
Hands-on Java Data Objects

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. Overview... 4
3. A simple example using JDO .. 9
4. A more complex example... 19
5. Managing and querying data objects 23
6. Wrapup and resources .. 29

Hands-on Java Data Objects Page 1 of 32

Section 1. About this tutorial

What is this tutorial about?
Java Data Objects (JDO) is a new technology from Sun Microsystems. While somewhat
immature -- the 1.0 specification just came out -- JDO is very promising, and it fills a big gap
in the area of database programming. For Java developers, JDO offers the first standardized,
completely object-oriented approach to object persistence. Compared with the other options
in this area, JDO's advantage is that it is fairly easy to work with and poses minimal
disruption to the original Java source code. And, whereas both JDBC and EJB Container
Managed Persistence (EJB CMP) can be challenging for even seasoned programmers, JDO
works hard to simplify some of the most intricate aspects of database programming in the
Java language. In this tutorial, we'll use discussion, code samples, and hands-on exercises
to learn about the practical application of JDO.

Should I take this tutorial?
This tutorial is designed for intermediate to advanced Java developers. To get the most out
of the tutorial, you should be experienced with the Java 2 platform and have a good
understanding of how relational databases work. Some knowledge of JDBC will be helpful.
This tutorial is especially recommended for developers who are looking for ways to deal with
persistence in objects. If you don't want to take on the weight of EJB technology, yet you also
don't want to deal with the relational semantics that come with JDBC, JDO may offer the
perfect in-between solution for your needs.

Code samples and installation requirements
JDO can be used in conjunction with the Java 2 platform, Standard Edition platform. The
JDO download from Sun Microsystems does come with a reference implementation, but at
the time of this writing the reference implementation is considered unreliable. The tools aren't
yet sufficiently robust for general usage.

A more solid JDO implementation is available for free (for educational purposes, with
registration) from LIBeLIS. Exercises in this tutorial are based on the LIBeLIS JDO
implementation. In addition to the JDO implementation, you'll need a JDBC driver and a
relational database to complete the exercises. With the exception of the JDO
implementation, all the tools used for the exercises are open source.

You'll need the following technologies and resources to complete the exercises in this
tutorial:

• The LIBeLIS Community Edition JDO (LiDO). Site registration is required for download.

• The Java 2 platform, Standard Edition.

• A standard editor and a JDK to compile and run the examples.

• The MySQL open source relational database.

• The MM.MySQL open source JDBC drivers for use with MySQL.

• The jdo-source.zip binaries and source code for the examples.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 32 Hands-on Java Data Objects

http://www.libelis.com
http://www.libelis.com
http://www.libelis.com
http://www.libelis.com
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://www.mysql.org
http://mmmysql.sourceforge.net/
jdo-source.zip

See Resources on page 30 for more details on these items, plus pointers to additional
information.

You will learn quite a bit about LiDO as we go along, so no prior knowledge of the JDO
implementation is necessary. The same is true for MySQL, because LiDO will take care of
most of the details of working with the database for you. You will, however, need to go
through the MySQL installation process and learn how to create and drop databases. Once
you've installed the MM.MySQL and JDBC drivers in the CLASSPATH, you won't have to do
any maintenance or tasks specific to MM.MySQL.

A note about the tutorial
JDO is a hot-off-the presses technology. This tutorial was based on the original release date
of the JDO 1.0 specification. The software used for the exercises was also new to the market
at the time of writing. Given the newness of all the technologies in use, this tutorial may be a
little more of a bumpy ride than you've come to expect -- but it's also an early look at an
exciting technology. Think of it as an adventure!

Every effort has been made to ensure this tutorial provides more than enough information to
get you started with JDO. You will definitely want to follow up on what you learn here, and
stay abreast of the many changes to come as the technology develops. JDO is well worth
learning about.

About the author
Paul Monday is a software architect at J.D. Edwards. He has six years of hands-on Java
platform experience in a broad range of technologies including J2EE, Jini, and Jiro
technology. After graduating from Winona State University in Winona, MN, Paul earned a
Master's degree in Computer Science from Washington State University in Pullman, WA. His
focus for the Master's degree was operating systems, specifically the Linux operating
system. After receiving his degree, Paul worked for IBM on the SanFrancisco Project,
Imation Corp. on a storage appliance initiative, and Retek Inc. on an enterprise application
integration (EAI) project.

Paul has written two books, SanFrancisco Component Framework: An Introduction,
co-authored with James Carey and Mary Dangler; and The Jiro Technology Programmer's
Guide and Federated Management Architecture, co-authored with William Conner from Sun
Microsystems. Both books were published with Addison-Wesley. He has also written a
variety of articles for print and online technical resources.

In his spare time, Paul has worked with Eric Olson on Stereo Beacon, a distributed MP3
player that uses a centralized event service and distributed event implementations for
communication. He has also built a mobile agent framework for the Jiro technology platform
and is working to usher the Jiro project into the Jini community under the fsp (Federated
Services Project) community project. Contact Paul at pmonday@attbi.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 3 of 32

http://www.stereobeacon.com
http://www.stereobeacon.com
mailto:pmonday@attbi.com

Section 2. Overview

Introduction to JDO
The Java Data Objects (JDO) specification from Sun Microsystems aims to provide Java
programmers with a much-needed, lightweight view of object-oriented persistent data. JDO
frees developers to interact with objects in a natural way, providing an alternative to JDBC or
Enterprise JavaBeans with Bean Managed Persistence or Container Managed Persistence,
the two previous options in this area. One of JDO's biggest advantages is that it lets us
concentrate on developing a correct class model, rather than on developing a relational class
model. Further, JDO attempts to abstract the actual data source from the class model. This
allows different types of data sources to be "plugged in" to a deployed system. Rather than
being stuck with a relational database on the back end, we can now use object databases or
even XML files residing in the filesystem as our data sources.

EJB Container Managed Persistence (EJB CMP) has been a preferred method of dealing
with object persistence on relational databases. But using EJB CMP entails adherence to the
EJB programming model, the use of heavyweight development and deployment tools, and a
steep learning curve for all the developers involved. By preserving the object semantics and
moving the burden of programming-model adherence to a set of tools, JDO makes
object-based persistence much more accessible to Java developers.

We'll use discussion, code examples, and hands-on exercises to learn about many JDO
concepts. Because the JDO specification is significant in scope, we won't go very far into
advanced JDO programming concepts here, but we will hit the highlights.

In this section of the tutorial, we'll take a high-level look at the JDO architecture and its parts,
including tools for development and deployment. We'll learn more about the individual
aspects of the architecture as we work with them to complete the exercises later in the
tutorial. In the second half of this section, we'll go over the installation and setup
requirements for each of the technologies we'll be using. By the end of this section, you will
have had a first look at the JDO architecture.

The JDO architecture
From a high-level perspective, an application that is built using JDO consists of the following
components:

• The application itself, which must be compliant with JDO and its APIs

• A set of business objects consisting of the following two types:
• Transient business objects, which are typical classes that will not be made persistent

• Persistent business objects, which are classes that are accessed through a persistence
manager and implement JDO's PersistenceCapable interface

• A persistence manager, which is used by the application to access queries and
transactions

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 32 Hands-on Java Data Objects

• An underlying data store, which is used by the persistence manager to provide
persistence and operations against the data store

• Class metadata, which is an XML file that describes the relationships and contents of the
persistent classes as well as the data store itself

The figure below illustrates the JDO architecture.

Persistence management with JDO
In theory, you need to use JDO only from the classes that make up your application (not the
business objects themselves). But this scenario doesn't account for the times that business
objects need to leverage query mechanisms to facilitate business operations. Most of your
application's operations will originate with a call to JDO's PersistenceManager. The
PersistenceManagerFactory facilitates the location of the correct
PersistenceManager for a particular data source. More than one persistence manager
can be active to enable the use of multiple data sources for an application.

The JDO specification states that a business object that will be persistent must implement
the PersistentCapable interface. Fortunately, you don't have to worry about coding the
implementation; tools that come with the JDO implementation that you choose will take care
of it for you.

Tools for development and deployment
JDO's development tools use class metadata to enhance classes that will be persistent, as
well as to build table schemas to support those classes. We'll devote some time further on in
the tutorial to talking about enhancements to class objects, as enhancement is among the
most controversial of the JDO practices. Basically, JDO's tools change class bytecode by
adding to it the PersistenceCapable interface and any code specific to a particular JDO
implementation. (This, of course, assumes that these enhancements have not already been
coded in by the developer.) The specification does not require the use of bytecode
modification; source code modification could be used as well. Most JDO vendors will likely

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 5 of 32

use the BCEL library from Apache to do bytecode modification rather than taking the
potentially messy source code modification route.

The class enhancer will also generally add mutator methods that conform to the JavaBeans
specification. To be in step with this aspect of the JDO implementation, you will likely want to
adopt JavaBeans semantics from the beginning. All the classes developed in this tutorial use
the simple JavaBeans method specification to establish a get/set method for each instance
variable.

The figure below illustrates the relationship between JDO tools, the database, class
metadata, and business objects that are going to be made persistent.

Software requirements
To truly leverage the JDO specification, you'll need to get your hands on a decent-sized
stack of software beyond the Java 2 platform software. First, you'll need a JDO
implementation, which will typically come bundled with the JDO interfaces from the JDO
specification. You'll also need a relational database and a JDBC driver to support it.

The figure below illustrates the structure of the software stack to support JDO.

Obviously, the specifics of these requirements will vary according to the data source being
used and the JDO implementation itself. All the examples and exercises in this tutorial make
use of open source technology wherever possible. Where an open source implementation

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 32 Hands-on Java Data Objects

isn't available, "community edition" software completes the software stack, so all the software
we'll be working with is freely available.

Installation and setup
The specific software requirements to complete this tutorial are as follows:

• The open source MySQL relational database

• The open source MM.MySQL JDBC driver

• The LiDO Community Edition JDO 1.0 implementation from LIBeLIS

The figure below illustrates the particulars of the software stack for this tutorial.

Refer to Code samples and installation requirements on page 2 of the tutorial to download
each of the products. You'll find installation instructions at each of the Web sites. As you
install the software, be sure to record the locations at which you install them.

In the next several panels, we'll discuss some of the subtleties of setting up and using the
software for this tutorial.

MySQL database
The MySQL database, available as a Windows download, is one of the most popular open
source databases available. It performs well and it scales well. Upon installation, you'll see
an administration tool in the task bar; we use this to create and drop databases. You can
access the administration tool in the bin directory by running the winmysqladmin.exe
program.

You can also use the MySqlManager.exe program, also in the bin directory, as a
graphical interface for running SQL statements against databases. It is strongly suggested
that you run queries against the databases and tables in this tutorial. We'll discuss table
schemas in the next section.

The only operation that you have to do directly against the database using the administration
client is to create and drop the database that we'll use.

MM.MySQL JDBC drivers
MySQL doesn't provide a JDBC driver directly with the database. You will want to download
the open source MM.MySQL JDBC Type IV drivers for MySQL. Once downloaded, keep the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 7 of 32

drivers in your classpath during development and run time.

The driver class is org.gjt.mm.mysql.Driver. You will see this class referenced in each
of the programs that access persistent objects.

The JDO persistence manager and factory also need a JDBC URI that references the
database (data source) that you are using for persistence. In our case, we will always use
the jdotut database. The URI is jdbc:mysql://localhost/jdotut.

That's the extent of JDBC that you're required to understand for using a relational database
from JDO. For the remainder of the tutorial we'll access data and objects in a Java-centric
fashion.

LIBeLIS LiDO Community Edition
The final required piece of software is the JDO implementation itself. The LiDO Community
Edition software from LIBeLIS is free for developers. Although it does not contain many of
the advanced, graphical tools for development, the community edition has everything we
need to get through this tutorial. You will have to register at the site to download this
software.

After you've successfully downloaded the JDO implementation, ensure that the appropriate
.jar files are in your classpath during development and run time. Although each
implementation adds options and interfaces that can boost performance or get better
behavior from a particular driver, we will be using only the JDO interfaces that are within the
original specification. The LIBeLIS JDO implementation surfaces just once in the tutorial. In a
call to the PersistenceManagerFactory, which is a part of the JDO specification, the
proper factory to use is identified as
com.libelis.lido.PersistenceManagerFactory. Other than that, every bit of code
we'll be working with is from the JDO specification's javax.jdo package.

We'll use the class enhancer and a schema definition tool. The schema definition tool builds
our table schemas for us so that we don't have to learn any table creation SQL or JDBC
handling.

Summary
In this section of the tutorial, we've taken a high-level view of the JDO architecture and
installed a generic software stack. To review, the software stack used for a typical JDO
installation is as follows:

• The Java 2 platform, Standard Edition

• Database software (typically relational)

• JDBC drivers

• JDO tools and drivers

Each of the tools must support the others in the stack. Typically, this won't be a problem,
because the Java platform and JDBC act as a buffer between the JDO persistence
mechanisms and the data storage platform.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 32 Hands-on Java Data Objects

Section 3. A simple example using JDO

Overview
In this section we'll use the software we've installed to build a simple example that consists of
addresses that should be persistent. Later in the tutorial, we'll use these same addresses for
a more advanced exercise.

The goal of this section is to:

1. Demonstrate the development process with JDO

2. Show how JDO creates an object-oriented persistence mechanism and hides the details of
the underlying database access techniques

The development process
The development process with JDO is in many ways similar to a development process with
EJB CMP, though it is lighter in weight. There are essentially four parts to a JDO
development process:

• Creating the objects

• Defining object persistence

• Creating the application

• Deploying the application

Like all persistence mechanisms, the definition and deployment of the objects and
application tends to "leak" into the development process, with the actual separation
becoming blurred in the final packaging of the application.

Developing an end-to-end application with JDO is much more complex than developing a
straightforward Java application. Many of the steps in the process are different from
traditional Java development. Furthermore, many of the steps we'll discuss here will later
"disappear" into tooling, in the form of either IDEs or build scripts. Regardless of the initial
complexity, the benefits of using JDO are huge, particularly when it comes to the natural
representation of object-oriented techniques and data source abstraction. Remember this as
we go through our first exercise, which may be confusing at times. Things will ease up once
you get into the rhythm of the development process.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 9 of 32

The flow of development
The diagram on the left shows the development
process with JDO. You will want to enhance this
process with decision points and iteration when
you adopt a JDO environment.

The first step is to build our source code (the .java
files). Theoretically, the object source we build in
this step has no awareness of persistence. For
example you can build a set of source files for
people (PersonImpl.java), addresses
(AddressImpl.java), and departments
(DepartmentImpl.java) without knowing that the
classes will end up in a database. These source
files are turned into .class files with a standard
Java compiler. In practice, knowing that we'll be
using JDO for object persistence lets us build
better performance techniques into the object
model.

The next step is determining what classes require
persistence. Once this has been determined, the
.class file output from the previous steps is
enhanced with a class enhancer. This step will
most likely be carried out by the person who
developed the implementation classes, because he
or she has essential knowledge of the
implementation. To use the class enhancer, you
must build a metadata file (in XML format) that
identifies which classes require persistence, as
well as any additional information about the
classes. The .class files are combined with the
metadata by the class enhancer. The output is
modified .class files.

Class enhancement makes it difficult to integrate
the build process with existing IDEs. It is also the
most controversial aspect of development with
JDO. Modifying .class files is a well-studied art
form, and tools have been developed to aid in
direct class modification. Nonetheless, it's difficult
to get your head around a process that involves
creating .class files that don't correspond to the
source code. If you use build tools such as Ant this
will all be done for you seamlessly, under the
covers.

The next step is using the enhanced .class files
and the JDO interface to build application objects.
Whereas the persistent objects don't use the JDO
APIs and implementation, application objects will

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 32 Hands-on Java Data Objects

use the JDO API to control persistence,
transaction, and query mechanisms against
persistent objects. The primary point of contact for
an application is the PersistenceManager that
is associated with a particular data source. We'll
work with the persistence manager throughout this
tutorial.

As we're building the application, we'll also be
working on the actual database schema. Typically,
the JDO implementation includes a tool to
automatically create the database schema from the
metadata and enhanced class files created in the
previous steps.

Creating an address class
We'll start the first exercise by creating a simple address class. You will note in the code
sample that follows that I haven't separated the class interface from the implementation.
While it is better programming practice to maintain the separation (even when using JDO),
doing so in this case would have added no value, and would have added to the length of the
tutorial. I chose to keep the code as brief as possible.

package com.stereobeacon.jdo.tutorial;

public class AddressImpl {
public String addressLine1;
public String addressLine2;
public String city;
public String state;
public String zip;

public AddressImpl(String addr1, String addr2, String city, String state, String zip){
addressLine1=addr1;
addressLine2=addr2;
this.city=city;
this.state=state;
this.zip=zip;

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 11 of 32

public String getAddressLine1() {
return addressLine1;

}

public void setAddressLine1(String addressLine1) {
this.addressLine1 = addressLine1;

}

public String getAddressLine2() {
return addressLine2;

}

public void setAddressLine2(String addressLine2) {
this.addressLine2 = addressLine2;

}

public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;

}

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

}

public String getZip() {
return zip;

}

public void setZip(String zip) {
this.zip = zip;

}

}

Notes about the address class
When viewing the source in the previous panel, recall that:

• The address class will later be contained within an employee class.

• The JDO specification separates object implementation from awareness of persistence.

• All attributes should adhere to the JavaBeans specification for get/set methods.

Compile the code using any standard Java compiler. At this point, you will simply have a
class implementation with no persistence capabilities. You can use the class like any other
Java class; your address information will simply disappear when the JVM exits.

The class is in the package com.stereobeacon.jdo.tutorial enclosed in the source
download (see Resources on page 30).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 32 Hands-on Java Data Objects

Enhancing the address class with persistence
Class enhancement requires two inputs:

• A compiled Java class file

• Metadata about the classes that should be enhanced

Enhancing an original class file results in the file being modified to fit the requirements of the
JDO specification, as well as the particular JDO implementation in use. For example, once it
has been enhanced the class will implement the interface PersistentCapable. All classes
that will be persistent must implement this interface. You will notice that in our AddressImpl
class we left this detail to the class enhancer. A more advanced programmer could
implement the PersistenceCapable class himself, but at this point we're tying our object
implementation to JDO.

The metadata format for describing a class that will be persistent is dictated by the JDO
specification, though there is some room for vendor-specific metadata attributes. A very
simple metadata file can be used for the AddressImpl class, as shown in the next panel.

Class metadata

<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>

<package name="com.stereobeacon.jdo.tutorial">
<class name="AddressImpl">

<field name="addressLine1"/>
<field name="addressLine2"/>
<field name="city"/>
<field name="state"/>
<field name="zip"/>

</class>
</package>

</jdo>

Note that the metadata (an XML file) includes a DTD. Also note that the package tag allows
classes from one package to be grouped into one body. The class tag identifies classes
within the package that should be persistent. Finally, each field that will be persistent within
the class is identified. In this case, we've only used the minimum metadata requirements to
get AddressImpl to be persistent. The JDO specification provides many additional options
for classes, such as the ability to specify a primary key and whether fields can have null
values.

Running the enhancer
To run the class enhancer supplied with LiDO, you'll have to point the enhancer at the
metadata file. The enhancer will then find the .class files that require modification. The
following command will point the enhancer in the right direction:

java com.libelis.lido.Enhance -metadata metadata.jdo

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 13 of 32

Note the problem created with this step. Without tight coupling with an IDE, your class files
will now be different from your source files. Many IDEs automatically regenerate class files,
which would wipe out any changes made by the enhancer. Hopefully, the next generation of
IDEs will have JDO enhancements built into the tools.

In the accompanying source code, the metadata.jdo file contains all of the class
definitions used throughout the tutorial. This command is contained in the enhance.bat file
found in the source code download.

Building the database schema to support the class
With some implementations of JDO, you may need to build a database to support your
persistent objects. More likely, you will be given a tool that automates the process. Our
edition of LiDO provides a command-line tool to build the database schema. Simply reuse
the metadata we built for the previous step, and give the name of the database driver (in this
case the MM.MySQL driver) and the URI that identifies the database to the driver. As
previously mentioned, you will need to create the jdotut database prior to running this
command. Databases can be created within the MySQL administration console.

Run the following command to create the database schema:

java com.libelis.lido.ds.jdbc.DefineSchema
-driver org.gjt.mm.mysql.Driver
-database jdbc:mysql://localhost/jdotut
-metadata metadata.jdo

After running this command, you will have tables that store any persistent addresses we
have made. This command is contained in the batch file defineschema.bat in the source
code.

Table definition
Following is the table schema generated by the LiDO schema tool for our address class.
Study it carefully before moving on to the description.

Name Type Key

LIDOID bigint(20) Yes

ivAddressLine1 varchar(255) No

ivAddressLine2 varchar(255) No

ivCity varchar(255) No

ivState varchar(255) No

ivZip varchar(255) No

The first thing you will notice is that the column names match our instance variable names,
except for one. The first column, LIDOID, was added by the tool because we did not have a

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 32 Hands-on Java Data Objects

unique key defined in the metadata about the object. As an object or application
programmer, this field will not be accessible, though LiDO will use the field to track instances.

Table creation is outside of the scope of the JDO implementation so you will find that
different tools use different mechanisms, table name standards, and resulting schemas.

Building an application
In the application that follows, we will create an instance of class Address. This instance will
be made persistent, and the application will exit. You will notice several distinct parts to the
program, as follows:

• JDO setup

• Transaction manipulation

• Object life cycle

• Persistence interface to JDO

Here is the application code:

package com.stereobeacon.jdo.tutorial;

import javax.jdo.PersistenceManagerFactory;
import javax.jdo.PersistenceManager;
import javax.jdo.Transaction;

public class Test1 {
public static final String DBURL = "jdbc:mysql://localhost/jdotut";
public static final String DBDRIVER = "org.gjt.mm.mysql.Driver";

public static void main(String[] args) {
try {

/*
* SETUP JDO
*/
// first create and set up a persistence manager
// factory
PersistenceManagerFactory pmf =

(PersistenceManagerFactory) Class
.forName("com.libelis.lido.PersistenceManagerFactory")
.newInstance();

pmf.setConnectionURL(DBURL);
pmf.setConnectionDriverName(DBDRIVER);

// now retrieve the persistence manager associated
// with the parameters setup in the factory
PersistenceManager pm = pmf.getPersistenceManager();

/*
* START A TRANSACTION
*/
// retrieve the current transaction
Transaction t = pm.currentTransaction();
// start a new transaction
t.begin();

/*

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 15 of 32

* CREATE AN OBJECT INSTANCE
*/
AddressImpl a =
new AddressImpl("7700 Technology Way", "", "Denver", "CO", "80237");

/*
* MAKE THE OBJECT PERSISTENT
*/

pm.makePersistent(a);

/*
* COMMIT THE OBJECT TO STORAGE
*/

// commit the transaction, all changes made between
// the begin and commit are set to the db
t.commit();

/*
* CLEANUP AND EXIT
*/
pm.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}

Notes about the application code
Now, let's look at the details of each step of building the application code.

1. Setup JDO: JDO leverages class factories throughout the architecture. Setting up a
persistence manager factory is how the underlying JDO implementation determines which
PersistenceManager should be used for a particular data source. Once the factory has
the relevant information, you retrieve the PersistenceManager from the factory with the
getPersistenceManager call.

2. Start a transaction: Objects in JDO are first-class transaction participants. This implies
that we will need to make changes to objects within a transaction. (You will want to consult
the JDO specification regarding transactions since there are a variety of supported
options.) We call the persistence manager to obtain a reference to the current transaction
and, in this case, we begin a new transaction.

3. Create an object instance: Object creation occurs just like it normally would. You should
remember that the actual run-time call occurs against the enhanced class.

4. Make the object persistent: Assuming the class enhancer was run against them, the
makePersistent method call makes whatever objects are passed to it persistent, though
they won't be visible until after the transaction commit.

5. Commit the object to storage: Committing the object to storage unlocks the object
instance and makes it available to other processes that may be looking at the same type of
object instances.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 32 Hands-on Java Data Objects

6. Clean up and exit: Close the persistence manager when you're done using it.

Running the application
It's been a trek, but we're ready to run the application. In this section we'll only run the
application that builds the first instance, then we'll check out the changes to the table. In a
Windows operating environment, a batch program like the one below will suffice:

set CLASSPATH=C:\java\mm.mysql-2.0.14\mm.mysql-2.0.14-bin.jar;
set CLASSPATH=C:\java\mm.mysql-2.0.14\lib\jdbc2_0-stdext.jar;%CLASSPATH%
set CLASSPATH=C:\java\mm.mysql-2.0.14\lib\jta-spec1_0_1.jar;%CLASSPATH%
set CLASSPATH=c:\java\LiDO\lib\j2ee.jar;%CLASSPATH%
set CLASSPATH=c:\java\LiDO\lib\lido-rt.jar;%CLASSPATH%
set CLASSPATH=c:\java\LiDO\lib\lido-dev.jar;%CLASSPATH%
set CLASSPATH=c:\java\LiDO\lib\lido-rdb.jar;%CLASSPATH%
set CLASSPATH=c:\java\LIDO\bin;%CLASSPATH%
set CLASSPATH=.;%CLASSPATH%

java com.stereobeacon.jdo.tutorial.Test1

Note the inclusion of the JDBC drivers, the Java 2 Enterprise Edition jar file (which was
included with the JDO implementation), the LiDO jar files, and the bin directory from LiDO.
The bin directory is included because LiDO needs the license for the product in the
CLASSPATH, and the license is held in the bin directory.

Running the test will yield no visible output. Running the test multiple times will add the same
record to the underlying database several times. The reason for this behavior (rather than a
duplicate key exception) is that we placed the responsibility for generating a unique key with
LiDO. Another option would have been to define a primary key in the metadata about the
classes.

Once you've fixed up any CLASSPATH issues, run the addressCreate.bat file to start the
sample.

Viewing the results
Using the MySqlManager tool shipped with MySQL, we can run a query against the
jdotut.csjt_addressimpl table to return all of the addresses that exist in the table. The
simple SQL select statement that we will use is:

select * from jdotut.csjt_addressimpl;

The result of the SQL call is:

LIDOID ivAddressLine1 ivAddressLine2 ivCity ivState ivZip
------ -------------- -------------- ------ ------- -----
1 7700 Technology Way Denver CO 80237

(1 row(s) affected)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 17 of 32

Summary
In this section, we've learned about the JDO development process. Starting with a
conceptual discussion and following up with an example exercise, we've walked through
each step of the development process. To review, the JDO development process includes
the following steps:

1. Defining classes

2. Building a metadata file that contains information about class persistence

3. Running a class enhancer that uses the metadata to generate enhanced class bytecodes

4. Running a schema definition tool that uses the metadata and the enhanced class
bytecodes to build a table definition in a database

5. Building an application that leverages the JDO interfaces to make classes persistent

Because the process is rather involved, working with JDO can appear more convoluted than
working with JDBC. This is mostly due to class enhancement, which doesn't take place in a
typical Java development environment. On the other hand, the JDO process is much more
lightweight than that of typical EJB persistence mechanisms. We can complete the entire
development process from a command line with no servers or bulky deployment scenarios.
Furthermore, JDO doesn't require us to know anything about JDBC, beyond what we need to
know to point the driver and URI to the database used for persistence.

In the next two sections, we'll scale the example up a bit. As we do so, you should start to
see the benefits of being able to stay focused on the object paradigm.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 32 Hands-on Java Data Objects

Section 4. A more complex example

Overview
In this section we'll take our application to the next level, throwing a simple inheritance
example, containment, and a few extra objects into the code. The only major differences
between this exercise and the last one is in the metadata. Our development process will be
exactly the same as in the previous section:

1. Compile the classes.

2. Enhance the classes with an updated metadata file.

3. Build the table schema.

4. Compile the application.

5. Run the application.

The class diagrams
Notice the addition of several classes in the UML diagram below. The AddressImpl itself
remains unchanged.

The classes we'll focus on for this example are as follows:

• DepartmentImpl represents a department of employees with a single manager. Notice
there is an instance variable, employees, of type Collection. It will contain people of
the type PersonImpl.

• PersonImpl represents a person. A person contains an AddressImpl.

• ManagerImpl represents a manager and is a subclass of PersonImpl.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 19 of 32

Metadata updates
In general, a metadata update is a matter of simply adding additional classes to the
metadata, as shown here:

<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>

<package name="com.stereobeacon.jdo.tutorial">
<class name="AddressImpl">

<field name="addressLine1"/>
<field name="addressLine2"/>
<field name="city"/>
<field name="state"/>
<field name="zip"/>

</class>

<class name="PersonImpl">
<field name="employeeId" primary-key="true"/>
<field name="address"/>
<field name="email"/>
<field name="firstName"/>
<field name="lastName"/>
<field name="homePhone"/>

</class>

<class name="ManagerImpl"
persistence-capable-superclass=
"com.stereobeacon.jdo.tutorial.PersonImpl">

</class>

<class name="DepartmentImpl">
<field name="departmentName"/>
<field name="employees">

<collection element-type="com.stereobeacon.jdo.tutorial.PersonImpl"/>
</field>
<field name="manager"/>

</class>
</package>

</jdo>

Notes about the code
You should pay attention to the use of subclassing in the code in the previous panel. In the
declaration of the ManagerImpl class, note the additional tag attribute
persistence-capable-superclass, which identifies the superclass that is also
persistence capable. The identification of collections is also interesting. Contained in the field
declaration of employees within DepartmentImpl is additional information about the
collection (recall that employees is of type Collection). The element-type attribute
identifies the type of the classes contained within the generic collection.

We're taking a very simplistic view of metadata in this tutorial, showing only the attributes that
are necessary to get up and running. In the JDO specification you'll find a section entitled
"XML Metadata"; read this section to learn more about controlling the data in your
application.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 32 Hands-on Java Data Objects

A main program
You should find no surprises in the following portion of the driver program. The only changes
are in the construction of the objects.

// start a new transaction
t.begin();
{

// create 3 new addresses
AddressImpl a1 =

new AddressImpl("1111 Avalanche Drive", "", "Denver", "CO", "80237");

AddressImpl a2 =
new AddressImpl("2222 Twins St.", "", "Rochester", "MN", "55901");

AddressImpl a3 =
new AddressImpl("3333 Skunk St.", "", "Manitowoc", "WI", "11111");

// create 2 employees and 1 manager
PersonImpl p1 =

new PersonImpl(a1,"Paul", "Monday", "11",
"pmonday@attbi.com", "303-555-1212");

PersonImpl p2 =
new PersonImpl(a2,"Anson", "Williams", "12",

"anson@isaak.com", "777-555-1212");
ManagerImpl m1 =

new ManagerImpl(a3,"Fox", "Mulder", "21",
"abducted@fox.net", "222-555-1212");

Vector v = new Vector(2);
v.add(p1);
v.add(p2);
DepartmentImpl dept = new DepartmentImpl(

v, m1, "ARCHITECTURE");

pm.makePersistent(dept);
}

// commit the transaction, all changes made between
// the begin and commit are set to the db
t.commit();

// start a new transaction
t.begin();
{

// create 3 new addresses
AddressImpl a1 =

new AddressImpl("4444 Lombardi St.", "", "Green Bay", "WI", "45001");
AddressImpl a2 =

new AddressImpl("55 Woods Way", "", "Miami", "FL", "12001");
AddressImpl a3 =

new AddressImpl("79 Borg Avenue", "", "Voyager", "MN", "55890");

// create 2 employees and 1 manager
PersonImpl p1 =

new PersonImpl(a1,"Arty", "Garhunkle", "19",
"troubled@bridge.net", "777-555-1212");

PersonImpl p2 =
new PersonImpl(a2,"ElTigre", "Madera", "80",

"par@forcourse.com", "250-555-1212");
ManagerImpl m1 =

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 21 of 32

new ManagerImpl(a3,"Jerry", "Smith", "85",
"jerry@public.edu", "313-555-1212");

Vector v = new Vector(2);
v.add(p1);
v.add(p2);

DepartmentImpl dept = new DepartmentImpl(
v, m1, "QUAKE");

pm.makePersistent(dept);
}

// commit the transaction, all changes made between
// the begin and commit are set to the db
t.commit();

Notes, and running the program
In the makePersistent method call, only the department object is passed in, yet all of the
nested objects will be properly persisted. Pretty cool, huh?

At this point, you should realize that there are other signatures for makePersistent. One
takes an array of objects and the other takes a collection of objects. These additional
signatures allow you to persist more than one object in a single method call. (You'll get better
performance with the group call.)

Before running this example, make sure you've done the following:

• Enhanced the new .class files with enhance.bat

• Dropped the jdotut database and re-created it

• Run the defineschema.bat command to build the new schema

Finally, run the populateDepartments.bat command to activate the above program. You can
run printDepartments.bat at any time to see the contents of our departments.

Summary
In this section we added some complexity to the example code, which allowed us to work
with some additional attributes of the class metadata. We also wrote a longer, slightly more
complex driver to populate the database.

The more robust set of data will be useful for the next section, where we'll learn about
querying and manipulating persistent data.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 32 Hands-on Java Data Objects

Section 5. Managing and querying data objects

Overview
So far, we have spent a lot of time building and discussing the setup and creation of objects.
In this section we'll learn about manipulating the objects we've created. Three high-level
tasks are key to this section:

1. Retrieving object instances

2. Changing persistent data

3. Deleting persistent data

Retrieving object instances will take up the bulk of this section. There are several
mechanisms to deal with object retrieval. We will quickly discuss one, the extent, then spend
more time on the JDO query language (JDOQL). Next, we'll look at how to change data that
is already persistent. And, finally, we'll remove some objects to show you how to shrink your
data.

Extents
An extent is a JDO construct that is leveraged both for performance and as a basis for JDO
object queries. An extent represents all of the instances of a class or a class and its
subclasses. Extents could be thought of as collections, but with some room for optimization.
A JDO implementation can implement an extent such that only batches of returned objects
are actually immediately available in memory. In this case, the remaining objects become
populated by the JDO implementation one by one, or in groups, as the iterator encounters
objects that are not available in memory. The ability to lazily load objects is an improvement
over collections, which can require the JDO provider to load thousands of objects to
represent a table.

You will also notice, in later panels, that extents form the basis of most object queries. An
extent is passed into a query as a candidate collection of objects for the query to work on.

An extent example
Below is a portion of a program that will retrieve all instances of PersonImpl as well as its
subclass ManagerImpl.

{
System.out.println("Retrieving all people");
// Retrieving all departments
Extent ext = pm.getExtent(PersonImpl.class, true);
Iterator i = ext.iterator();
while (i.hasNext()) {

PersonImpl person = (PersonImpl) i.next();
System.out.println(

"Person: "
+ person.getLastName()
+ ", "
+ person.getFirstName());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 23 of 32

}
ext.closeAll();

}

Note that an extent is retrieved through the persistence manager. The parameters are as
follows:

1. The class of instances that the extent is based on

2. Whether subclasses should be included

Finally, note that the extent should be closed. This closes all iterators over an extent. After
this point, all iterators will return false from their hasNext method.

Upon retrieval of the extent, we get an iterator (just like a collection) and iterate through the
contents. The contents of the collection that are printed are all of the people that were
created, as well as all of the managers, since manager is a subclass of people.

The code for this class is in com.stereobeacon.jdo.tutorial.ExtentTest. You can
run it using the extentTest.bat file. In the program, there is also an example showing the
retrieval of the DepartmentImpl classes.

JDOQL
You can consider the JDO Query Language (JDOQL) in two parts: the API to manage
queries, and the query language itself. The API to create queries is on the JDO
PersistenceManager. A variety of options for query creation are specified at create time,
such as the elements the query will execute against (a collection, class, or extent) and a
query filter, which is similar to a select clause in SQL.

Once a query is created, most often with a filter limiting the number of objects returned by the
query, the query itself can be managed through the Query class API. The query API allows
the setting of variables and parameters for the filter (so you don't have to construct a new
filter string for every query), options for caching, and options for ordering the returned
objects.

We'll look at three queries, focusing primarily on the filter, although we'll also examine the
basic elements of how to construct and execute a query using JDOQL.

The code for the queries that follow is in the
com.stereobeacon.jdo.tutorial.RunQueries class, which you can run using the
runQueries.bat file.

A simple object query
We'll start with a simple query to select one of our two departments. Because our examples
are simple, it would often be just as easy to load the extent and iterate through the results.
Despite this, it's a good idea to know how to work with JDOQL. Queries pay off when table
sizes are large, as is the case with most enterprise applications.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 32 Hands-on Java Data Objects

Extent ext = pm.getExtent(DepartmentImpl.class, false);
String filter = "departmentName==name";
Query q = pm.newQuery(ext, filter);
String parameter = "String name";
q.declareParameters(parameter);
Collection c = (Collection)q.execute("ARCHITECTURE");

There are three distinct steps to the above query:

1. First, we create the query with the persistence manager, pm, by passing it an extent to
operate on and a filter. In the filter, note that the departmentName correlates to an
instance variable in the class DepartmentImpl, which also happens to be the extent that
the query will execute against. Next, in the filter, note that we have a variable that does not
correlate to an instance variable, name. The name variable in the filter will be substituted at
query execution time with whatever department we want to find. The query is created with
pm.newQuery(ext, filter), but it has not retrieved instances at this point.

2. Next, we set up the query object itself with any additional settings we want. In this case,
we have to tell it that name is a String. We do this by passing a string to the
declareParameters method call on the query. For each parameter listed, the execute
method on the query will require that a corresponding value be passed in. Multiple
parameters are denoted in the parameter string by being delimited by a comma (,).

3. Finally, the query is executed with the execute method. Queries return instances of
Collection, which we then iterate through for information.

A multiple-parameter query
This example presents two critical differences from the previous one:

• No extent is used as the basis for the query; rather, a class, PersonImpl, is used as the
basis for the query.

• Multiple parameters are used to search for a first name and last name of an employee.

String empFilter = "lastName==last & firstName==first";
String empParms = "String last, String first";
Query empQuery = pm.newQuery(

PersonImpl.class,
architectureDepartment.getEmployees(),
empFilter);

empQuery.declareParameters(empParms);
Collection empCollection = (Collection)empQuery.execute(

"Williams", "Anson");

First, notice the query syntax. We will be searching for employees where the last name and
first name are equal to parameters that are passed in. The query syntax is defined in the
JDO specification and loosely follows SQL syntax. The two parameters, last and first
are defined to be strings.

A new query is created by retrieving the collection of employees from the previously located

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 25 of 32

architecture department. The first parameter PersonImpl.class is required as a way to
denote the types of objects in the collection. The second parameter is the candidate
collection, and the third parameter is the query filter itself. As with a single-parameter query,
the next step is to declare the parameters of the filter with the declareParameters method
on the query object.

When the query has been executed, the two parameters are passed to the query. Notice
that, rather than bundling the parameters in an object array, they are passed consecutively.
Up to three parameters can be passed consecutively for convenience. Any more than that
should be bundled as an array.

A contained-object query
The final query example is what is known as a containment query. Basically, we want to
search all of the departments for a particular person (rather than the last query, which
searched a single department for a particular person).

To build the containment query, we use a second query concept (the first being parameters)
known as a query variable. The variable helps constrain the results of a query. In the
example below, the variable is used to specify that all of the PersonImpls with the last
name equal to the query parameter should be selected. Basically, the variable allows us to
further constrain the employee collection in the department.

Extent deptExtent = pm.getExtent(DepartmentImpl.class, false);
String personVar =

"com.stereobeacon.jdo.tutorial.PersonImpl person";
String containFilter =

"employees.contains(person) & person.lastName==name";
String nameParam = "String name";
Query personQuery = pm.newQuery(deptExtent, containFilter);
q.declareParameters(nameParam);
q.declareVariables(personVar);

Collection personColl =
(Collection) personQuery.execute("Williams");

Notice that variables are declared in essentially the same way as parameters. Variables do
not have associated parameters to pass on the query execute clause because the variable is
an element that is used within the filter, not for parametric setting of filter information.

Finally, note that this query and the multiple object query did not work with LiDO Version 1.0.
The LIBeLIS team is aware of this bug and working to fix it.

Changing objects and removing instances
In general, creating, changing, and deleting object instances does not require special object
semantics. On the other hand, special steps must be taken, as you write the application, to
ensure creations, changes, and deletions get saved to the underlying persistence
mechanism.

You have already seen the makePersistent method for creating an object instance. The

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 32 Hands-on Java Data Objects

code in the next panel uses the parallel deletePersistent method on the persistence
manager to remove the first employee from a department.

When an object is modified through the set methods that parallel the instance variables (such
as setEmployees) that object instance is "dirty." As a result, a mechanism is triggered to
re-save the object data on the next transaction commit.

Note that the architectureDepartment instance variable was populated prior to entering
the code block in the next panel.

Removing an object instance

Collection employees = architectureDepartment.getEmployees();
pm.retrieveAll(employees);
// remove the first element
PersonImpl removedEmployee = null;
if(!employees.isEmpty()) {

Iterator employIt = employees.iterator();
removedEmployee = (PersonImpl)employIt.next();
employees.remove(removedEmployee);
architectureDepartment.setEmployees(employees);
pm.deletePersistent(removedEmployee);

}

In the above code, we first retrieve the collection of employees from a particular architecture
department. Next, we call the retrieveAll method on the persistence manager. This loads
the entire collection into memory (an operation that could be a problem if table sizes were too
large).

To successfully remove an employee we must:

• Remove the person from the collection within the department

• Delete the persistent representation of the person from the database

If we just delete the persistence representation from the table, the department's collection will
receive a null pointer exception when it tries to retrieve it. On the other hand, if we only
remove the person from the collection in the department, we'll end up with a person that isn't
contained by any departments and may be left as "garbage" in an ever-increasing collection
of database records.

Object ownership
The removal scenario brings up the concept of object ownership. Ownership is a very difficult
concept to model and implement in a system that handles persistence. Unfortunately, JDO
does not resolve the object model for you; you'll still have to think about how your application
will manage the object model. Some constructs in JDO do help with these scenarios, but you
will frequently have to modify the object model as well as the "rules" that an application
adheres to for leveraging the persistent data. You can start becoming an expert in your
scenario by spending several hours with the JDO specification as well as your chosen JDO
vendor implementation.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 27 of 32

The code for the delete and modify example is in the
com.stereobeacon.jdo.tutorial.DeleteObject class, which you can run using the
deleteObject.bat file.

Summary
In this section, we've explored mechanisms for managing the life cycle of persistent objects.
We started with using an extent, which represents large collections of objects and forms the
basis set for most queries. We then discussed a variety of query techniques for retrieving
specific collections of instances, all of which were based in the JDOQL. Finally, we discussed
how to change an object and remove objects that have already been stored in a database.

With all of the examples in this section (and those contained in the source code), we have
only scratched the surface of some of the versatility of the JDO Query Language (JDOQL)
and different ways to manage memory and CPU performance when selecting objects. While
this section lays some groundwork for querying, it is important that you spend time with the
JDO specification and vendor documentation. Not only can vendors extend JDO metadata to
provide clues for improving performance, but some JDO implementations may be better than
others at getting performance out of individual databases.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 32 Hands-on Java Data Objects

Section 6. Wrapup and resources

The future of JDO
JDO is an excellent first version of a specification, and as an object persistence mechanism it
fills a gaping hole. On the other hand, JDO does have considerable competition to contend
with in this area. The SanFrancisco Application Component Framework was built with an
object persistence layer over five years ago (although SanFrancisco Classic is no longer
available); EJB technology is holding ground with entity beans and CMP; and, of course,
XML data binding and Java serialization are worthy contenders. Each of these mechanisms
offers its own admirable solution to the problem of object persistence, but none of the
mechanisms truly fit into the object-oriented programming paradigm. In the end, JDBC often
wins the bid for persistence because it is unabashedly relational, just like the data that is
typically stored in databases.

JDO will prove to be an effective mechanism for solving many of the challenges that today's
object-oriented programmers have been struggling with, but it won't solve them all. Using
JDO entails making subtle changes to how we program, such as enforcing object ownership
rules, adding pointers to object owners from contained objects, and making other changes to
enhance the performance and navigability of object maps. On the application side, we'll have
to ensure we don't leave objects in databases, and also make sure we're using the JDO
options that will get optimum performance for a particular user interface.

With all of those downsides, I'm still sold on JDO. The technology is as important as entity
beans, and it weighs a lot less. A lightweight alternative to entity beans is something EJB
programmers have been screaming for, and a mechanism to integrate JDO and EJB could
make this happen (although a detailed discussion is beyond this tutorial). Perhaps most
important of all is the fact that JDO is more natural to an object-oriented programmer than
JDBC, and it is a better fit for the enterprise than Java serialization or XML data binding.

Whether or not JDO is ready to be used for production-level application development, it is
worthy of consideration. Hopefully, having completed this tutorial, you will make it one of your
options the next time you're evaluating persistence mechanisms for your object paradigm.

Tutorial summary
In this tutorial, we've explored the essential facets of JDO, including:

• The JDO architecture and environment

• The development process with JDO

• Examples that scaled to several classes

• Simple and complex queries

• The creation, selection, alteration, and removal of object instances

While this has been by no means a comprehensive exploration of the JDO specification, we
have worked through the high points of the specification. Upon completing the tutorial, you
should feel you have a working knowledge of JDO.

To further pursue your interest in JDO, see Resources on page 30 . There you will find a link to

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 29 of 32

the original JDO specification, as well links to download some sample drivers, like the one
from LIBeLIS.

JDO is a very new technology, and implementations are just coming out that adhere to the
1.0 specification. Several times in writing the tutorial I was caught relying on the JDO
proposed final draft rather than on a final draft. As a result, there have been many changes
along the way. Please be sure to take a look at the latest draft specification and
implementation results.

In closing, I would like thank the very helpful and responsive people at LIBeLIS for their
assistance and virtually immediate support throughout the writing of this tutorial.

Resources
Downloads

• Download jdo-source.zip, the source file for all the examples used in this tutorial.

• The Java 2 platform, Standard Edition (http://java.sun.com/j2se/) is available from Sun
Microsystems.

• The Java Data Objects specification, information, and reference implementation page
(http://access1.sun.com/jdo/) contains the most current information about JDO.

• We used the LIBeLIS Community Edition JDO 1.0 (http://www.libelis.com) as the JDO
implementation (site registration is required for download).

• The MySQL open source relational database (http://www.mysql.org) is used for data
persistence in the tutorial.

• The MM.MySQL open source JDBC drivers (http://mmmysql.sourceforge.net/) are used for
Java access to the MySQL database.

• Download Apache Ant (http://jakarta.apache.org/ant/), now available in version 1.5 beta 2,
from the Jakarta Project Web site.

Articles and tutorials

• Dennis Sosnoski profiles Castor, another data-binding technology, in his article "XML in
Java: Data binding with Castor" (developerWorks, April 2002,
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html)

• The tutorial "Data binding with JAXB" by Daniel Steinberg (developerWorks, January 2002,
http://www-106.ibm.com/developerworks/education/r-xjaxb.html) will get you started with
this data-binding technology from Sun Microsystems.

• The tutorial "Building Web-based applications with JDBC " by Robert Brunner

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 32 Hands-on Java Data Objects

jdo-source.zip
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://java.sun.com/j2se/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://access1.sun.com/jdo/
http://www.libelis.com
http://www.libelis.com
http://www.libelis.com
http://www.libelis.com
http://www.libelis.com
http://www.mysql.org
http://www.mysql.org
http://www.mysql.org
http://www.mysql.org
http://www.mysql.org
http://mmmysql.sourceforge.net/
http://mmmysql.sourceforge.net/
http://mmmysql.sourceforge.net/
http://mmmysql.sourceforge.net/
http://mmmysql.sourceforge.net/
http://jakarta.apache.org/ant/
http://jakarta.apache.org/ant/
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-106.ibm.com/developerworks/java/library/x-bindcastor/index.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/29E38C9B6910F69F86256B51004F94B7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/29E38C9B6910F69F86256B51004F94B7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/29E38C9B6910F69F86256B51004F94B7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/29E38C9B6910F69F86256B51004F94B7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/29E38C9B6910F69F86256B51004F94B7?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5D92193F478974D386256B210044A302?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5D92193F478974D386256B210044A302?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5D92193F478974D386256B210044A302?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5D92193F478974D386256B210044A302?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5D92193F478974D386256B210044A302?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5D92193F478974D386256B210044A302?OpenDocument

developerWorks, December 2001,
http://www-106.ibm.com/developerworks/education/r-jdbcw.html) is a good introduction to
the fundamentals of programming with JDBC.

• For more advanced JDBC operations, see Robert Brunner's second tutorial in his JDBC
series "Advanced database operations with JDBC" (developerWorks, November 2001,
http://www-106.ibm.com/developerworks/education/r-jdbc3.html).

• Rick Hightower examines Container Managed Persistence in his two-part tutorial series:
"An introduction to Container Managed Persistence and Relationships," Part 1
(http://www-106.ibm.com/developerworks/education/r-wscomp.html) and Part 2
(developerWorks, March 2002,
http://www-106.ibm.com/developerworks/education/r-wscomp2.html).

• You'll find consistently maintained, up-to-date information about Java Data Objects at JDO
Central (http://www.jdocentral.com).

• Keep your eyes open for Java Data Objects by Robin Roos
(http://www.ogilviepartners.com/JdoBook.html), which is forthcoming from Addison-Wesley
(August 2002).

Additional resources

• You'll find hundreds of articles about every aspect of Java programming in the
developerWorks Java technology zone (http://www-106.ibm.com/developerworks/java/).

• See the developerWorks Java technology zone tutorials page
(http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/)
for a complete listing of more free tutorials from developerWorks.

• IBM research teams around the world are constantly at work developing and researching
new technologies. Keep an eye on the IBM research homepage
(http://www.research.ibm.com/) for the latest discoveries in information technology.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Hands-on Java Data Objects Page 31 of 32

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/975BFD2C367CFFD686256B0500581B3B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/975BFD2C367CFFD686256B0500581B3B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/975BFD2C367CFFD686256B0500581B3B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/975BFD2C367CFFD686256B0500581B3B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/975BFD2C367CFFD686256B0500581B3B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/975BFD2C367CFFD686256B0500581B3B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/B6C04F7C5DB8A7ED86256B65004AD53E?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D3A8295A887336F586256B8200483C58?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D3A8295A887336F586256B8200483C58?OpenDocument
http://www.jdocentral.com
http://www.jdocentral.com
http://www.ogilviepartners.com/JdoBook.html
http://www.ogilviepartners.com/JdoBook.html
http://www.ogilviepartners.com/JdoBook.html
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.research.ibm.com/&origin=j

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 32 Hands-on Java Data Objects

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Code samples and installation requirements
	A note about the tutorial
	About the author

	Overview
	Introduction to JDO
	The JDO architecture
	Persistence management with JDO
	Tools for development and deployment
	Software requirements
	Installation and setup
	MySQL database
	MM.MySQL JDBC drivers
	LIBeLIS LiDO Community Edition
	Summary

	A simple example using JDO
	Overview
	The development process
	The flow of development
	Creating an address class
	Notes about the address class
	Enhancing the address class with persistence
	Class metadata
	Running the enhancer
	Building the database schema to support the class
	Table definition
	Building an application
	Notes about the application code
	Running the application
	Viewing the results
	Summary

	A more complex example
	Overview
	The class diagrams
	Metadata updates
	Notes about the code
	A main program
	Notes, and running the program
	Summary

	Managing and querying data objects
	Overview
	Extents
	An extent example
	JDOQL
	A simple object query
	A multiple-parameter query
	A contained-object query
	Changing objects and removing instances
	Removing an object instance
	Object ownership
	Summary

	Wrapup and resources
	The future of JDO
	Tutorial summary
	Resources
	Feedback

