is: " + Salary +
", HireDate is : " + HireDate +
", Tonnage is : " + Tonnage +
", Locale is: " + this.Locale);

}

} // end class JIBSEMRow

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java internationalization basics Page 69 of 69

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Code samples and installation requirements
	About the author

	Introduction
	Internationalization
	Localization
	I18N raison d'etre

	Overview of the Java platform support for I18N
	Internationalization and the Java programming language
	Unicode support
	Character-set conversions and stream input/output
	Character classification and the Character class
	Locales
	AWT/Swing Name and Locale attributes
	Localized resources
	Calendar and time zone support
	Formatting and parsing
	Locale-sensitive String operations
	Input methods

	Unicode and Java characters
	Java characters and the char datatype
	Fonts, font properties, and the Lucida font

	Providing localized resources
	Creating locales
	Using resource bundles
	Using PropertyResourceBundles
	PropertyResourceBundle code example
	PropertyResourceBundle code example: I18N details

	Working with dates, numbers, and currencies
	Dates, numbers, and currencies
	Date formatting example
	Number formatting example
	Currency formatting example

	Putting the pieces together
	Sanitation Engineer Maintenance overview
	Sanitation Engineer Maintenance: I18N details

	Wrapup and resources
	Summary
	Resources
	Feedback

	Appendix A: Complete code listings
	charExample.java: character example
	ByTheNumbers.java: PropertyResourceBundle example
	JIBDateGUI.java: DateFormat example
	JIBNumberGUI.java: NumberFormat example
	JIBCurrencyGUI.java: CurrencyFormat example
	JIBSEM.java: Sanitation Engineer Maintenance example

