The Linux Cookbook

The Linux Cookbook

Tips and Techniques for Everyday Use

Michael Stutz

An imprint of No Starch Press, Inc.

San Francisco

The Linux Cookbook. Copyright (¢) 2001 by Michael Stutz.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechan-
ical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission
of the copyright owner and the publisher.

Printed in the United States of America
12345678910-04 03 02 01

Trademarked names are used throughout this book. Rather than use a trademark symbol with every occurrence of a trademarked
name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

Co-publishers: William Pollock and Phil Hughes
Project Editor: Karol Jurado

Assistant Editor: Nick Hoff

Cover Design: Octopod Studios

Typesetting and Design: Michael Stutz
Technical Editor: Scott Schwartz

Copyeditor: Andy Carroll

Proofreader: Elisabeth Beller

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth Street, Berkeley, California 94710,
phone: 800-788-3123 or 510-528-1444, fax: 510-528-3444

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., 195 Allstate Parkway, Markham, Ontario L3R
4T8 Canada, phone: 905-477-0722, fax: 905-477-8619

For information on translations or book distributors outside the United States, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415-863-9900; fax: 415-863-9950; info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the

preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect
to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

This official author’s edition is published by exclusive arrangement with No Starch Press, Inc.
Library of Congress Cataloging-in-Publication Data

Stutz, Michael.
The Linux cookbook / Michael Stutz.
p. cm.
ISBN 1-886411-48-4 (pbk.)
1. Linux. 2. Operating systems (Computers) I. Title.

QA76.76.063 S788 2000
005.4'32--dc21 00-0460571

A note on the type
in which this book is set

The name of the font family used in this book is Computer Modern. These are free fonts designed by
Donald E. Knuth for his TEX typesetting system, and are described in Volume E of the Computers &
Typesetting series, Computer Modern Typefaces (Addison—Wesley, 1986).

This book was written and produced using the free software tools it describes. It was prepared with
Texinfo, a system for generating both hardcopy and electronic output from a single source document.
The Texinfo input files were composed in GNU Emacs, and the screen shots were taken and processed
with the Image Magick suite of tools. The output was converted to PostScript for printing using Tomas
Rokicki’s Dvips, GNU Ghostscript, and Angus Duggan’s PostScript Utilities. The system was a 100MHz
586 personal computer running Debian GNU/Linux 2.2.

Preface

Because of its robust and stable nature, the Linux-based system is the choice of millions today. But
what some may not know is that the free software movement, of which Linux is a part, is very much
a counter-cultural phenomenon: the design by which it is produced and published is contrary to the
notions of proprietary, intellectual “property” that have dominated mainstream culture so long. While
some programmers turn their research into corporate-backed software that you cannot openly change,
share, or examine (but only purchase and run on your system), Linux and other free software is the
product of many individuals who courageously published and shared their research and work openly, for
everyone to benefit from.

I wrote this book because | want everyone to know how to use this software, because | think every-
one deserves the freedom that comes with it. 1 don’t willingly use proprietary software—not because
it is always inferior to free software but because its use precludes freedoms that | find | cannot exist
without . . . freedoms that should be everyone’s right by default in a free, open society. (See Chapter 1
[Introduction], page 9.)

I know that Linux isn’t difficult to use, especially when compared with other software and operating
systems, but what was needed was a guide to show people how to use it to get things done: “Oh, you
want to do that? Here, type this.”

That explains the premise of the book—it’s a hands-on guide to getting things done on a Linux system,
designed for the everyday user who is not necessarily a computer programmer.

The traditional approach to the subject is to either provide laundry lists of all available commands and
applications, or focus on their use in a programming or otherwise technical environment. This book takes
a different approach, showing how everyday users—be they artists, designers, businessmen, scholars, or
scientists—can use these tools and applications to get things done. When | speak of “things,” 1 mean
(hopefully) the kind of things that you—the sort of person possibly and partially described above—
might want to do with a modern computer system: view text and images, play and record sounds, perform
mathematic operations, print to your printer, format text, access the Internet, check your grammar, and
so forth.

Like a culinary cookbook, this book presents “recipes” for preparing or accomplishing a particular,
specific thing. I’ve selected what | consider to be the easiest and most effective methods for accomplish-
ing particular tasks, and have arranged these recipes in general sections according to subject matter—the
first part of the book is all about getting started, and contains the most essential information you need
to know about using Linux; the remaining chapters deal with general categories of usage: Files, Text,
Images, Sound, Productivity, and Networking.

Format of Recipes

Each recipe is numbered with at least two figures. These figures are constructed as follows: the first
number always corresponds to the chapter number, and the second to the section of the recipe. For
example, Chapter 3 is The Shell, and Recipe No. 3.5 is the fifth recipe on shells, Section 3.5 [Recording
a Shell Session], page 41.

Sometimes recipes are divided into subsections, with a third number specifying the specific recipe—
for example, Recipe No. 3.4 is on the subject of command history in the shell, and is divided further
into subsections; Recipe No. 3.4.2 is the second recipe on command history, Section 3.4.2 [Specifying a
Command from Your History], page 41.

Each recipe describes a method for completing a specific task on the system; these tasks require at
least one software program. The software programs or files a recipe calls for are its ingredients.

The recipes are structured as follows:

1. Recipe number and title of the recipe.

2. Special ingredients, if any. The Debian package(s) and/or or URLs where the program(s) can be
obtained are listed, if they are available.

The Linux Cookbook: Tips and Techniques for Everyday Use

Debian classifies packages in varying level of importance, from ‘required’ packages that all
systems must have in order to run, to ‘optional’ and ‘extra’ packages that you only install if
you want them. If a described software package is in the first two given categories—‘required’
and ‘important’—then | assume you have it installed, and the package name isn’t listed here.

In the rare case that a software package | describe is not yet available as a Debian package, | just
give the URL where to obtain the source packages for that software; have your system administrator
install it.

3. Special preparation methods or description, if any. When a configurable program is described, the
standard setup as provided by the Debian distribution is assumed, unless otherwise specified here.

Description of the recipe and “cooking” method proper.
Remarks concerning the results and use.

Bulleted example of the method in a specific context.
Extra commands or actions you might want to do next.
Variations on the recipe, with additional examples.
Special notes or references to further information.

© oo No gk

Not all of these items may be present in a given recipe.

Assumptions, Scope, and Exclusions

There a few assumptions that this book makes about you, the reader, and about your Linux system.

The Cookbook assumes that you have at least minimal understanding of your computer hardware—
you don’t have to know how to take it apart or anything like that, but you ought to know how to operate
the mouse, where the power button is on your computer and monitor, how to load paper in your printer,
and so forth. If you need help with any of these tasks or concepts, ask your dealer or the party who set
up your computer.

This book also assumes that you have Linux installed and properly set up, and that you have your
own user account set up on your system. If you need help with this, please see Section 1.3 [If You Need
More Help], page 14.

While this book can and should be used by the newcomer to Linux, I like to think that I’ve presented
broad enough coverage of the Linux-based system, and have included enough interesting or obscure
material, so that wizards, hackers, and members of the Linux Cabal may find some of it useful—and that
said users will not feel ashamed to have a copy of this book on their desk or as part of their library.

Finally, a note about what isn’t covered in the Cookbook.

This book describes only free software (sometimes called “open source” software) that runs on Linux
systems.! Proprietary software is omitted, as are most software packages that are currently in a “beta” or
some other unstable release not yet intended for general use.

Some programs take a number of options that modify the way they work. Sometimes, various options
that a tool takes are listed in a table. These lists are not exhaustive; rather, they contain the most popular
or useful options, or those options that are relevant to the discussion at hand. Consult the online manual
page of a particular tool for the complete listing (see Section 2.8.4 [Reading a Page from the System
Manual], page 28).

This is a user manual; no computer programming activities, such as program compilation, are dis-
cussed. Topics related to system administration are also omitted—so you won’t find anything in this
text on matters such as managing accounts, system maintenance, setting up hardware, and configuring
networks.

As with any rule, you can find an exception to this—if you look hard enough for it. If you are running
Linux on your home computer as a single-user system, you are also the administrator of this system,

1 The word “free” in this context refers to freedom or liberty, and not price; this distinction is explained in Chapter 1 [Intro-
duction], page 9.

and are the responsible party for ensuring that any administrative tasks be completed; Appendix A [Ad-
ministrative Issues], page 315 exists as a reference for those users who will be administrating their own
systems.

Typographical Conventions

All recipes have at least one example that demonstrates it.

e The text that describes what the example does appears just before the example itself, and is offset
from the text with a bullet, like this.
e A given recipe may have several variations; each is offset with its own bullet.

e The names of documents or users that are used in some recipes may not always reference actual
documents or users on your system, but demonstrate the general principles involved. So when |
show how to print a file called ‘resume’, you might not necessarily have a file with that name on
your system, but you should understand the idea which the recipe demonstrates.

Sometimes, a terminal screen is shown to illustrate an interactive session:

4 N

D

$ Text that you actually type is displayed in a slanted font, like
this. If it is a command to be typed at a shell prompt, the command isfi
preceded with a 'S’ character.

Text that denotes program output is displayed in a monospaced Courierll
font like this.

$

- J

In examples where a shell prompt is displayed, the default current working directory is omitted in the
prompt and just a ‘s’ is used; when a command outputs text and then exits, the last line of an example
contains a “$’ character to denote the return to a shell prompt. Don’t worry if this sounds strange to you
now; all of this “shell” business is explained in Chapter 3 [The Shell], page 33.

When a command exits and returns to the shell prompt without outputting text, the final shell prompt
character is omitted, and a cartouche border is not drawn around the example; this was purely an aesthetic
decision.

The names of files or directories appear in the text as ‘£ile’; commands appear as command, and
strings of text are typeset like ‘some text’.

Text you type is written 1ike this, justas in the examples, and when a specific key on the keyboard
is mentioned, its conventional name is displayed in a box. For example, RET) denotes the ‘Return’ key
on the keyboard.?

In examples where keys are meant to be pressed and held down together, the keys are separated by
hyphens; the hyphens are not meant to be literally pressed. For example, pressing the €TRD), (ALT), and
keys and holding them down at the same time is a combination that has meaning in some operating
systems (including Linux, where this keystroke means to shut down the system and reboot the computer);
it is represented like this:

- -

The (‘Control’) key is always used in combination with another key; these combinations are
denoted by C-x, where x is the second key. These combinations are read as ‘control-x’, where x is
the name of the second key. To type one of these combinations, press and hold €TRL), press the second
key, and then release both keys.

2 This key is labelled ‘Enter’ on some keyboards.

The Linux Cookbook: Tips and Techniques for Everyday Use

e For example, to type C-d (pronounced ‘control d’), press and hold CTRL), type the ©) key, and
then release both keys.

In some applications (notably, the Emacs editor; see Section 10.2 [Emacs], page 108), the META) key
is used with another key, in the same way as SHIFT); these combinations are denoted by M-x, where x
is the second key. Most keyboards today don’t have a (META) key, even though the term is still in use;
instead, press and release (ESC), and then type the second key.

e To type M-c, press and release (EsC), and then press and release the) key.

You can sometimes also use the key for the key. This often does not work in the X
Window System, but in the console you can press and hold and then type the second key just as you
would with a CTRL key sequence.

e S0 to type M-c with the key, press and hold (aLT), press the (©) key, and then release both keys.

Both and sequences are not case-sensitive; that is, pressing X in the last example is the
same as pressing x (although x is certainly easier to type). By convention, the C- or M- prefix is always
given as an uppercase letter, and the key which follows is always given as a lowercase letter.

Menu items in an application are written like Menu Item; the names of command functions are
written as Function.

For aesthetic purposes, a physical space appears in the text between commands and the finalRET) that
ends a command line, and should not be literally typed (although nothing bad will happen should you
actually type this space). Where explicitly pressing the space bar is called for, that key is represented in
examples by GpPC).

Versions, Latest Edition, and Errata

WWW: http://dsl.org/cookbook/

The Linux Cookbook is available in both hardcopy and as a machine-readable file. The latest
edition of this book in etext (“electronic text”) form is always available from its distribution site
(http://dsl.org/cookbook/) on the World Wide Web. This site includes the most up-to-date
complete text (in both HTML and GNU Info formats), and provides a method for purchasing the latest
edition of the hardcopy book at a discount.

Every effort has been made to include only the best free software recipes for accomplishing tasks in
the easiest and most efficient manner, and they are believed to be correct. Suggestions, comments, and
bug reports are always welcome; you can contact the author via email at stutz@dsl.org.

Acknowledgments

This is not a book that was borne easily. Conception, took but an idle moment—but once the idea
had been implanted, | found resistance and setbacks at every turn. It was only through the help of the
following individuals that this book with my name on its cover was finally brought forth, and has now
found its way to you.

Everyone involved with this book at No Starch Press (http://www.nostarch.com/) deserves
a hearty round of thanks. Bill Pollock has published this book precisely according to its author’s vision,
and had the discernment and foresight to allow that a copylefted edition (with corresponding source
data) be made available in conjunction with the hardcopy book. Project manager Karol Jurado worked
ceaselessly to keep the production flowing, while dealing with my input files, and giving opinion and
advice on all manners of obtuse esoterica whenever the sudden need to know came over me. Both
Elisabeth Beller and Andy Carroll contributed improvements to the text.

Steve Turner and the National Writers Union (http://www.nwu.org/) played a major role in
helping to ensure that this book could be completed, copylefted, and in the hands of Linux users like

yourself. Carol Criccow gave invaluable legal assistance, and various advice and assistance came from
the NWU’s JoAnn Kawell, Philip Mattera, Judy Helm, and Bonnie Britt.

Wendy Seltzer, Fellow, The Berkman Center for Internet & Society at Harvard Law School
(http://cyber.law.harvard.edu/)assisted with the conception of the Design Science License
(DSL), which is used in this book. She gave an initial review of the license draft and provided her exper-
tise and advice throughout the entire process.

Thanks to David Sims, Chris Coleman, and Terrie Schweitzer, who’ve all been great folks to work
with at the O’Reilly Network (http://oreillynet.com/), where my “Living Linux” column runs.

| am indebted to Buwei Yang Chao, whose How To Cook and Eat In Chinese (John Day Company,
1945) served as much of the inspiration behind the tone and structure of this book. | feel the same
regard for two other authors who have come before me, and whose work has had a direct influence in the
writing of this book—Dr. Lee Su Jan (The Fine Art of Chinese Cooking, Gramercy Publishing 1962)
and Andrew Walker (The UNIX Environment, Wiley 1984).

Thanks also go out to Kenneth W. Melvin, and to the members of the “Byline” forum on the WELL,;
both were sources of advice and feedback early in the project. The art-hackers of the 1inart mailing
list (http://linart.net/)entertained initial discussion of the idea of this book as it first occurred,
and the “elders” Ann and Walt gave various support for which I am grateful.

Finally, I must thank Jack Angelotta, Jon Konrath, Steven Snedker, and mrs (Marie Stutz), who all
listened to the unbelievable as it happened, and stood by—even in moments of terror.

The Linux Cookbook: Tips and Techniques for Everyday Use

PART ONE: Working with Linux

The Linux Cookbook: Tips and Techniques for Everyday Use

1 Introduction

Before we get into “cooking” and the recipes proper, this first part of the book deals with preliminaries,
explaining the general techniques and methods for working with Linux—including how to get the system
ready for use, and how to run commands on the system.

The rest of the book is all recipes, which are sorted in sections by the tasks they perform or the objects
they work on—such as text, files, images, and so forth.

1.1 Background and History

In order to understand what Linux is all about, it helps to know a bit about how it all began. So the
following is a historical overview, giving a concise background of the software that is the subject of this
book.

1.1.1 What’s Unix?

WWW: http://www.bell-labs.com/history/unix/
WWW: http://internet-history.org/archives/early.history.of .unix.html

Unix, the original ancestor of Linux, is an operating system. Or at least it was an operating system; the
original system known as Unix proper is not the “Unix” we know and use today; there are now many
“flavors” of Unix, of which Linux has become the most popular.

A product of the 1960s, Unix and its related software was invented by Dennis Ritchie, Ken Thompson,
Brian Kernighan, and other hackers at Bell Labs in 1969; its name was a play on “Multics,” another
operating system of the time.!

In the early days of Unix, any interested party who had the hardware to run it on could get a tape
of the software from Bell Labs, with printed manuals, for a very nominal charge. (This was before the
era of personal computing, and in practice, mostly only universities and research laboratories did this).
Local sites played with the software’s source code, extending and customizing the system to their needs
and liking.

Beginning in the late 1970s, computer scientists at the University of California, Berkeley, a licensee
of the Unix source code, had been making their own improvements and enhancements to the Unix source
during the course of their research, which included the development of TCP/IP networking. Their work
became known as the BSD (“Berkeley Systems Distribution”) flavor of Unix.

The source code of their work was made publicly available under licensing that permitted redistribu-
tion, with source or without, provided that Berkeley was credited for their portions of the code. There
are many modern variants of the original BSD still actively developed today, and some of them—such as
NetBSD and OpenBSD—can run on personal computers.

NOTE: The uppercase word ‘UNIX’ became a trademark of AT&T (since transferred to other organiza-
tions), to mean their particular operating system. But today, when people say “Unix,” they usually mean
“a Unix-like operating system,” a generalization that includes Linux.

If you’d like further information on this topic, you might be interested in consulting A Quarter Cen-
tury of UNIX by Peter H. Salus (Addison-Wesley 1994), which has become the standard text on the
subject.

L' The name “Unix” was first written as “Unics,” which stood for “Uniplex Information and Computing System.”

The Linux Cookbook: Tips and Techniques for Everyday Use

1.1.2 What’s Free Software?

WWW: http://www.gnu.org/philosophy/free-sw.html

Over the years, Unix’s popularity grew. After the divestiture of AT&T, the tapes of the source code that
Bell Labs provided became a proprietary, commercial product: AT&T UNIX. But it was expensive, and
didn’t come with the source code that made it tick. Even if you paid extra for a copy of the sources, you
couldn’t share with your programmer colleagues any improvements or discoveries you made.

By the early 1980s, proprietary software development, by only-for-profit corporations, was quickly
becoming the norm—even at universities. More software was being distributed without source code than
ever before.

In 1984, while at the Massachusetts Institute of Technology in Cambridge, Massachusetts, hacker
Richard Stallman saw his colleagues gradually accept and move to this proprietary development model.
He did not accept the kind of world such proprietism would offer: no sharing your findings with your
fellow man, no freedom for anyone to improve a published work.

So instead of giving in to the world of non-free computing, Stallman decided to start a project to build
and assemble a new Unix-like operating system from scratch, and make its source code free for anyone
to copy and modify. This was the GNU Project (“GNU’s Not Unix”).2

The GNU Project’s software would be licensed in such a way so that everyone was given the freedom
to copy, distribute, and modify their copy of the software; as a result, this kind of software became known
as free software.

Individuals and businesses may charge for free software, but anyone is free to share copies with their
neighbors, change it, or look at its source code to see how it works. There are no secrets in free software;
it’s software that gives all of its users the freedom they deserve.

Proprietary software strictly limits these freedoms—in accordance with copyright law, which was
formulated in an age when works were normally set and manipulated in physical form, and not as non-
physical data, which is what computers copy and modify.

Free software licensing was developed as a way to work around the failings of copyright law, by
permitting anyone to copy and modify a work, though under certain strict terms and conditions. The GNU
Project’s GNU General Public License (http://www.gnu.org/copyleft/gpl.txt), or GNU
GPL, is the most widely used of all free software licenses. Popularly called a “copyleft,” it permits anyone
to copy or modify any software released under its terms—provided all derivatives or modifications are
released under the same terms, and all changes are documented.

1.1.3 What’s Open Source?

WWW: http://www.opensource.org/
WWW: http://www.gnu.org/philosophy/free-software-for-freedom.html

The term open source was first introduced by some free software hackers in 1998 to be a marketing term
for “free software.” They felt that some people unfamiliar with the free software movement—namely,
large corporations, who’d suddenly taken an interest in the more than ten years’ worth of work that had
been put into it—might be scared by the word “free.” They were concerned that decision-makers in these
corporations might confuse free software with things like freeware, which is software provided free of
charge, and in executable form only. (Free software means nothing of the sort, of course; the “free” in
“free software” has always referred to freedom, not price.)

The Open Source Initiative (OSI) was founded to promote software that conforms with their public
“Open Source Definition,” which was derived from the “Debian Free Software Guidelines” (DFSG), orig-

2 No such “official GNU” operating system has yet been released in its entirety, but most people today consider Linux-based
free software systems to be the effective realization of their goals—hence the “GNU” in “Debian GNU/Linux.”

inally written by Bruce Perens as a set of software inclusion guidelines for Debian. All free software—
including software released under the terms of the GNU General Public License—conforms with this
definition.

But some free software advocates and organizations, including the GNU Project, do not endorse the
term “open source” at all, believing that it obscures the importance of “freedom” in this movement?

Whether you call it free software, open source software, or something else, there is one fundamental
difference between this kind of software and proprietary, non-free software—and that is that free software
always ensures that everyone is granted certain fundamental freedoms with respect to that software.

1.1.4 What’s Linux?

In the early 1990s, Finnish computer science student Linus Torvalds began hacking on Minix, a small,
Unix-like operating system for personal computers then used in college operating systems courses! He
decided to improve the main software component underlying Minix, called the kernel, by writing his
own. (The kernel is the central component of any Unix-like operating system.)

In late 1991, Torvalds published the first version of this kernel on the Internet, calling it “Linux” (a
play on both Minix and his own name).?

When Torvalds published Linux, he used the copyleft software license published by the GNU Project,
the GNU General Public License. Doing so made his software free to use, copy, and modify by anyone—
provided any copies or variations were kept equally free. Torvalds also invited contributions by other
programmers, and these contributions came; slowly at first but, as the Internet grew, thousands of hackers
and programmers from around the globe contributed to his free software project. The Linux software
was immensely extended and improved so that the Linux-based system of today is a complete, modern
operating system, which can be used by programmers and non-programmers alike; hence this book.

1.1.5 What’s Debian?

WWW: http://debian.org/

It takes more than individual software programs to make something that we can use on our computers—
someone has to put it all together. It takes time to assemble the pieces into a cohesive, usable collection,
and test it all, and then keep up to date with the new developments of each piece of software (a small
change in any one of which may introduce a new software dependency problem or conflict with the rest).
A Linux distribution is such an assemblage. You can do it yourself, of course, and “roll your own”
distribution—since it’s all free software, anyone can add to it or remove from it and call the resulting
concoction their own. Most people, however, choose to leave the distribution business to the experts.

For the purposes of this book, I will assume that you are using the Debian GNU/Linux distribution,
which, of all the major distributions, is the only one designed and assembled in the same manner that the
Linux kernel and most other free software is written—by individuals.

And when | say “Linux” anywhere in this book (including in the title), unless noted, I am not referring
to the bare kernel itself, but to the entire working free software system as a whole. This is often called
“GNU/Linux.”¢

There are many other distributions, and some of them are quite acceptable—many users swear by Red
Hat Linux, for example, which is certainly popular, and reportedly easy to install. The SuSE distribution

3 You can extend this “free software movement” to be part of a greater “free information” or “free speech” movement, to

include all other kinds of free works—including works of literature and music.

Presumably, many of these courses use Linux now.

5 This was not the original name, however. Torvalds had originally called it freax, for ““free’ + ‘freak’ + the obligatory
‘-x""; while the 1990s were fast becoming the “freaky” alterna decade (at least in fashion), more people seemed to favor
“Linux,” and the name stuck.

6 The GNU Project’s own kernel is called Hurd, and is still in development; Debian’s experimental distribution of a Hurd-
based free softare system, not yet publicly released, is called Debian GNU/Hurd.

4

The Linux Cookbook: Tips and Techniques for Everyday Use

is very well-received in Europe. So when people speak of Debian, Red Hat, SUSE, and the like in terms
of Linux, they’re talking about the specific distribution of Linux and related software, as assembled
and repackaged by these companies or organizations (see Appendix B [Linux Resources on the Web],
page 321). The core of the distributions are the same—they’re all the Linux kernel, the GNU Project
software, and various other free software—»but each distribution has its own packaging schemes, defaults,
and configuration methods. It is by no means wrong to install and use any of these other distributions,
and every recipe in this book should work with all of them (with the exception of variations that are
specific to Debian systems, and are labelled as such in the text).

In Debian’s early days, it was referred to as the “hacker’s distro,” because it could be very difficult
for a newbie to install and manage. However, that has changed—any Linux newbie can install and use
today’s Debian painlessly.

NOTE: I recommend Debian because it is non-corporate, openly developed, robust (the standard Debian
CD-ROM set comes with more than 2,500 different software packages!), and it is entirely committed to
free software by design (yes, there are distributions which are not).

1.1.6 Unix and the Tools Philosophy

WWW: http://cm.bell-labs.com/cm/cs/upe/
WWW: http://www.cs.bell-labs.com/cm/cs/pearls/

To understand the way tasks are performed on Linux, some discussion on the philosophy behind the
software that Linux is built upon is in order. A dip in these inviting waters will help clarify the réle of
this book as “cookbook.”

The fact that the Unix operating system has survived for more than thirty years should tell us some-
thing about the temerity of its design considerations. One of these considerations—perhaps its most
endearing—is the “tools” philosophy.

Most operating systems are designed with a concept of files, come with a set of utility programs
for handling these files, and then leave it to the large applications to do the interesting work: a word
processor, a spreadsheet, a presentation designer, a Web browser. (When a few of these applications
recognize each other’s file formats, or share a common interface, the group of applications is called a
“suite.”)

Each of these monolithic applications presumably has an “open file” command to read a file from
disk and open it in the application; most of them, too, come with commands for searching and replacing
text, checking spelling, printing the current document, and so on. The program source code for handling
all of these tasks must be accounted for separately, inside each application—taking up extra space both
in memory and on disk. This is the anti-Unix approach.

And in the case of proprietary software, all of the actual program source code is kept from the public—
so other programmers can’t use, build on, or learn from any of it. This kind of closed-source software is
presented to the world as a kind of magic trick: if you buy a copy of the program, you may use it, but
you can never learn how the program actually works.

The result of this is that the code to handle essentially the same function inside all of these different
applications must be developed by programmers from scratch, separately and independently of the others
each time—so the progress of society as a whole is set back by the countless man-hours of time and
energy programmers must waste by inefficiently reinventing all the same software functions to perform
the same tasks, over and over again.

Unix-like operating systems don’t put so much weight on application programs. Instead, they come
with many small programs called tools. Each tool is generally capable of performing a very simple,
specific task, and performing it well—one tool does nothing but output the file(s) or data passed to it, one
tool spools its input to the print queue, one tool sorts the lines of its input, and so on.

An important early development in Unix was the invention of “pipes,” a way to pass the output of one
tool to the input of another. By knowing what the individual tools do and how they are combined, a user
could now build powerful “strings” of commands.

Just as the tensile strength of steel is greater than the added strength of its components—nickel, cad-
mium, and iron—multiple tools could then be combined to perform a task unpredicted by the function of
the individual tools. This is the concept of synergy, and it forms the basis of the Unix tools philosophy?

Here’s an example, using two tools. The first tool, called who, outputs a list of users currently logged
on to the system (see Section 2.6.2 [Listing Who Is on the System], page 23). The second tool is called
we, which stands for “word count”; it outputs a count of the number of words (or lines or characters) of
the input you give it (see Section 12.1 [Counting Text], page 133).

By combining these two tools, giving the we command the output of who, you can build a new
command to list the number of users currently on the system:

$ who | we -1 RED
4

$

The output of who is piped—via a “pipeline,” specified by the vertical bar (“|’) character—to the
input of we, which through use of the -1’ option outputs the number of lines of its input.

In this example, the number 4 is shown, indicating that four users are currently logged on the system.
(Incidentally, piping the output of who to wc in this fashion is a classic tools example, and was called
“the most quoted pipe in the world” by Andrew Walker in The UNIX Environment, a book that was
published in 1984.)

Another famous pipeline from the days before spell-check tools goes something like this:

$ tr -cs A-Za-z ’\012’ | tr A-Z a-z | sort -u |
comm -23 - /usr/dict/words

This command (typed all on one line) uses the tr, sort, and comm tools to make a spelling
checker—after you type this command, the lines of text you type (until you interrupt it) are converted
to a single-column list of lowercase words with two calls of tr, sorted in alphabetical order while fer-
reting out all duplicates, the resultant list which is then compared with ‘/usr/dict/words’, which
is the system “dictionary,” a list of properly-spelled words kept in alphabetical order (see Section 11.1
[Spelling], page 121).

Collective sets of tools designed around a certain kind of field or concept were called “workbenches”
on older Unix systems; for example, the tools for checking the spelling, writing style and grammar of
their text input were part of the “Writer’s Workbench” package (see Section 11.3 [Checking Grammar],
page 127).

Today the GNU Project publishes collections of tools under certain general themes, such as the “GNU
text utilities” and “GNU file utilities,” but the idea of “workbenches” is generally not part of the idiom
of today’s Unix-based systems. Needless to say, we still use all kinds of tools for all kinds of purposes;
the great bulk of this book details various combinations of tools to obtain the desired results for various
common tasks.

You’ll find that there’s usually one tool or command sequence that works perfectly for a given task,
but sometimes a satisfactory or even identical result can be had by different combinations of different
tools—especially at the hands of a Unix expert. (Traditionally, such an expert was called a wizard.)

Some tasks require more than one tool or command sequence. And yes, there are tasks that require
more than what these simple craft or hand tools can provide. Some tasks need more industrial production
techniques, which are currently provided for by the application programs. So we still haven’t avoided
applications entirely; at the turn of the millennium, Linux-based systems still have them, from editors to
browsers. But our applications use open file formats, and we can use all of our tools on these data files.

7 Because of this approach, and because of its free and open nature, | have come to call Linux a “synergetic” operating system,
in honor of the late R. Buckminster Fuller, who invented a new mathematical system based on these same principles.

The Linux Cookbook: Tips and Techniques for Everyday Use

The invention of new tools has been on the rise along with the increased popularity of Linux-based
systems. At the time of this writing, there were a total of 1,190 tools in the two primary tool directories
(‘/bin’ and */usr/bin’) on my Linux system. These tools, combined with necessary applications,
make free, open source software—for perhaps the first time in its history—a complete, robust system for
general use.

1.2 What to Try First

The first four chapters of this book contain all of the introductory matter you need to begin working with
Linux. These are the basics.

Beginning Linux users should start with the concepts described in these first chapters. Once you’ve
learned how to start power to the system and log in, you should look over the chapter on the shell, so that
you are familiar with typing at the command prompt, and then read the chapter on the graphical windows
interface called the X Window System, so that you can start X and run programs from there if you like.

If you are a Linux beginner and are anxious to get up to speed, you might want to skip ahead and read
the chapter on files and directories next, to get a sense of what the system looks like and how to maneuver
through it. Then, go on to learning how to view text, and how to edit it in an editor (respectively described
in the chapters on viewing text and text editing). After this, explore the rest of the book as your needs
and interests dictate.

So, to recapitulate, here is what I consider to be the essential material to absorb for familiarizing
yourself with the basic usage of a Linux system:

1. Chapter 1 [Introduction], page 9 (this current chapter).

Chapter 2 [What Every Linux User Knows], page 17.

Chapter 3 [The Shell], page 33 (ignoring the section on customization for now).

Chapter 4 [The X Window System], page 47 (ignoring the section on configuration for now).
Chapter 5 [Files and Directories], page 59.

Chapter 9 [Viewing Text], page 99 (mostly the first section, Section 9.1 [Perusing Text], page 99).
Chapter 10 [Text Editing], page 107 (enough to select a text editor and begin using it).

No o~ wbd

If you have a question about a tool or application in particular, look it up in the program index (see
[Program Index], page 327). The index proper, listing recipe names and the general concepts involved,
is called the concept index (see [Concept Index], page 333).

1.3 If You Need More Help

If you need more help than this book can give, remember that you do have other options. Try these steps
for getting help:

e Chances are good that you are not alone in your question, and that someone else has asked it
before; therefore, the compendiums of “Frequently Asked Questions” just might have the an-
swer you need: the Debian FAQ (http://www.debian.org/doc/FAQ/)and the Linux FAQ
(http://mainmatter.com/).

e The Linux Documentation Project (http://linuxdoc.org/) is the center of the most com-
plete and up-to-date Linux-related documentation available; see if there is a document related to the
topic you need help with.

e The Usenet newsgroups news:comp.os.linux.help and news:linux.debian.user
are often an excellent place to discuss issues with other Linux users. (Usenet is described in Sec-
tion 32.3 [Reading Usenet], page 303).

e Check http://linux.com/1lug/ to find the Linux User Group (“LUG”) nearest you—people
involved with LUGs can be great sources of hands-on help, and it can be fun and rewarding to get
involved with other Linux and free software enthusiasts in your local area.

¢ Finally, you can hire a consultant. This may be a good option if you need work done right away and
are willing to pay for it.
The Linux Consultants HOWTO is a list of consultants around the world who provide various
support services for Linux and open source software in general (see Section 2.8.6 [Reading System
Documentation and Help Files], page 31). Consultants have various interests and areas of expertise,
and they are listed in that document with contact information.

The Linux Cookbook: Tips and Techniques for Everyday Use

2 What Every Linux User Knows

This chapter concerns those concepts and commands that every Linux user knows—how to start and stop
the system, log in and out from it, change your password, see what is happening on the system, and use
the system help facilities. Mastery of these basic concepts is essential for using Linux with any degree
of success.

Some of these recipes make reference to files and directories; these concepts are explained in Chap-
ter 5 [Files and Directories], page 59.

2.1 Controlling Power to the System

These recipes show how to start and stop power to the system—how to turn it on and turn it off. 1t’s more
than just pressing the button on the case; in particular, there is a right way to turn off the system, and
doing it wrong can result in losing some of your work. Fortunately, there isn’t any black magic involved,
as we soon shall see—properly shutting down the system is easy!

2.1.1 Powering Up the System

The first thing you do to begin using the system is start power to it. To power up the system, just turn it
on. This is called booting the system.

As the Linux kernel boots there will be many messages on the screen. After a while, the system will
display a login: prompt. You can now log in. See Section 2.2.1 [Logging In to the System], page 18.

Some systems are configured to start xdm at boot time (see Section 4.1.1 [Starting X], page 48).
If your system is configured like this, instead of the 1ogin: prompt described above, you’ll see a
graphical screen with a box in the middle containing both 1ogin: and Password: prompts. Type
(CTRL) - (ALT) - D) to switch to the first virtual console, where you can log in to the system in the usual
way (see Section 2.3 [Console Basics], page 20).

2.1.2 Shutting Down the System

You can’t just flip the power switch when you are done using the computer, because Linux is constantly
writing data to disk. (It also keeps data in memory, even when it may have appeared to have written that
data to disk.) Simply turning off the power could result in the loss or corruption of some of your work.

To turn off a single user system, first log out of all consoles (discussed in Section 2.3 [Console Basics],
page 20). Then, type -(ALT) - (OEL) (press and hold these three keys at once).

The system will print some messages as it shuts down, and when you see the line, ‘Rebooting. . .’,
it’s safe to turn the power to machine off.

NOTE: You don’t want to wait too long after you see this message; if left untouched, the system will
reboot and you’ll be back to the beginning!

2.2 Accounts and Privileges

Linux is a multi-user system, meaning that many users can use one Linux system simultaneously,
from different terminals. So to avoid confusion (and to maintain a semblance of privacy), each user’s
workspace must be kept separate from the others.

Even if a particular Linux system is a stand-alone personal computer with no other terminals physi-
cally connected to it, it can be shared by different people at different times, making the separation of user
workspace still a valid issue.

L 1f you keyboard has two and keys, use the left set of these keys.

The Linux Cookbook: Tips and Techniques for Everyday Use

This separation is accomplished by giving each individual user an account on the system. You need
an account in order to use the system; with an account you are issued an individual workspace to use,
and a unique username that identifies you to the system and to other users. It is the name that the system
(and those who use it) will then forever know you as; it’s a single word, in all lowercase letters.

During the installation process, the system administrator should have created an account for you.
(The system administrator has a special account whose username is root; this account has total access
to the entire system, so it is often called the superuser.)

Until the mid-1990s it was widely common for usernames to be the first letter of your first name
followed by your entire surname, up to 12 characters total. So for example, user Samuel Clemens would
have a username of sclemens by this convention; this, however, is not a hard and fast rule, espe-
cially on home systems where you may be the only user. Sometimes, a middle initial may be used
(*dkjohnson”), or sometimes even nicknames or initials are used (“zenboy,” “xibo”). But what-
ever username you pick for yourself, make sure it’s one you can live with, and one you can stand being
called by both the system and other users (your username also becomes part of your email address, as
we’ll see in Chapter 30 [Email], page 275).

In addition to your username, you should also have a password that you can keep secret so that only
you can use your account. Good passwords are strings of text that nobody else is likely to guess (i.e., not
obvious words like ‘secret’, or identifying names like ‘Ruski’, if that happens to be your pet cat).
A good password is one that is highly memorable to you so that you don’t have to write it down, but
is complex enough in construction so that anyone else couldn’t ever guess it. For example, ‘t39sAH’
might be a fine password for someone whose first date was to see the movie The 39 Steps directed by
Alfred Hitchcock.

NOTE: While usernames are always in lowercase, passwords are case sensitive; the passwords
‘Secret’, ‘secret’, and ‘SECRET’ are all considered different.

2.2.1 Logging In to the System

To begin a session on a Linux system, you need to log in. Do this by entering your username at the
login: prompt on your terminal, and then entering your password when asked.

The 1login: prompt appears on the terminal after the system boots. If your system is configured
to start the X Window System at boot time, you’ll be presented with an X login screen instead of the
standard login prompt. If that happens, press (CTRL)-(ALT)-FL) to switch to the text login screen; this is
explained further in Section 2.3 [Console Basics], page 20.

A typical login: prompt looks like this:

Debian GNU/Linux 2.2 bardo ttyl

bardo login:

Every Linux system has its own name, called the system’s hostname; a Linux system is sometimes
called a host, and it identifies itself with its hostname at the 1ogin: prompt. It’s important to name your
system—Iike a username for a user account, a hostname gives name to the system you are using (and it
becomes especially important when putting the system on a network). The system administrator usually
names the system when it is being initially configured (the hostname can always be changed later; its
name is kept in the file */etc/hostname’). Like usernames, hostnames are one word in all lowercase
letters. People usually give their system a name they like, such as darkstar or shiva.

In this example, ‘bardo’ is the hostname of this particular Linux system.

The name of the terminal you are connecting from is displayed just after the hostname. In this
example, the terminal is *tty1’, which means that this is the first terminal on this particular system.

(Incidentally, *tty’ is short for “teletype,” which historically was the kind of terminal hardware that
most Unix-based systems used by default.)

To log in to the system, type your username (followed by (RET)) at the 1ogin: prompt, and then
type your password when asked (also followed by ®ET)); for security purposes, your password is not
displayed on the screen when you type it.

e To log in to the system with a username of ‘kurt’ and a password of ‘empathy’, type:

e N
Debian GNU/Linux 2.2 bardo ttyl

bardo login: kurt

Password: empathy

Linux bardo 2.0.30 #1 Tue Jul 29 10:01:26 EDT 1997 i586 unknown
Copyright (C) 1993-1998 Software in the Public Interest, and other
Most of the programs included with the Debian Linux system are
freely redistributable; the exact distribution terms for each
program are described in the individual files in
/usr/doc/*/copyright

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Tue Apr 5 12:03:47 on ttyl.

No mail.

TS

N\ J

Once you’ve entered your username and password, you are “logged in” to the system. You can then
use the system and run commands.

As soon as you log in, the system displays the contents of */etc/motd’, the “Message of the Day”
file. The system then displays the time and date of your last login, and reports whether or not you have
electronic mail waiting for you (see Chapter 30 [Email], page 275). Finally, the system puts you in a
shell—the environment in which you interact with the system and give it commands. Use of the default
shell on most Linux systems, bash, is discussed in Chapter 3 [The Shell], page 33.

The dollar sign (*$’) displayed to the left of the cursor is called the shell prompt; it means that the
system is ready and waiting for input. (You can change this prompt to any text of your liking; to learn
how, see Section 3.6.1 [Changing the Shell Prompt], page 42.) By default, the shell prompt includes the
name of the current directory, which it places to the left of the “$” character. The tilde character (*~”), is
a shell symbol that denotes the user’s home directory—when you log in, you are in your home directory
(these terms are defined in Chapter 5 [Files and Directories], page 59).

2.2.2 Logging Out of the System

To end your session on the system, type 1ogout at the shell prompt. This command logs you out of the
system, and a new Login: prompt appears on your terminal.

e To log out of the system, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

(" N

S logout

Debian GNU/Linux 2.2 bardo ttyl

bardo login:
\ J

What works equally well to typing the Logout command is to just type C-d (hold down €TRD) and
press (). You don’t even have to type afterwards. Many users prefer this quick shortcut.

Logging out of the system frees the terminal you were using—and ensures that nobody can access
your account from this terminal.

If you are the only person using your system and have just ended a session by logging out, you might
want to power down the system. See Section 2.1.2 [Shutting Down the System], page 17, earlier in this
chapter.

2.3 Console Basics

A Linux terminal is a place to put input and get output from the system, and usually has at least a
keyboard and monitor.

When you access a Linux system by the keyboard and monitor that are directly connected to it, you
are said to be using the console terminal. (Linux systems can be accessed in other ways, such as through a
network or via another terminal connected to a serial line; see Chapter 29 [Communications], page 269).

Linux systems feature virtual consoles, which act as separate console displays that can run separate
login sessions, but are accessed from the same physical console terminal. Linux systems are configured
to have seven virtual consoles by default. When you are at the console terminal, you can switch between
virtual consoles at any time, and you can log in and use the system from several virtual consoles at once.

The following recipes explain the basic things you will need to do with virtual consoles.

2.3.1 Switching between Consoles

To switch to a different virtual console, press (ALT)-En), where n is the number of the console to switch
to.

e To switch to the fourth virtual console, press (ALT)-(F4).

This command switches to the fourth virtual console, denoted by ‘tty4’:

Debian GNU/Linux 2.2 bardo tty4

bardo login:

You can also cycle through the different virtual consoles with the left and right arrow keys. To switch
to the next-lowest virtual console (or wrap around to the highest virtual console, if you’re at the first
virtual console), press (ALT)- (). To switch to the next-highest virtual console, press ALT)-=).

e To switch from the fourth to the third virtual console, press:
-

This keystroke switches to the third virtual console, ‘tty3’:

Debian GNU/Linux 2.2 bardo tty3

bardo login:

The seventh virtual console is reserved for the X Window System. If X is installed, this virtual
terminal will never show a Login: prompt, but when you are using X, this is where your X session
appears. If your system is configured to start X immediately, this virtual console will show an X login
screen.

You can switch to a virtual console from the X Window System using in conjunction with the
usual and function keys. This is the only console manipulation keystroke that works in X.

e To switch from X to the first virtual console, press:
-(ALD) - FD)

2.3.2 Scrolling the Console Text

When you are logged in at a virtual console, new lines of text appear at the bottom of the console screen,
while older lines of text scroll off the top of the screen.

e To view this older text, press SHIFT)-(PgUp) to scroll back through it.

e Once you have scrolled back, press GHIFT)-(Pgbn) to scroll forward through the text toward the most
recent text displayed on the console.

The amount of text you can scroll back through depends on system memory.

NOTE: This technique is for scrolling through text displayed in your shell session (see Chapter 3 [The
Shell], page 33). It does not work for scrolling through text in a tool or application in the console—in
other words, you can’t use this technique to scroll through text that is displayed by a tool for perusing
text files. To scroll through text in an application, use its own facilities for scrolling, if it has any.

2.3.3 Keys for Console Manipulation

Some keystrokes for manipulating the console display, including those for switching between virtual con-
soles, are described below. It’s a good idea to experiment with these commands until you are comfortable
with them, because knowing how to use virtual consoles is basic to using Linux.

KEYSTROKE DESCRIPTION

(ALD-EM Switch to virtual console n, where n is a number from 1 to 7 (the
default maximum).

(CTRL)-(ALT)-(FN) When in X, switch to virtual console n, where n is a number from 1 to
6.

@A-&) Switch to the next-lowest virtual console. For example, typing this

while in virtual console 4 switches to virtual console 3. Pressing this
keystroke in the lowest console wraps around to the highest console.

ALD-=) Switch to the next-highest virtual console. For example, typing this
while in virtual console 4 switches to virtual console 5. Pressing this
keystroke in the highest console wraps around to the lowest console.

(SHIFT)-(PgUp) Scroll back one screen to view previously displayed text.

(SHIFT)-(PgDn) When viewing previously displayed text, scroll forward one screen.

The Linux Cookbook: Tips and Techniques for Everyday Use

2.4 Running a Command

A tool is a software program that performs a certain function—usually a specialized, simple task. For
example, the hostname tool outputs the system’s hostname, and the who tool outputs a listing of
the users who are currently logged in. An application is the name given to larger, usually interactive,
programs for completing broader kinds of tasks—such as programs for image editing or word processing.

A tool or application may take any number of options (sometimes called “flags™), which specify a
change in its default behavior. It may also take arguments, which specify a file or some other text to
operate on. Arguments are usually specified after any options.

A command is the name of a tool or application along with the options and arguments you want to
use, if any. Since typing the name of a tool itself is often sufficient to accomplish a desired task, tools
alone are often called commands.

Commands are case sensitive; the names of tools and applications are usually in all lowercase letters.

To run (or “execute”) a tool or application without giving any options or arguments, type its name at
a shell prompt followed by RET).

e To run the hostname tool, type:

S hostname
bardo

$

The hostname of the system in the example is ‘bardo’.

Options always begin with a hyphen character, ‘-, which is usually followed by one alphanumeric
character. To include an option in a command, follow the name of the tool or application with the option.
Always separate the tool name, each option, and each argument with a space character.

Long-style options (sometimes called “GNU-style” options) begin with two hyphen characters (*- -)
and are usually one English word.

For example, many tools have an option, ‘- -version’, to output the version number of the tool.
(Many tools also have a ‘- -help’ option, which outputs a list of options the tool takes; see Section 2.8.3
[Listing the Usage of a Tool], page 27.)

e To output the version of the hostname tool, type:

S hostname --version
hostname 2.10

$

This command outputs the text ‘hostname 2.10’, indicating that this is version 2.10 of the
hostname tool.

Sometimes, an option itself may may take an argument. For example, hostname has an option for
specifying a file name to use to read the hostname from, ‘- F’; it takes as an argument the name of the
file that hostname should read from.

e To run hostname and specify that the file ‘host . info’ is the file to read from, type:
S hostname -F host.info

2.5 Changing Your Password

To change your password, use the passwd tool. It prompts you for your current password and a new
password to replace it with. For security purposes, neither the old nor the new password is echoed to
the screen as you type it. To make sure that you type the new password correctly, passwd prompts you
for your new password twice. You must type it exactly the same way both times, or passwd will not
change your password.

e To change your password, type:

(" N

S passwd

Changing password for kurt

0ld password: your current password

Enter the new password (minimum of 5, maximum of 8 characters)
Please use a combination of upper and lower case letters and numbers.[]
New password: Yyour new password
Re-enter new password: Yyour new password
Password changed.

$

. J

NOTE: Passwords can contain uppercase and lowercase letters, the digits 0 through 9, and punctuation
marks; they should be between five and eight characters long. See Section 2.2 [Accounts and Privileges],
page 17, for suggestions on choosing a good password.

2.6 Listing User Activity

The recipes in this section describe some of the simple commands for finding out who you are currently
sharing the system with and what they are doing.

2.6.1 Listing Your Username

Use whoami to output the username of the user that is logged in at your terminal. This is not as inutile a
command as one might first think—if you’re at a shared terminal, it’s useful to determine whether or not
it is your account that you’re messing in, and for those with multiple accounts on a system, it’s useful to
see which of them you’re currently logged in with.

e To output your username, type:

S whoami
kurt

$

In this example, the username of the user logged in at this terminal is ‘kurt’.

2.6.2 Listing Who Is on the System

Use who to output a list of all the users currently logged in to the system. It outputs a minimum of three
columns, listing the username, terminal location, and time of login for all users on the system. A fourth
column is displayed if a user is using the X Window System; it lists the window location of the user’s
session (see Chapter 4 [The X Window System], page 47).

e To see who is currently logged in, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

e N
$ who

murky ttyl Oct 20 20:09

dave tty2 Oct 21 14:37

kurt tty3 Oct 21 15:04

kurt ttypl Oct 21 15:04 (:0.0)

$

\ J

The output in this example shows that the user murky is logged in on tty1 (the first virtual console
on the system), and has been on since 20:09 on 20 October. The user dave is logged in on tty2
(the second virtual console), and has been on since 14:37 on 21 October. The user kurt is logged in
twice—on tty3 (the third virtual console), and ttyp1, which is an X session with a window location
of “(:0.0)".

NOTE: This command is for listing the users on the local system; to list the users connected to a different
system on the network, or to see more detailed information that a user may have made public about
himself, see Section 32.4.2 [Checking Whether a User Is Online], page 306.

2.6.3 Listing Who Is on and What They’re Doing

The w tool is similar to who, but it displays more detail. It outputs a header line that contains information
about the current system status, including the current time, the amount of time the system has been up
and running, and the number of users on the system. It then outputs a list of users currently logged in
to the system, giving eight columns of information for each. These columns include username, terminal
location, X session (if any), the time of login, the amount of time the user has been idle, and what
command the user is running. (It also gives two columns showing the amount of time the system’s CPU
has spent on all of the user’s current jobs (“JCPU”) and foreground process (“PCPU”); processes are
discussed in Section 2.7 [Listing System Activity], page 25, and jobs in Section 3.3 [Managing Jobs],
page 37.)
e To see who is currently logged in and what they are doing, type:

e A
S w

5:27pm up 17:53, 4 users, load average: 0.12, 0.06, 0.01
USER TTY FROM LOGIN IDLE JCPU PCPU WHAT
murky ttyl Oct 20 20:09 17:22m 0.32s 0.32s -bash
dave tty2 14:37 13.00s 2:35 0.07s 1less foo
kurt tty3 15:04 1:00m 0.41ls 0.09s startx
kurt ttypl :0.0 15:04 0:00s 21.65s 20.96s emacs
$
N J

In this example, the command’s output shows that the current system time is 5:27 p.m., the system
has been up for 17 hours and 53 minutes, and there are four users currently logged in: murky is logged
inat tty1, has been idle for 17 hours and 22 minutes, and is at a bash shell prompt; dave is logged in
at tty2, has been idle for 13 seconds, and is using 1ess to peruse a file called ‘foo’ (see Section 9.1
[Perusing Text], page 99); and kurt is logged in at two terminals—tty3 and ttyp1, which is an X
session. He ran the startx command on tty3 to start his X session, and within his X session, he is
currently using Emacs.

2.6.4 Listing the Last Times a User Logged In

Use 1ast to find out who has recently used the system, which terminals they used, and when they logged
in and out.

e To output a list of recent system use, type:
S last

To find out when a particular user last logged in to the system, give his username as an argument.
e To find out when user kurt last logged in, type:

S last kurt

NOTE: The last tool gets its data from the system file */var/log/wtmp’; the last line of output
tells how far this file goes back. Sometimes, the output will go back for several weeks or more.

2.7 Listing System Activity

When you run a command, you are starting a process on the system, which is a program that is currently
executing. Every process is given a unigue number, called its process ID, or “PID.”

Use ps to list processes on the system. Some of the information it can display about a process
includes process ID, name of command being run, username running the command, and how long the
process has been running. By default, ps outputs 5 columns: process 1D, the name of the terminal from
which the process was started, the current status of the process (including ‘S’ for sleeping, meaning that
it is on hold at the moment, ‘R’ meaning that it is running, and ‘z’ meaning that it is a zombie process, or
a process whose parent processes have died), the total amount of time the CPU has spent on the process
since the process started, and finally the name of the command being run.

The following recipes describe popular usage of ps.

2.7.1 Listing Your Current Processes

Type ps with no arguments to list the processes you have running in your current shell session.
e To list the processes in your current shell session, type:

4 7
$ ps RED
PID TTY STAT TIME COMMAND
193 1 S 0:01 -bash
204 18 0:00 ps
$
N J

In this example, ps shows that two processes are running: the bash and ps commands.

2.7.2 Listing All of a User’s Processes

To list all the processes of a specific user, use ps and give the username to list as an argument to the *-u’
option. While you can’t snoop on the actual activities of other users, you can list the commands they are
running at a given moment.

e To list all the processes that user hst has running on the system, type:
S ps -u hst

NOTE: This command is useful for listing all of your own processes, across all terminals and shell
sessions; give your own username as an argument.

2.7.3 Listing All Processes on the System

To list all processes by all users on the system, use the ‘aux’ options.
e To list all of the processes and give their usernames, type:

$ ps aux

The Linux Cookbook: Tips and Techniques for Everyday Use

NOTE: There could be a lot of output—even single-user Linux systems typically have fifty or more
processes running at one time—so you may want to pipe the output of this command through less for
perusal (see Section 9.1 [Perusing Text], page 99).

Additionally, use top to show a display of all processes on the system, sorted by their demand on
the system resources. The display is continually updated with current process information; press Q to
stop the display and exit the program. This tool also displays the information about system runtime and
memory that can be output with the upt ime and £ree commands.

e To display a continually updated display of the current system processes, type:
$ top

2.7.4 Listing Processes by Name or Number

To list processes whose output contains a name or other text to match, list all processes and pipe the
output to grep. This is useful for when you want to see which users are running a particular program or
command.

e To list all the processes whose commands contain reference to an ‘sbin’ directory in them, type:

$ ps aux | grep sbin
e To list any processes whose process IDs contain a 13 in them, type:
$ ps aux | grep 13
To list the process (if any) which corresponds to a process ID, give that PID as an argument to the
‘-p’ option.
e To list the process whose PID is 344, type:
$ ps -p 344

2.8 Help Facilities

Linux systems come with a lot of help facilities, including complete manuals in etext form. In fact, the
foremost trouble with Linux documentation isn’t that there is not enough of it, but that you have to sift
through the mounds of it, trying to find the precise information you’re looking for!

| describe the help facilities in the following sections; their relative usefulness for the particular kind
of information you’re looking for is noted.

If you find that you need more help, don’t panic—other options are available. They’re described in
Section 1.3 [If You Need More Help], page 14.

2.8.1 Finding the Right Tool for the Job

When you know what a particular tool or application does, but you can’t remember it’s name, use
apropos. This tool takes a keyword as an argument, and it outputs a list of installed software whose
one-line descriptions contain that keyword. This is also useful for finding software on your system related
to, say, “audio” or “sound” or *“sort” or some other such general concept.

e To output a list of programs that pertain to consoles, type:

S apropos consoles

console (4) - console terminal and virtual consoles

gpm (1) - a cut and paste utility and mouse serve
virtual consoles

$

(" N

r forll

- J

NOTE: The apropos tool only finds exact matches, so a search for the keyword ‘console’ might not
list the programs that a search for the keyword ‘consoles’ would yield, and vice versa.

Another way to find tools by keyword is to search the system manual pages (see Section 2.8.4 [Read-
ing a Page from the System Manual], page 28). To do this, use man and give the text to search for as an
argument to the “-k’ option. This searches the short descriptions and manual page names for the given
text, and outputs a list of those tools that match in the same format as the apropos tool.

e To output a list of all tools whose pages in the system manual contain a reference to consoles, type:
S man -k consoles

On Debian systems, yet another way to find installed software by keyword is to use dpkg, the Debian
package tool. Use the ‘-1 option to list all of the installed packages, which are each output on a line of
their own with their package name and a brief description.

You can output a list of packages that match a keyword by piping the output to grep. Use the ‘-1’
option with grep to match keywords regardless of case (grep is discussed in Chapter 14 [Searching
Text], page 147).

Additionally, you can directly peruse the file * /var/1ib/dpkg/available’; it lists all available
packages and gives a description of them.

e To list all of the packages on the system, type:

$ dpkg -1
e To list all of the packages whose name or description contains the text “edit,” regardless of case,
type:
$ dpkg -1 | grep -1 edit
e To peruse descriptions of the packages that are available, type:
$ less /var/lib/dpkg/available

2.8.2 Listing a Description of a Program

Use whatis to list a one-line description of a program. Give the name of the tool or application to list
as an argument.

e To get a description of the who tool, type:
$ whatis who

NOTE: The what is tool gets its descriptions from the manual page of a given program; manual pages
are described later in this section, in Section 2.8.4 [Reading a Page from the System Manual], page 28.

2.8.3 Listing the Usage of a Tool

Many tools have a long-style option, ‘- -help’, that outputs usage information about the tool, including
the options and arguments the tool takes.

e To list the possible options for whoami, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

(" N

S whoami --help

Usage: whoami [OPTION]...

Print the user name associated with the current effective user
Same as id -un.

--help display this help and exit
--version output version information and exit

Report bugs to sh-utils-bugs@gnu.ai.mit.edu

$

. J

This command outputs some usage information about the whoami tool, including a short description
and a list of possible options.

NOTE: Not all tools take the ‘- -help’ option; some tools take a “-h’ or ‘-2’ option instead, which
performs the same function.

2.8.4 Reading a Page from the System Manual

In the olden days, the hardcopy reference manual that came with most Unix systems also existed elec-
tronically on the system itself; each software program that came with the system had its own manual page
(often called a “man page™) that described it. This is still true on Linux-based systems today, except they
don’t always come with a hardcopy manual.

Use the man tool to view a page in the system manual. As an argument to man, give the name of
the program whose manual page you want to view (so to view the manual page for man, you would type

man man).

e To view the manual page for w, type:

$ man w (RET)

This command displays the manual page for w:

id.n

Wil Linux Programmer s Manual W1

NAHE
W = Show who iz logged on and what they are doing,

SYMOPSIS
W — [husf¥] [user]

DESCRIPTION
w dizplayz information about the users currently on the
maching, and their processzes, The header shows. in this
order, the current time, how long the system has been
running, haw many users are currently logged on, and the
system load averages for the past 1, 5, and 15 minutes,

The following entries are displayed for each usert login
name, the tty name, the remote host, login time, idle
time, JCPU, PCPU, and the command line of their current
process,

The JCPU time is the time used by all processes attached
Manual page will line 1

- J

Use the up and down arrow keys to move through the text. Press (@ to stop viewing the manual
page and exit man. Since man uses less to display the text, you can use any of the 1ess keyboard
commands to peruse the manual page (see Section 9.1 [Perusing Text], page 99).

Despite its name, a manual page does not always contain the complete documentation to a program,
but it’s more like a quick reference. It usually gives a short description of the program, and lists the
options and arguments it takes; some manual pages also include an example or a list of related commands.
(Sometimes, commands have very complete, extensive manual pages, but more often, their complete
documentation is found either in other help files that come with it or in its Info documentation; these are
subjects of the following two recipes.)

To prepare a man page for printing, see Section 25.3.4 [Preparing a Man Page for Printing], page 243.

2.8.5 Using the GNU Info System

The GNU Info System is an online hypertext reference system for documentation prepared in the Info
format. This documentation tends to be more complete than a typical man page, and often, the Info
documentation for a given software package will be an entire book or manual. All of the manuals
published by the Free Software Foundation are released in Info format; these manuals contain the same
text (sans illustrations) as the paper manuals that you can purchase directly from the Free Software
Foundation.

There are different ways to peruse the Info documentation: you can use the standalone info tool,
read Info files in the Emacs editor (see Section 10.2 [Emacs], page 108), or use one of the other tools
designed for this purpose. Additionally, tools exist for converting Info documentation to HTML that you
can read in a Web browser (see Section 5.9 [Browsing Files], page 73).

To read the Info manual for a tool or application with the info tool, give its name as an argument.
With no arguments, info opens your system’s Top Info menu, which lists all of the available manuals
that are installed on the system.

e To view all of the Info manuals on the system, type:
$ info

The Linux Cookbook: Tips and Techniques for Everyday Use

This command starts inf o at the system’s Top menu, which shows some of the inf o key commands
and displays a list of available manuals:

File: dir, Mode: Top, Thiz iz the top of the INFO tree

Thiz (the Directory node} gives a menu of major topics,
Typing "q" exits, "?" liztsz all Info commands, "d" returns here,
"h" gives a primer for first-timers.

"mEmacs<Return:" wvisits the Emacs manual . etc,

In Emacs, you can click mouze button 2 on a menu item ar cross reference
to zelect it,

* fMenu;

Texinfo documentation system

¥ Info: {infol, Documentation browsing system,

¥ Texinfo: itexinfolr, The GHU documentation format,

¥ inztall-info: {texinfollnvoking install-info, Updating infoddir entries,

¥ texiddvi: (texinfolFormat with texizdwi. Printing Texinfo documentation,
¥ texindex: (texinfolFormat with tex texindex, Sorting Texinfo index files,

* makeinfo: (texinformakeinfo Preferred, Tranzlate Texinfo source,

———=Infa: idiriTop, 211 lines ——Top
Welcome to Info wersion 2,18, "C-h" for help, "m" for menu item,

. J

Use the arrow keys to move through each “page” of information, called an Info node. Nodes are the
base unit of information in Info, and are arranged hierarchically—a manual’s Top node will contain an
Info menu containing links to its various chapters, and a chapter node will contain a menu with links for
its sections, and so on. Links also appear as cross references in the text.

Links look the same in both menu items and cross references: an asterisk (“*”), the name of the node
it links to, and either one or two colon characters (“:). To follow a link to the node it points to, move
the cursor over any part of the node name in the link and press (RET).

To run a tutorial that describes how to use info, press the (H) key. Press (@ at any time to stop
reading the documentation and exit info.

To read Info documentation for a tool or application, give its name as an argument to info; if no
Info manual exists for that tool, info displays the man page for that tool instead.

e To read the Info documentation for the tar tool, type:
$ info tar

This command opens a copy of The GNU tar Manual in info.

To read the contents of a file written in Info format, give the name of the file to read with the
‘-£’ option. This is useful for reading an Info file that you have obtained elsewhere, and is not in
the ‘*/usr/info’ directory with the rest of the installed Info files. Info can automatically recognize and
expand Info files that are compressed and have a * . gz’ file name extension (see Section 8.5 [Compressed
Files], page 92).

e Toread ‘faqg.info’, an Info file in the current directory, type:
$ info -f faqg.info
This command starts info and opens the Info file ‘fag.info’, beginning at the top node in the
file.

To read a specific node in an Info file, give the name of the node to use in quotes as an argument to
the “-n’ option.
e Toread ‘fag.info’, an Info file in the current directory, beginning with the node Text, type:

$ info -n ’‘Text’ -f faqg.info

NOTE: You can also read Info documentation directly from the Emacs editor; you type C-h i from
Emacs to start the Info reader, and then use the same commands as in the standalone info tool (see
Section 10.2.1 [Getting Acquainted with Emacs], page 109).

The Emacs “incremental” search command, C- s, also works in info; it’s a very fast, efficient way
to search for a word or phrase in an entire Info text (like this entire book); see Section 14.6.1 [Searching
Incrementally in Emacs], page 154.

2.8.6 Reading System Documentation and Help Files

Debian: ‘doc-1linux-text’
WWW: http://linuxdoc.org/

The ‘' /usr/doc’ directory is for miscellaneous documentation: HOWTOs, FAQs, Debian-specific doc-
umentation files and documentation files that come with commands. (To learn more about files and
directories, see Chapter 5 [Files and Directories], page 59.) To peruse any of these files, use less,
described in full in Section 9.1 [Perusing Text], page 99.

When a software package is installed, any additional documentation files it might have beyond a
manual page and Info manual are placed here, in a subdirectory with the name of that package. For
example, additional documentation for the hostname package is in */usr/doc/hostname’, and
documentation for the passwd package is in “*/usr/doc/passwd’. Most packages have a file called
‘README’, which usually contains relevant information. Often this file is compressed as ‘README . gz’,
in which case you can use zless instead of less.

The Linux Documentation Project (LDP) has overseen the creation of more than 100 “HOWTO”
files, each of which covers a particular aspect of the installation or use of Linux-based systems.

The LDP HOWTOs are compressed text files stored in the ‘/usr/doc/HOWTO’ directory; to view
them, use zless. The file ‘*/usr/doc/HOWTO/HOWTO-Index .gz’ contains an annotated index of
all the HOWTO documents installed on the system.?

Finally, the ‘/usr/doc/FAQ’ directory contains a number of FAQ (“Frequently Asked
Questions”) files on various subjects, and the files that make up the Debian FAQ are in the
‘/usr/doc/debian/FAQ’ directory. The Debian FAQ is available both in HTML format, which you
can view in a Web browser (see Section 5.9 [Browsing Files], page 73), and as a compressed text file,
which you can view in zless.

e To view the HTML version of the Debian FAQ in the 1ynx Web browser, type:
$ lynx /usr/doc/debian/FAQ/debian-faqg.html

e To view the compressed text version of the Debian FAQ in zless, type:
$ zless /usr/doc/debian/FAQ/debian-faq.txt.gz

NOTE: It’s often very useful to use a Web browser to browse through the documentation files in these
directories—see Section 5.9 [Browsing Files], page 73.

On some systems, ‘/usr/doc’ is superseded by the ‘ /usr/share/doc’ directory.

2 LDP documents are available in other formats as well, including HTML and DVI.

The Linux Cookbook: Tips and Techniques for Everyday Use

3 The Shell

The subject of this chapter is the shell, the program that reads your command input and runs the specified
commands. The shell environment is the most fundamental way to interact with the system—you are
said to be “in” a shell from the very moment you’ve successfully logged in to the system.

The “$” character preceding the cursor is called the shell prompt; it tells you that the system is ready
and waiting for input. On Debian systems, the default shell prompt also includes the name of the current
directory (see Chapter 5 [Files and Directories], page 59). A tilde character (*~’) denotes your home
directory, which is where you’ll find yourself when you log in.

For example, a typical user’s shell prompt might look like this:

as |

If your shell prompt shows a number sign (‘#’) instead of a “$’, this means that you’re logged in
with the superuser, or root, account. Beware: the root account has complete control over the system;
one wrong keystroke and you might accidentally break it something awful. You need to have a different
user account for yourself, and use that account for your regular use (see Section A.3.1 [Making a User
Account], page 318).

Every Linux system has at least one shell program, and most have several. We’ll cover bash, which
is the standard shell on most Linux systems. (lts name stands for “Bourne again shell”—a pun on the
name of Steve Bourne, who was author of the traditional Unix shell, the Bourne shell.)

NOTE: See Info file ‘bashref.info’, node ‘Top’, for more information on using bash.

3.1 Keys for Command Line Editing

In Section 2.4 [Running a Command], page 22, you learned how to run commands by typing them in at
the shell prompt. The text you type at a shell prompt is called the command line (it’s also called the input
line).

The following table describes the keystrokes used for typing command lines.

KEYSTROKES DESCRIPTION

text Insert text at the point where the cursor is at; if there is text to the right
of the cursor, it is shifted over to the right.

Delete the character to the left of the cursor.

DEL Delete the character the cursor is underneath.

RET, Send the command line to bash for execution (in other words, it runs

the command typed at the shell prompt). You don’t have to be at the
far right end of the command line to type (RET); you can type it when
the cursor is anywhere on the command line.

C-a Move the cursor to the beginning of the input line.

c-d Same as (this is the Emacs equivalent).

C-e Move the cursor to the end of the input line.

C-k Kill, or “cut,” all text on the input line, from the character the cursor is

underneath to the end of the line.
c-1 Clear the terminal screen.
C-u Kill the entire input line.

The Linux Cookbook: Tips and Techniques for Everyday Use

C-y Yank, or “paste,” the text that was last killed. Text is inserted at the
point where the cursor is.

c-_ Undo the last thing typed on this command line.

Move the cursor to the left one character.

Move the cursor to the right one character.

@ and @ Cycle through the command history (see Section 3.4 [Command His-

tory], page 40).

NOTE: These keyboard commands are the same as those used by the Emacs editor (see Section 10.2
[Emacs], page 108). Many other Emacs keyboard commands also work on the command line (see Sec-
tion 10.2.2 [Basic Emacs Editing Keys], page 111). And, for Vi aficionados, it is possible to configure
bash to recognize Vi-style bindings instead.

The following sections describe some important features of command line editing, such as quoting
special characters and strings, letting the shell complete your typing, re-running commands, and running
multiple commands. See Info file ‘bashref.info’, node ‘Command Line Editing’ for more in-
formation on bash’s command line editing features.

3.1.1 Passing Special Characters to Commands

Some characters are reserved and have special meaning to the shell on their own. Before you can pass
one of these characters to a command, you must quote it by enclosing the entire argument in single
quotes (“’).

For example, here’s how to pass ‘Please Stop!’ to a command:
'Please Stop!’

When the argument you want to pass has one or more single quote characters in it, enclose it in double
quotes, like so:

"Please Don’t Stop!"
To pass special characters as a string, give them as:
$string
where string is the string of characters to be passed. Special backslash escape sequences for certain
characters are commonly included in a string, as listed in the following table.

ESCAPE SEQUENCE DESCRIPTION

\a Alert (rings the system bell).
\b Backspace.

\e Escape.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\\ Backslash.

\NNN Character whose ASCII code is NNN in octal (base 8).

To demonstrate the passing of special character sequences to tool, the following examples will use
the £iglet tool, which displays the text you give as an argument in a “font” made up of text characters
(see Section 16.3.1 [Horizontal Text Fonts], page 178).

e To pass a backslash character as an argument to figlet, type:

$ figlet $7\\’
e To pass a form feed character followed by a pilcrow sign character (octal character code 266) to
figlet, type:

$ echo $’\f\266"
3.1.2 Letting the Shell Complete What You Type

Completion is where bash does its best to finish your typing. To use it, press TAB) on the input line and
the shell will complete the word to the left of the cursor to the best of its ability. Completion is one of
those things that, once you begin to use it, you will wonder how you ever managed to get by without.

Completion works on both file names and command names, depending on the context of the cursor
when you type (TAB).

For example, suppose you want to specify, as an argument to the 1s command, the
‘/usr/lib/emacs/20.4/i386-debian-1inux-gnu/’ directory—that’s a lot to type. So
instead of typing out the whole directory name, you can type to complete it for you. Notice how
our first attempt, typing only the letter ‘e’ in “/e’, brings up a series of files—while the second attempt,
typing ‘em’, further refines our search:

$ 1s /usr/lib/e({TAB)
elm-me+ emacs emacsen-common entity-map expect5.30
$ 1s /usr/lib/em({AB)

At this point, the system beeps' and the shell completes the word ‘emacs’, since all options in this
directory beginning with the letters ‘em’ complete to at least that word. Press to access this word
and go on, and the shell completes the subdirectory ‘20 . 4’ since that is the only file or directory in the
‘emacs’ subdirectory:

$ 1ls /usr/lib/emacs/dAB)20.4/
Press again to have the shell complete the only subdirectory in “‘20.4";

$ 1ls /usr/lib/emacs/20.4/{TAB)i386-debian-linux-gnu/

NOTE: Many applications also support command and/or file name completion; the most famous example
of this is the Emacs text editor (see Section 10.2 [Emacs], page 108).

3.1.3 Repeating the Last Command You Typed

Type (@ to put the last command you typed back on the input line. You can then type (RET) to run the
command again, or you can edit the command first.

e To repeat the last command entered, type:
s @

The () key moves the last command you typed back to the input line, and (RET) executes it.

By typing () more than once, you can go back to earlier commands you’ve typed; this is a function
of your command history, which is explained in full in Section 3.4 [Command History], page 40.

Additionally, you can use the bash reverse-incremental search feature, C-r, to search, in reverse,
through your command history. You’ll find this useful if you remember typing a command line with
‘foo’ initrecently, and you wish to repeat the command without having to retype it. Type C-r followed
by the text foo, and the last command you typed containing ‘£oo’ appears on the input line.

Like the Emacs command of the same name (see Section 14.6.1 [Searching Incrementally in Emacs],
page 154), this is called an incremental search because it builds the search string in character increments

1 The Unix way of saying it is that the command “rings the system bell.”

The Linux Cookbook: Tips and Techniques for Everyday Use

as you type. Typing the string ‘cat’ will first search for (and display) the last input line containing a
‘c’, then “ca’, and finally *cat’, as you type the individual characters of the search string. Typing C-r
again retrieves the next previous command line that has a match for the search string.
e To put the last command you entered containing the string ‘grep’ back on the input line, type:
S C-r
(reverse-i-search) '’ : grep
e To put the third-to-the-last command you entered containing the string grep back on the input line,
type:
S C-r
(reverse-i-search) '’ : grep
C-r C-r

When a command is displayed on the input line, type to run it. You can also edit the command
line as usual.

3.1.4 Running a List of Commands

To run more than one command on the input line, type each command in the order you want them to run,
separating each command from the next with a semicolon (“;). You’ll sometimes find this useful when
you want to run several non-interactive commands in sequence.

e To clear the screen and then log out of the system, type:

$ clear; logout
e To run the hostname command three times, type:

(" N

S hostname; hostname; hostname
figaro
figaro
figaro

$

- J

3.2 Redirecting Input and Output

The shell moves text in designated “streams.” The standard output is where the shell streams the text out-
put of commands—the screen on your terminal, by default. The standard input, typically the keyboard, is
where you input data for commands. When a command reads the standard input, it usually keeps reading
text until you type Cc-d on a new line by itself.

When a command runs and exits with an error, the error message is usually output to your screen, but
as a separate stream called the standard error.

You redirect these streams—to a file, or even another command—uwith redirection. The following
sections describe the shell redirection operators that you can use to redirect standard input and output.

3.2.1 Redirecting Input to a File

To redirect standard input to a file, use the ‘<’ operator. To do so, follow a command with < and the
name of the file it should take input from. For example, instead of giving a list of keywords as arguments
to apropos (see Section 2.8.1 [Finding the Right Tool for the Job], page 26), you can redirect standard
input to a file containing a list of keywords to use.

e To redirect standard input for apropos to file ‘keywords’, type:
S apropos < keywords

3.2.2 Redirecting Output to a File

Use the ‘>’ operator to redirect standard output to a file. To use it, follow a command with > and the
name of the file the output should be written to.

e To redirect standard output of the command apropos shell bashto thefile ‘commands’, type:
S apropos shell bash > commands
If you redirect standard output to an existing file, it will overwrite the file, unless you use the ‘>>’
operator to append the standard output to the contents of the existing file.
e To append the standard output of apropos shellsto an existing file ‘commands’, type:
S apropos shells >> commands

3.2.3 Redirecting Error Messages to a File

To redirect the standard error stream to a file, use the *>’ operator preceded by a “2’. Follow a command
with 2> and the name of the file the error stream should be written to.

e To redirect the standard error of apropos shell bashto the file ‘command.error’, type:
S apropos shell bash 2> command.error
As with the standard output, use the “>>" operator instead of ‘>’ to append the standard error to the
contents of an existing file.
e To append the standard error of apropos shells to an existing file ‘command.error’, type:
$ apropos shells 2>> command.error

To redirect both standard output and standard error to the same file, use ‘&>’ instead.

e To redirect the standard output and the standard error of apropos shells to the file
‘commands’, type:

S apropos shells &> commands

3.2.4 Redirecting Output to Another Command’s Input

Piping is when you connect the standard output of one command to the standard input of another. You
do this by specifying the two commands in order, separated by a vertical bar character, ‘|’ (sometimes
called a “pipe™). Commands built in this fashion are called pipelines.

For example, it’s often useful to pipe commands that display a lot of text output to less, a tool for
perusing text (see Section 9.1 [Perusing Text], page 99).

e To pipe the output of apropos bash shell shellsto less, type:
$ apropos bash shell shells | less

This redirects the standard output of the command apropos bash shell shells to the standard
input of the command 1ess, which displays it on the screen.

3.3 Managing Jobs

The processes you have running in a particular shell are called your jobs. You can have more than one
job running from a shell at once, but only one job can be active at the terminal, reading standard input
and writing standard output. This job is the foreground job, while any other jobs are said to be running
in the background.

The shell assigns each job a unique job number. Use the job number as an argument to specify the
job to commands. Do this by giving the job number preceded by a “%’ character.

To find the job number of a job you have running, list your jobs (see Section 3.3.4 [Listing Your Jobs],
page 39).

The following sections describe the various commands for managing jobs.

The Linux Cookbook: Tips and Techniques for Everyday Use

3.3.1 Suspending a Job

Type C-z to suspend or stop the foreground job—useful for when you want to do something else in the
shell and return to the current job later. The job stops until you either bring it back to the foreground
or make it run in the background (see Section 3.3.3 [Putting a Job in the Foreground], page 39 and see
Section 3.3.2 [Putting a Job in the Background], page 38).

For example, if you are reading a document in info, typing C-z will suspend the info program
and return you to a shell prompt where you can do something else (see Section 2.8.5 [Using the GNU
Info System], page 29). The shell outputs a line giving the job number (in brackets) of the suspended
job, the text ‘St opped’ to indicate that the job has stopped, and the command line itself, as shown here:

[1]1+ Stopped info -f cookbook.info

In this example, the job number is 1 and the command that has stopped is ‘info -f
cookbook.info’. The ‘+’ character next to the job number indicates that this is the most recent job.

If you have any stopped jobs when you log out, the shell will tell you this instead of logging you out:

$ logout
There are stopped jobs.

$

At this point you can list your jobs (see Section 3.3.4 [Listing Your Jobs], page 39), stop any jobs you
have running (see Section 3.3.5 [Stopping a Job], page 39), and then log out.

3.3.2 Putting a Job in the Background

New jobs run in the foreground unless you specify otherwise. To run a job in the background, end the
input line with an ampersand (“&”). This is useful for running non-interactive programs that perform a
lot of calculations.

e To run the command apropos shell > shell-commands as a background job, type:

$ apropos shell > shell-commands &
[1] 6575
$

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575), and then returns
to a shell prompt. When the background job finishes, the shell will list the job number, the command,
and the text ‘Done’, indicating that the job has completed successfully:

[11+ Done apropos shell >shell-commands

To move a job from the foreground to the background, first suspend it (see Section 3.3.1 [Suspending
a Job], page 38) and then type bg (for “background”).

e For example, to start the command apropos shell > shell-commands in the foreground,
suspend it, and then specify that it finish in the background, you would type:

(" N

S apropos shell > shell-commands
C-z
[1]+ Stopped apropos shell >shell-commands
$ bg
[1]+ apropos shell &
$
\ J

If you have suspended multiple jobs, specify the job to be put in the background by giving its job
number as an argument.

e Torun job 4 in the background, type:
$ bg %4

NOTE: Running a job in the background is sometimes called “backgrounding” or “amping off” a job.

3.3.3 Putting a Job in the Foreground
Type f£g to move a background job to the foreground. By default, £g works on the most recent back-
ground job.
e To bring the most recent background job to the foreground, type:
$ fg

To move a specific job to the foreground when you have multiple jobs in the background, specify the
job number as an option to fg.

e To bring job 3 to the foreground, type:
$ fg %3

3.3.4 Listing Your Jobs

To list the jobs running in the current shell, type jobs.
e To list your jobs, type:

$ Jjobs
1]- Stopped apropos shell >shell-commands
2]+ Stopped apropos bash >bash-commands

(
[
$

This example shows two jobs—apropos shell > shell-commands and apropos bash >
bash-commands. The “+’ character next to a job number indicates that it’s the most recent job, and
the ‘-’ character indicates that it’s the job previous to the most recent job. If you have no current jobs,
jobs returns nothing.

To list all of the processes you have running on the system, use ps instead of j obs—see Section 2.7
[Listing System Activity], page 25.

3.3.5 Stopping a Job

Typing C-c interrupts the foreground job before it completes, exiting the program.
e Tointerrupt cat, a job running in the foreground, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

$

cat

C-c

$

Use ki11 to interrupt (“kill”) a background job, specifying the job number as an argument.
e To kill job number 2, type:

S kill %2

3.4 Command History

Your command history is the sequential list of commands you have typed, in the current or previous shell
sessions. The commands in this history list are called events.

By default, bash remembers the last 500 events, but this number is configurable (see Section 3.6.4
[Customizing Future Shells], page 43).

Your command history is stored in a text file in your home directory called * . bash history’;you
can view this file or edit it like you would any other text file.

Two very useful things that having a command history lets you do is to repeat the last command you
typed, and (as explained earlier in this chapter) to do an incremental backwards search through your

history.

The following sections explain how to view your history and specify events from it on the command
line. See Info file ‘bashref.info’, node ‘Bash History Facilities’, for more information on
command history.

3.4.1 Viewing Your Command History

Use history to view your command history.
e To view your command history, type:

-

/-U}rbwl\)l—‘-(/}

history

who

apropos shell >shell-commands
apropos bash >bash-commands
history

J

This command shows the contents of your command history file, listing one command per line pref-
aced by its event number. Use an event number to specify that event in your history (see Section 3.4.2
[Specifying a Command from Your History], page 41).

If your history is a long one, this list will scroll off the screen, in which case you may want to pipe the
output to 1ess in order to peruse it. It’s also common to search for a past command by piping the output
to grep (see Section 3.2.4 [Redirecting Output to Another Command’s Input], page 37 and Section 14.1
[Searching for a Word or Phrase], page 147).

e To search your history for the text ‘apropos’, type:

s

[-U)-U'IUJ[\)-U}

history | grep apropos
apropos shell >shell-commands
apropos bash >bash-commands
history | grep apropos

This command will show the events from your history containing the text *apropos’. (The last line
of output is the command you just typed.)

3.4.2 Specifying a Command from Your History

You can specify a past event from your history on the input line, in order to run it again.

The simplest way to specify a history event is to use the up and down arrow keys at the shell prompt
to browse your history. The up arrow key (f)) takes you back through past events, and the down arrow
key (@) moves you forward into recent history. When a history event is on the input line, you can edit it
as normal, and type to run it as a command; it will then become the newest event in your history.

e To specify the second-to-the-last command in your history, type:
s @ @

To run a history event by its event number, enter an exclamation point (*!’, sometimes called “bang”)
followed by the event number. (Get the event number by viewing your history; see Section 3.4.1 [Viewing
Your Command History], page 40).

e To run history event number 1, type:
$ 11

3.5 Recording a Shell Session

Use script to create a typescript, or “capture log,” of a shell session—it writes a verbatim copy of
your session to a file, including commands you type and their output. The first and last lines of the file
show the beginning and ending time and date of the capture session. To stop recording the typescript,
type exit at a shell prompt. By default, typescripts are saved to a file called ‘typescript’ in the
current directory; specify the file name to use as an argument.

e To create a typescript of a shell session and save it to the file ‘10g.19990817’, type:

(" N

S script 1log.19990817

Script started, output file is log.19990817
$ hostname

erie

$ apropos bash > bash.commands

S exit

exit

Script done, output file is log.19990817

$

. J

In this example, the typescript records a shell session consisting of two commands (hostname and
apropos) to afile called *1og.19990817’. The typescript looks like this:

Script started on Tue May 25 14:21:52 1999
S hostname

erie

S apropos bash > bash.commands

S exit

exit

Script done on Tue May 25 14:22:30 1999

The Linux Cookbook: Tips and Techniques for Everyday Use

NOTE: It’s possible, but usually not desirable, to run script from within another script session.
This usually happens when you’ve forgotten that you are running it, and you run it again inside the
current typescript, even multiple times—as a result, you may end up with multiple sessions “nested”
inside each other like a set of Russian dolls.

3.6 Customizing Your Shell

The following sections describe the most common ways to customize the shell—including changing the
text of the shell prompt and creating aliases for other commands. These customizations will apply to the
rest of your current shell session, unless you change them again. Eventually, you will want to make them
work all the time, like whenever you log in or start a new shell—and how to do this is discussed below.

3.6.1 Changing the Shell Prompt

A shell variable is a symbol that stores a text string, and is referenced by a unique name. bash keeps
one special variable, named PS1, for the text of the shell prompt. To change the text of the shell prompt,
you need to change the contents of the PS1 variable.

To change a variable’s contents, type its name followed by an equal sign (‘=) character and the string
that should replace the variable’s existing contents.

e To change your shell prompt to ‘Your wish is my command: ’, type:

S PSl='Your wish is my command: '’
Your wish is my command:

Since the replacement text has spaces in it, we’ve quoted it (see Section 3.1.1 [Passing Special Char-
acters to Commands], page 34).

You can put special characters in the prompt variable in order to output special text. For example,
the characters “\w’ in the value of PS1 will list the current working directory at that place in the shell
prompt text.

e To change your prompt to the default bash prompt—the current working directory followed by a
*$’ character—type:

$ pS1="\w $
-8

The following table lists some special characters and their text output at the shell prompt.

SPECIAL CHARACTER TEXT OUTPUT

\a Inserts a C-g character, which makes the internal speaker beep. (It
“rings the system bell”; C-gis sometimes called the bell character.)

\d The current date.

\h The hostname of the system.

\n A newline character.

\t The current system time, in 24-hour format.

\@ The current system time, in 12-hour a.m./p.m. format.

\w The current working directory.

\u Your username.

\! The history number of this command.

You can combine any number of these special characters with regular characters when creating a
value for PS1.

e To change the prompt to the current date followed by a space character, the hostname of the system
in parenthesis, and a greater-than character, type:

$ PS1='\d (\h)>"
14 Dec 1999 (ithaca)>

3.6.2 Making a Command Alias

Use alias toassign an alias, a name that represents another command or commands. Aliases are useful
for creating short command names for lengthy and frequently used commands.

e To make an alias of bye for the exit command, type:
S alias bye="exit"
This command makes ‘bye’ an alias for ‘exit’ in the current shell, so typing bye would then run
exit.
You can also include options and arguments in an alias.
e To make an alias of ‘ap’ for the command apropos shell bash shells, type:
S alias ap="apropos shell bash shells"

This command makes ‘ap’ an alias for ‘apropos shell bash shells’ in the current shell, so
typing ap would run apropos shell bash shells.

3.6.3 Adding to Your Path

To add or remove a directory in your path, use a text editor to change the shell variable ‘PATH’ in the
‘.bashrc’ file in your home directory (see Chapter 10 [Text Editing], page 107).
For example, suppose the line that defines the ‘PATH’ variable in your ‘. bashrc’ file looks like
this:
PATH="/usr/bin:/bin:/usr/bin/X11:/usr/games"
You can add the directory ‘/home /nancy/bin’ to this path, by editing this line like so:
PATH="/usr/bin:/bin:/usr/bin/X11:/usr/games:/home/nancy/bin"

NOTE: See Chapter 5 [Files and Directories], page 59 for a complete description of directories and the
path.

3.6.4 Customizing Future Shells

There are a number of configuration startup files in your home directory that you can edit to make your
configurations permanent. You can also edit these files to specify commands to be run whenever you first
log in, log out, or start a new shell. These configuration files are text files that can be edited with any text
editor (see Chapter 10 [Text Editing], page 107).

When you log in, bash first checks to see if the file ‘*/etc/profile’ exists, and if so, it executes
the commands in this file. This is a generic, system-wide startup file that is run for all users; only the
system administrator can add or delete commands to this file.

Next, bash reads and executes the commands in *.bash profile’,a “hidden” file in your home
directory (see Section 5.3.4 [Listing Hidden Files], page 65). Thus, to make a command run every time
you log in, add the command to this file.

The Linux Cookbook: Tips and Techniques for Everyday Use

For all new shells after you’ve logged in (that is, all but the “login shell””), bash reads and executes
the commands in the * . bashrc’ file in your home directory. Commands in this file run whenever a new
shell is started except for the login shell.

There are separate configuration files for login and all other shells so that you can put specific cus-
tomizations in your ‘.bash profile’ that only run when you first log in to the system. To avoid
having to put commands in both files when you want to run the same ones for all shells, append the
following to the end of your ‘. bash profile’file:

if [-f 7/.bashrc]; then . 7/.bashrc; fi

This makes bash run the ‘. bashrc’ file in your home directory when you log in. In this way, you
can put all of your customizations in your ‘. bashrc’ file, and they will be run both at log in and for all
subsequent shells. Any customizations before this line in *.bash profile’ run only when you log
in.

For example, a simple *.bash profile’might look like this:

"Comment" lines in shell scripts begin with a # character.
They are not executed by bash, but exist so that you may
document your file.

You can insert blank lines in your file to increase readability;
bash will not mind.

Generate a welcome message when you log in.
figlet ’'Good day, 'SUSER’!’

Now run the commands in .bashrc
if [-f 7/.bashrc]1; then . ~/.bashrc; fi

This ‘.bash profile’ prints a welcome message with the figlet text font tool (see Sec-
tion 16.3.1 [Horizonal Text Fonts], page 178), and then runs the commands in the *.bashrc’ file.

A simple .bashrc file might look like this:

Make color directory listings the default.
alias 1ls="1ls --color=auto"

Make "1" give a verbose directory listing.
alias 1="1s -1"

Set a custom path.
PATH="/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games:~ /bin:

Set a custom shell prompt.
PS1="[\w] $ "

Make a long history list and history file.
HISTSIZE=20000
HISTFILESIZE=20000

Export the path and prompt variables for all
variables you define.
export HISTSIZE HISTFILESIZE PATH PS1

This “.bashrc’ sets a few useful command aliases and uses a custom path and shell prompt when-
ever a new shell is run; with the preceding ‘. bash profile’,this ‘.bashrc’is also run at login.

When you log out, bash reads and executes the commands in the ‘. bash logout’ file in your
home directory, if it exists. To run commands when you log out, put them in this file.

e To clear the screen every time you log out, your *.bash logout’would contain the following
line:
clear

This executes the clear command, which clears the screen of the current terminal, such as in the
xterm window where you type it, or in a virtual console.

NOTE: Some distributions come with default shell startup files filled with all kinds of
interesting stuff. Debian users might want to look at the example startup files in
‘/usr/share/doc/bash/examples/startup-files’.

The Linux Cookbook: Tips and Techniques for Everyday Use

4 The X Window System

Debian: ‘xserver-common’
WWW: http://www.xfree86.org/

The X Window System, commonly called “X,” is a graphical windowing interface that comes with all
popular Linux distributions. X is available for many Unix-based operating systems; the version of X
that runs on Linux systems with x86-based CPUs is called “XFree86.” The current version of X is 11,
Revision 6—or “X11R6.”

All the command-line tools and most of the applications that you can run in the console can run in X;
also available are numerous applications written specifically for X.

This chapter shows you how to get around in X: how to start it and stop it, run programs within it,
manipulate windows, and customize X to your liking. See The Linux XFree86 HOWTO for information
on installing X (see Section 2.8.6 [Reading System Documentation and Help Files], page 31).

4.1 Running X

WWW: http://www.afterstep.org/
WWW: http://www.fvwm.org/

WWW: http://www.windowmaker.org/
WWW: http://www.gnome.org/

WWW: http://www.kde.org/

When you start X, you should see a mouse pointer appear on the screen as a large, black “X.” If your X
is configured to start any tools or applications, they should each start and appear in individual windows.
A typical X session looks like this:

sh-2.035 []

The root window is the background behind all of the other windows. It is usually set to a color, but
you can change it (see Section 4.6.3 [Changing the Root Window Parameters], page 55). Each program
or application in X runs in its own window. Each window has a decorative border on all four sides,

1 Sometimes you might see it referred to as “X Windows,” but this term is incorrect.

The Linux Cookbook: Tips and Techniques for Everyday Use

called the window border; L-shaped corners, called frames; a top window bar, called the title bar, which
displays the name of the window; and several title bar buttons on the left and right sides of the title bar
(described in Section 4.3 [Manipulating X Client Windows], page 52).

The entire visible work area, including the root window and any other windows, is called the desktop.
The box in the lower right-hand corner, called the pager, allows you to move about a large desktop (see
Section 4.4 [Moving around the Desktop], page 53).

A window manager controls the way windows look and are displayed—the window dressing, as it
were—and can provide some additional menu or program management capabilities. There are many
different window managers to choose from, with a variety of features and capabilities. (See Section 4.6.4
[Choosing a Window Manager], page 56, for help in choosing a window manager that’s right for you.)

Window managers typically allow you to customize the colors and borders that are used to display a
window, as well as the type and location of buttons that appear on the window (see Section 4.2 [Running
a Program in X], page 49). For example, in the image above, the clock image itself is the oclock
program; the blue outline around it is the window border, as drawn by the £vwm2 window manager.
With the afterstep window manager, the window border would look quite different:

A =1 il 4

There are many window managers you can choose from, all different; instead of describing only one,
or describing all of them only superficially, this chapter shows the basics of X, which are common to all
window managers. | try to make no assumptions as to which window manager you are using; while the
fvwm family of window managers has long been a popular choice on most Linux-based systems, today
other window managers—including WindowMaker (the binary itself is called wmaker), Enlightenment,
AfterStep, and others—have all gained in popularity.

And recently, desktop environments have become popular. These are a collection of applications that
run on top of the window manager (and X), with the purpose of giving your X session a standardized
“look and feel”; these suites normally come with a few basic tools such as clocks and file managers. The
two popular ones are GNOME and KDE, and while they generate a lot of press these days because of
their graphical nature, both are changing very quickly and at the time of this writing are not yet ready for
widespread, general use (and they can cause your system to crash).

If you have a recent Linux distribution and chose the default install, chances are good that you have
either GNOME or KDE installed, with either the fvwm2 or wmaker window manager assigned as the
default. (While you can have more than one window manager installed on your system, you can only run
one at a time.)

4.1.1 Starting X

There are two ways to start X. Some systems run the X Display Manager, xdm, when the system boots, at
which point a graphical xdm login screen appears; you can use this to log in directly to an X session. On

systems not running xdm, the virtual console reserved for X will be blank until you start X by running
the startx command.

e To start X from a virtual console, type:

S startx
e Torun startx and redirect its output to a log file, type:

$ startx >$HOME/startx.log 2>&1

Both of these examples start X on the seventh virtual console, regardless of which console you are
at when you run the command—your console switches to X automatically. You can always switch to
another console during your X session (see Section 2.3 [Console Basics], page 20). The second example
writes any error messages or output of startx to afile called ‘startx.log’ in your home directory.

On some systems, X starts with 8-bit color depth by default. Use startx with the special ‘-bpp’
option to specify the color depth. Follow the option with a number indicating the color depth to use, and
precede the option with two hyphen characters (‘- -’), which tells startx to pass the options which
follow it to the X server itself.

e To start X from a virtual console, and specify 16-bit color depth, type:
S startx -- -bpp 16

NOTE: If your system runs xdm, you can always switch to the seventh virtual console (or whichever
console xdm is running on), and then log in at the xdm login screen.

4.1.2 Stopping X

To end an X session, you normally choose an exit X option from a menu in your window manager.

e Toend your X session if you are running the £vwm2 window manager, click the left mouse button in
the root window to pull up the start menu, and then choose Really quit? from the Exit Fvwm
submenu.

e To end your X session if you are running the afterstep window manager, click the left mouse
button in the root window to pull up the start menu, and then choose Really quit? from the
Exit Fvwm submenu.

If you started your X session with startx, these commands will return you to a shell prompt in
the virtual console where the command was typed. If, on the other hand, you started your X session by
logging in to xdm on the seventh virtual console, you will be logged out of the X session and the xdm
login screen will appear; you can then switch to another virtual console or log in to X again.

To exit X immediately and terminate all X processes, press the (CTRL)-(ALT)-(BKSP) combination (if
your keyboard has two and keys, press the left ones). You’ll lose any unsaved application
data, but this is useful when you cannot exit your X session normally—in the case of a system freeze or
other problem.

e To exit X immediately, type:
-(ALT) - (BKSP)

4.2 Running a Program in X

Programs running in an X session are called X clients. (The X Window System itself is called the X
server). To run a program in X, you start it as an X client—either by selecting it from a menu, or by
typing the command to run in an xterm shell window (see Section 4.5 [Running a Shell in X], page 54).
Most window managers have a “start menu” of some kind; it’s usually accessed by clicking the left
mouse button anywhere on the root window. To run an X client from the start menu, click the left mouse
button to select the client’s name from the submenus.

For example, to start a square-shaped, analog-face clock from the start menu, click the left mouse but-
ton on the root window to make the menu appear, and click the left mouse button through the application

The Linux Cookbook: Tips and Techniques for Everyday Use

menus and on ‘Xclock (analog)’. This starts the xclock client, specifying the option to display

an analog face:
Al A1 =[]

Aol | LI
1 1
i

You can also start a client by running it from a shell window—useful for starting a client that isn’t on
the menu, or for when you want to specify options or arguments. When you run an X client from a shell
window, it opens in its own window; run the client in the background to free the shell prompt in the shell
window (see Section 3.3.2 [Putting a Job in the Background], page 38).

e To run adigital clock from a shell window, type:
S xclock -digital &
This command runs xclock in the background from a shell window; the ‘digital’ option speci-
fies a digital clock.

The following sections explain how to specify certain command-line options common to most X
clients—such as window layout, colors, and fonts.

4.2.1 Specifying Window Size and Location

Specify a window’s size and location by giving its window geometry with the ‘geometry’ option. Four
fields control the width and height of the windows, and the window’s distance (“offset”) from the edge
of the screen. It is specified in the form:

-geometry WIDTHXHEIGHT+XOFF+YOFF

The values in these four fields are usually given in pixels, although some applications measure WIDTH
and HEIGHT in characters. While you must give these values in order, you can omit either pair. For
example, to specify just the size of the window, give values for WIDTH and HEIGHT only.

e To start a small xclock, 48 pixels wide and 48 pixels high, type:
$ xclock -geometry 48x48

e To start a large xclock, 480 pixels wide and 500 pixels high, type:
$ xclock -geometry 480x500

e To start an xclock with a width of 48 pixels and the default height, type:
$ xclock -geometry 48

e To start an xclock with a height of 48 pixels and the default width, type:
$ xclock -geometry x48

You can give positive or negative numbers for the XOFF and YOFF fields. Positive XOFF values
specify a position from the left of the screen; negative values specify a position from the right. If YOFF
is positive, it specifies a position from the top of the screen; if negative, it specifies a position from the
bottom of the screen. When giving these offsets, you must specify values for both XOFF and YOFF.

To place the window in one of the four corners of the desktop, use zeroes for the appropriate XOFF
and YOFF values, as follows:

XOFF AND YOFF VALUES WINDOW POSITION
+0+0 Upper left corner.
+0-0 Lower left corner.
-0+0 Upper right corner.
-0-0 Lower right corner.

e To start a default size xclock in the lower left-hand corner, type:
$ xclock -geometry +0-0

Or, to put it all together, you can specify the size and location of a window with one geometry line
that includes all four values.

e To start an xclock with a width of 120 pixels, a height of 100 pixels, an x offset of 250 pixels from
the right side of the screen, and a y offset of 25 pixels from the top of the screen, type:

$ xclock -geometry 120x100-250+25

4.2.2 Specifying Window Colors

The window colors available in your X session depend on your display hardware and the X server that
is running. The xcolors tool will show all colors available on your X server and the names used to
specify them. (Color names are not case sensitive.)

e To list the available colors, type:
S xcolors

Press (Q to exit xcolors.

To specify a color to use for the window background, window border, and text or graphics in the
window itself, give the color name as an argument to the appropriate option: ‘-bg’ for background
color, *-bd’ for window border color, and ‘- £g” for foreground color.

e To start an xclock with a light blue window background, type:
$ xclock -bg lightblue

You can specify any combination of these attributes.
e Tostart an xclock with a sea green window background and a turquoise window foreground, type:
$ xclock -bg seagreen -fg turquoise

4.2.3 Specifying Window Font

To get an X font name, use xfontsel (see Section 16.1 [X Fonts], page 175). To specify a font for use
in a window, use the ‘- £n’ option followed by the X font name to use.

e To start an xclock with a digital display, and specify that it use a 17-point Helvetica font for text,
type:
$ xclock -digital -fn -*-helvetica-*-r-*-*-17-*%-*_*_*_*_*_x%

The Linux Cookbook: Tips and Techniques for Everyday Use

This command starts an xclock that looks like this:

A [l = B3

Thu Jan 25 11:15:23 2001

NOTE: If you specify the font for a shell window, you can resize it after it’s running, as described in
Section 16.1.4 [Resizing the Xterm Font], page 177.

4.2.4 Specifying Additional Window Attributes

X applications often have up to three special menus with options for changing certain attributes. To
see these menus, hold and click one of the three mouse buttons? The following table lists and
describes various window attributes common to most X-aware applications.

WINDOW OPTIONS DESCRIPTION

-bd color

-bordercolor color Use color for the window border color.

-bg color

-background color Use color for the window background color.

-bw number

-borderwidth number Specify the window border width in pixels.

-fg color

-foreground color Use color for the window foreground text or graphics.
-fn font

-font font Use font for the font to use.

-geometry geometry Specify window geometry.

-iconic Immediately iconify the program (see Section 4.3.4

[Minimizing a Window], page 53).
-title string Use string for the window title.

4.3 Manipulating X Client Windows

Only one X client can accept keyboard and mouse input at a time, and that client is called the active
client. To make a client active, move the mouse over the client’s window. When a client is the active
client, it is said to be “in focus.” Depending on the window manager, the shape of the mouse pointer
may change, or the window border and title bar of the active client may be different (a common default
is steel blue for the active client color and gray for all other windows).

Each window has its own set of controls to manipulate that window. Here’s how to perform basic
window operations with the mouse.

4.3.1 Moving a Window

To move a window, click and hold the left mouse button on the window’s title bar, then drag its window
outline to a new position. When the outline is in place, release the left mouse button, and the window
will move to the position held by the window outline.

2 If you have a mouse with only two buttons, click both buttons simultaneously to emulate the middle button.

4.3.2 Resizing a Window

To resize a window, click and hold the left mouse button on any one of the window’s four frames, and
move the mouse to shrink or grow the window outline. Release the left mouse button to resize the window
to the size of the window outline.

4.3.3 Destroying a Window

To destroy a window and stop the program it displays, click the left mouse button on the ‘X’ button in
the upper right-hand corner of the title bar. This is useful for when the program running in the window
has stopped responding. (Of course, if a program in a window has an option to stop it normally, you can
always use it to stop the program and close its window.)

4.3.4 Minimizing a Window

To minimize a window, so that it disappears and an icon representing the running program is placed on
the desktop, click the left mouse button on the *_* button in the upper right-hand corner of the title bar.
This is also called iconifying a window.

4.3.5 Maximizing a Window

To maximize an icon to a window (or “deiconify” it), double-click the left mouse button on the icon
name, directly beneath the icon itself. The icon will disappear and the window will return to its prior
position.

4.4 Moving around the Desktop

Many window managers (including afterstep and £vwm2) allow you to use a virtual desktop, which
lets you use more screen space than your monitor can display at one time. A virtual desktop can be larger
than the display, in which case you can scroll though it with the mouse. The view which fills the display
is called the viewport. When you move the mouse off the screen in a direction where the current (virtual)
desktop extends, the view scrolls in that direction. Virtual desktops are useful for running many clients
full screen at once, each in its own separate desktop.

Some configurations disallow scrolling between desktops; in that case, switch between them with a
pager, which shows a miniature view of your virtual desktop, and allows you to switch between desktops.
It is a sticky window (it “sticks to the glass” above all other windows), and is always in the lower right-
hand corner of your screen, even when you scroll across a virtual desktop. Both your current desktop
and active X client are highlighted in the pager.

The default £vwm2 virtual desktop size is nine desktops in a 3x3 grid:

In the preceding illustration, the current desktop is the second one in the top row. The first desktop
contains two X client windows—a small one and a large one—but there are no windows in any other
desktop (including the current one).

To switch to another desktop, click the left mouse button on its corresponding view in the pager, or use
a keyboard shortcut. In £vwm2, the default keys for switching between desktops are (<) in conjunction
with the arrow keys; in afterstep, use the key in place of (ALT).

The Linux Cookbook: Tips and Techniques for Everyday Use

e To switch to the desktop to the left of the current one while running £vw2, type ALT) -).

e To switch to the desktop directly to the left of the current one while running afterstep, type
-©.

4.5 Running a Shell in X

Use xtermto run a shell in a window. You can run commands in an xtexrm window just as you would
in a virtual console; a shell in an xterm acts the same as a shell in a virtual console (see Chapter 3 [The
Shell], page 33).

Unlike a shell in a console, you can cut and paste text from an xterm to another X client (see
Section 10.4 [Selecting Text], page 115).

To scroll through text that has scrolled past the top of the screen, type hiff) - Pgup). The number
of lines you can scroll back to depends on the value of the scrollback buffer, specified with the *-s1’
option; its default value is 64.

There are many options for controlling xterm’s emulation characteristics; consult the xterm man
page for a complete listing (see Section 2.8.4 [Reading a Page from the System Manual], page 28).

NOTE: xterm s probably the most popular terminal emulator X client, but it is not the only one; others
to choose from include wterm and rxvt, all with their own special features—try them all to find one
you like.

4.6 Configuring X

There are some aspects of X that people usually want to configure right away. This section discusses some
of the most popular, including changing the video mode, automatically running clients at startup, and
choosing a window manager. You’ll find more information on this subject in both The X Window User
HOWTO and The Configuration HOWTO (for how to read them, see Section 2.8.6 [Reading System
Documentation and Help Files], page 31).

4.6.1 Switching between Video Modes

A video mode is a display resolution, given in pixels, such as 640x480. An X server can switch between
the video modes allowed by your hardware and set up by the administrator; it is not uncommon for
a machine running X to offer several video modes, so that 640x480, 800x600, and 1024x768 display
resolutions are possible.

To switch to another video mode, use the &) and © keys on the numeric keypad with the left
and keys. The (=) key switches to the next mode with a lower resolution, and the © key switches to
the next mode with a higher resolution.

e To switch to the next-lowest video mode, type:

- -®
e To switch to the next-highest video mode, type:

- -Q
Type either of the above key combinations repeatedly to cycle through all available modes.

NOTE: For more information on video modes, see The XFree86 Video Timings HOWTO (see Sec-
tion 2.8.6 [Reading System Documentation and Help Files], page 31).

4.6.2 Running X Clients Automatically

The ‘.xsession’ file, a hidden file in your home directory, specifies the clients that are automati-
cally run when your X session first starts (“hidden” files are explained in Chapter 5 [Files and Direc-
tories], page 59). It is just a shell script, usually containing a list of clients to run. You can edit your
‘.xsession’ file in a text editor, and if this file doesn’t exist, you can create it.

Clients start in the order in which they are listed, and the last line should specify the window manager
to use. The following example ‘. xsession’ file starts an xterm with a black background and white
text, puts an ‘oclock’ (around clock) window in the upper left-hand corner, starts the Emacs text editor,
and then starts the £vwm2 window manager:

#! /bin/sh
#

A sample .xsession file.

xterm -bg black -fg white &
oclock -geometry +0+40 &
emacs &

exec /usr/bin/X11/fvwm2

All clients start as background jobs, with the exception of the window manager on the last line,
because when this file runs, the X session is running in the foreground (see Section 3.3 [Managing Jobs],
page 37). Always put an ampersand (‘&’) character at the end of any command line you put in your
‘.xsession’ file, except for the line giving the window manager on the last line.

4.6.3 Changing the Root Window Parameters

By default, the root window background is painted gray with a weaved pattern. To draw these patterns,
X tiles the root window with a bitmap, which is a black-and-white image stored in a special file format.
X comes with some bitmaps installed in the ‘/usr/X11R6/include/bitmaps/’ directory; the
default bitmap file is ‘root weave’ (you can make your own patterns with the bitmap tool; see
Section 18.4 [Interactive Image Editors and Tools], page 199).

Use xsetroot to change the color and bitmap pattern in the root window.

To change the color, use the ‘-so1id’ option, and give the name of the color to use as an argument.
(Use xcolors to get a list of possible color names; see Section 4.2.2 [Specifying Window Colors],
page 51.)

e To change the root window color to blue violet, type:
$ xsetroot -solid blueviolet

To change the root window pattern, use the ‘-bitmap’ option, and give the name of the bitmap file
to use.

e To tile the root window with a star pattern, type:
$ xsetroot -bitmap /usr/X11R6/include/bitmaps/star
When specifying a pattern, use the “-fg’ and ‘-bg’ options to specify the foreground and back-
ground colors.
¢ To tile the root window with a light slate gray star pattern on a black background, type (all on one
line):
$ xsetroot -fg slategray2 -bg black -bitmap
/usr/X11R6/include/bitmaps/star

Use xsetroot with the special ‘-gray’ option to change the root window to a shade of gray
designed to be easy on the eyes, with no pattern.

e To make the root window a gray color with no pattern, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

$ xsetroot -gray

NOTE: You can also put an image in the window (although this consumes memory that could be spared
for a memory-hogging Web browser instead; but see Section 17.2.2 [Putting an Image in the Root Win-
dow], page 186, for how to do it).

4.6.4 Choosing a Window Manager

Yes, there are many window managers to choose from. Some people like the flashiness of Enlightenment,
running with KDE or GNOME, while others prefer the spartan wm2—the choice is yours.

The following table describes some of the more popular window managers currently available.

WINDOW MANAGER DESCRIPTION

owm 9wm is a simple window manager inspired by AT&T’s Plan 9 window
manager—it does not use title bars or icons. It should appeal to those
who like the wily text editor (see Section 10.1 [Choosing the Perfect
Text Editor], page 107).
Debian: ‘9wm’
WWW: ftp://ftp.cs.su.oz.au/dhog/9wm/

afterstep AfterStep is inspired by the look and feel of the NeXTSTEP interface.
Debian: ‘afterstep’
WWW: http://www.afterstep.org/

enlightenment Enlightenment is a graphics-intensive window manager that uses desk-

top “themes” for decorating the various controls of the X session.
Debian: ‘enlightenment’
WWW: http: ?/www. enlightenment.org/

fvwm95 fvwm95 makes X look like a certain proprietary, corporate OS from

circa 1995.
Debian: ‘fvwm95’
WWW:

http://www.foxproject.org/xclass/fvwm95.html

twm The Tab Window Manager is an older, simple window manager that is
available on almost every system. (It’s also sometimes called Tom’s

Window Manager, named after its primary author, Tom LaStrange.)
Debian: ‘twm

wm2 wm2 is a minimalist, configuration-free window manager.
Debian: ‘wm2’
WWW: http://www.all-day-breakfast.com/wm2/

PART TWO: Files

The Linux Cookbook: Tips and Techniques for Everyday Use

5 Files and Directories

This chapter discusses the basic tools for manipulating files and directories—tools that are among the
most essential on a Linux system.

A file is a collection of data that is stored on disk and that can be manipulated as a single unit by its
name.

A directory is a file that acts as a folder for other files. A directory can also contain other directories
(subdirectories); a directory that contains another directory is called the parent directory of the directory
it contains.

A directory tree includes a directory and all of its files, including the contents of all subdirectories.
(Each directory is a “branch” in the “tree.”) A slash character alone (/) is the name of the root directory
at the base of the directory tree hierarchy; it is the trunk from which all other files or directories branch.

The following image shows an abridged version of the directory hierarchy.

dict

usr
jon
play
work
joe
home
bin

etc

(root)

To represent a directory’s place in the file hierarchy, specify all of the directories between it and the
root directory, using a slash (*/’) as the delimiter to separate directories. So the directory ‘dict’ as it
appears in the preceding illustration would be represented as ‘/usr/dict’.

Each user has a branch in the */home’ directory for their own files, called their home directory. The
hierarchy in the previous illustration has two home directories: ‘joe’ and ‘jon’, both subdirectories of
‘/home’.

When you are in a shell, you are always in a directory on the system, and that directory is called
the current working directory. When you first log in to the system, your home directory is the current
working directory.

Whenever specifying a file name as an argument to a tool or application, you can give the slash-
delimited path name relative to the current working directory. For example, if */home/joe’ is
the current working directory, you can use work to specify the directory ‘/home/joe/work’, and
work/scheduleto specify ‘schedule’, afilein the */home/joe/work’ directory.

Every directory has two special files whose names consist of one and two periods: . .’ refers to
the parent of the current working directory, and “.” refers to the current working directory itself. If
the current working directory is ‘/home/joe’, you can use ‘.’ to specify ‘/home/joe’and “. .’ to
specify ‘/home’. Furthermore, you can specify the */home/jon’ directory as . . /jon.

The Linux Cookbook: Tips and Techniques for Everyday Use

Another way to specify a file name is to specify a slash-delimited list of all of the directory branches
from the root directory (*/”) down to the file to specify. This unique, specific path from the root directory
to afile is called the file’s full path name. (When referring to a file that is not a directory, this is sometimes
called the absolute file name).

You can specify any file or directory on the system by giving its full path name. A file can have the
same name as other files in different directories on the system, but no two files or directories can share
a full path name. For example, user joe can have a file ‘schedule’ in his ‘/home/joe/work’
directory and a file ‘schedule’ in his */home/joe/play’ directory. While both files have the same
name (‘schedule’), they are contained in different directories, and each has a unique full path name—
‘/home/joe/work/schedule’and ‘/home/joe/play/schedule’.

However, you don’t have to type the full path name of a tool or application in order to start it. The
shell keeps a list of directories, called the path, where it searches for programs. If a program is “in your
path,” or in one of these directories, you can run it simply by typing its name.

By default, the path includes ‘/bin’ and ‘/usr/bin’. For example, the who command is in the
‘/usr/bin’ directory, so its full path name is /usr/bin/who. Since the ‘/usr/bin’ directory is
in the path, you can type who to run /usr/bin/who, no matter what the current working directory is.

The following table describes some of the standard directories on Linux systems.

DIRECTORY DESCRIPTION

/ The ancestor of all directories on the system; all other directories are
subdirectories of this directory, either directly or through other subdi-
rectories.

/bin Essential tools and other programs (or binaries).

/dev Files representing the system’s various hardware devices. For example,
you use the file */dev/cdrom’ to access the CD-ROM drive.

/etc Miscellaneous system configuration files, startup files, etcetera.

/home The home directories for all of the system’s users.

/1ib Essential system library files used by tools in “/bin’.

/proc Files that give information about current system processes.

/root The superuser’s home directory, whose username is root. (In the

past, the home directory for the superuser was simply */’; later,
‘/root’ was adopted for this purpose to reduce clutter in */’.)

/sbin Essential system administrator tools, or system binaries.

/tmp Temporary files.

/usr Subdirectories with files related to user tools and applications.

/usr/X11R6 Files relating to the X Window System, including those programs (in
‘/usr/X11R6/bin’) that run only under X.

/usr/bin Tools and applications for users.

/usr/dict Dictionaries and word lists (slowly being outmoded by
‘/usr/share/dict’).

/usr/doc Miscellaneous system documentation.

/usr/games Games and amusements.

/usr/info Files for the GNU Info hypertext system.

/usr/lib Libraries used by tools in “ /usr/bin’.

/usr/local Local files—files unique to the individual system—including lo-
cal documentation (in ‘/usr/local/doc’) and programs (in
‘/usr/local/bin’).

/usr/man The online manuals, which are read with the man command (see Sec-
tion 2.8.4 [Reading a Page from the System Manual], page 28).

/usr/share Data for installed applications that is architecture-independent and can
be shared between systems. A number of subdirectories with equiv-
alents in “/usr’ also appear here, including ‘/usr/share/doc’,
‘/usr/share/info’,and ‘/usr/share/icons’.

/usr/src Program source code for software compiled on the system.
/usr/tmp Another directory for temporary files.
/var Variable data files, such as spool queues and log files.

NOTE: For more information on the directory structure of Linux-based systems, view the compressed
files in the ‘/usr/doc/debian-policy/fsstnd/’ directory (see Section 9.1 [Perusing Text],
page 99).

5.1 Naming Files and Directories

File names can consist of upper- and lowercase letters, numbers, periods (‘.), hyphens (“-’), and under-
scores (*_").! File names are also case sensitive—‘foo’, ‘Foo’ and ‘FOO’ are all different file names.
File names are almost always all lowercase letters.

Linux does not force you to use file extensions, but it is convenient and useful to give files proper
extensions, since they will help you to identify file types at a glance. You can have files with multiple
extensions, such as ‘long.file.with.many.extensions’, and you can have files with none at
all, such as ‘myfile’. A JPEG image file, for example, does not have to have a . jpg’ or . jpeg’
extension, and program files do not need a special extension to make them work.

The file name before any file extensions is called the base file name. For example, the base file name
of ‘house.jpeqg’is ‘house’.

Some commonly used file extensions are shown in the following table, including extensions for text
and graphics files. (See Section 18.2 [Converting Images between Formats], page 196, for more exten-
sions used with image files, and see Section 21.3 [Playing a Sound File], page 215, for extensions used
with sound files.)

EXTENSION DESCRIPTION

.txt or .text Plain, unformatted text.

.tex Text formatted in the TeX or LaTeX formatting language.

.ltxor .latex Text formatted in the LaTeX formatting language (neither are as com-
mon as just using ‘. tex’).

.9z A compressed file.

.sgml SGML (“Standardized General Markup Language”) format.

.html HTML (“Hypertext Markup Language”) format.

.xml XML (“Extended Markup Language”) format.

The following sections show how to make new files; to rename an existing file, move it to a file with
the new name—see Section 5.5 [Moving Files and Directories], page 68.

1 Technically, there are other characters that you can use—but doing so may get you into trouble later on.

The Linux Cookbook: Tips and Techniques for Everyday Use

5.1.1 Making an Empty File

You may sometimes want to create a new, empty file as a kind of “placeholder.” To do so, give the name
that you want to use for the file as an argument to touch.

e To create the file ‘a_fresh start’in the current directory, type:
$ touch a fresh start

e To create the file ‘another empty file’inthe ‘work/completed’subdirectory of the cur-
rent directory, type:

$ touch work/completed/another empty file
This tool “touches” the files you give as arguments. If a file does not exist, it creates it; if the file

already exists, it changes the modification timestamp on the file to the current date and time, just as if
you had used the file.

NOTE: Often, you make a file when you edit it, such as when in a text or image or sound editor; in that
case, you don’t need to make the file first.

5.1.2 Making a Directory

Use mkdir (“make directory”) to make a new directory, giving the path name of the new directory as
an argument. Directory names follow the same conventions as used with other files—that is, no spaces,
slashes, or other unusual characters are recommended.

e To make a new directory called ‘work’ in the current working directory, type:
S mkdir work

e To make a new directory called ‘work’ in the /tmp’ directory, type:
$ mkdir /tmp/work

5.1.3 Making a Directory Tree

Use mkdir with the *-p’ option to make a subdirectory and any of its parents that do not already exist.
This is useful when you want to make a fairly complex directory tree from scratch, and don’t want to
have to make each directory individually.

e To make the ‘work/completed/2001’ directory—a subdirectory of the ‘completed’ direc-
tory, which in turn is a subdirectory of the ‘work’ directory in the current directory, type:

$ mkdir -p work/completed/2001

This makes a ‘2001’ subdirectory in the directory called ‘completed’, which in turn is in a di-
rectory called ‘work’ in the current directory; if the ‘completed’ or the ‘work’ directories do not
already exist, they are made as well (if you know that ‘work’ and ‘completed’ both exist, the above
command works fine without the ‘-p’ option).

5.2 Changing Directories

Use cd to change the current working directory; give the name of the new directory as an argument.
e To change the current working directory to ‘work’, a subdirectory in the current directory, type:
$ cd work
e To change to the current directory’s parent directory, type:
$ cod .. RET
You can also give the full path name of a directory.
e To change the current working directory to */usr/doc’, type:
S cd /usr/doc
This command makes ‘/usr/doc’ the current working directory.

5.2.1 Changing to Your Home Directory

With no arguments, cd makes your home directory the current working directory.
e To make your home directory the current working directory, type:

$ cd RED

5.2.2 Changing to the Last Directory You Visited

To return to the last directory you were in, use cd and give ‘-’ as the directory name. For example,
if you are in the ‘*/home/mrs/work/samples’ directory, and you use cd to change to some other
directory, then at any point while you are in this other directory you can type cd - to return the current
working directory to ‘/home /mrs/work/samples’.

e To return to the directory you were last in, type:
$ cd -

5.2.3 Getting the Name of the Current Directory

To determine what the current working directory is, use pwd (“print working directory”), which lists the
full path name of the current working directory.

e To determine what the current working directory is, type:

$ pwd RED

/home/mrs

$

In this example, pwd output the text ‘/home /mrs’, indicating that the current working directory is
‘/home/mrs’.

5.3 Listing Directories

Debian: ‘mc’

Debian: ‘mozilla’

WWW: http://www.gnome.org/mc/
WWW: http://www.mozilla.org/

Use 1s to list the contents of a directory. It takes as arguments the names of the directories to list. With
no arguments, 1s lists the contents of the current working directory.

e To list the contents of the current working directory, type:

$ 1s RED
apple cherry orange
$

In this example, the current working directory contains three files: ‘apple’, ‘cherry’, and
‘orange’.
e To list the contents of ‘work’, a subdirectory in the current directory, type:
S 1s work
e To list the contents of the */usr/doc’ directory, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

$ 1s /usr/doc

You cannot discern file types from the default listing; directories and executables are indistinguishable
from all other files. Using the ‘- F’ option, however, tells 1 s to place a */’ character after the names of
subdirectories and a ‘*’ character after the names of executable files.

e To list the contents of the directory so that directories and executables are distinguished from other
files, type:

$ 1ls -F
repeat* testl test2 words/
$

In this example, the current directory contains an executable file named ‘repeat’, a directory named
‘words’, and some other files named ‘test1’and ‘test2’.

Another way to list the contents of directories—and one | use all the time, when I’m in X and when
I also want to look at image files in those directories—is to use Mozilla or some other Web browser
as a local file browser. Use the prefix?* file:/ to view local files. Alone, it opens a directory list-
ing of the root directory; file: /home/joe opens a directory listing of user joe’s home directory,
file:/usr/local/src opens the local source code directory, and so on. Directory listings will be
rendered in HTML on the fly in almost all browsers, so you can click on subdirectories to traverse to
them, and click on files to open them in the browser.

Yet another way to list the contents of directories is to use a “file manager” tool, of which there are at
least a few on Linux; the most popular of these is probably the “Midnight Commander,” or mc.

The following subsections describe some commonly used options for controlling which files 1 s lists
and what information about those files 1s outputs. It is one of the most often used file commands on
Unix-like systems.

5.3.1 Listing File Attributes

Use 1s with the *-1" (“long”) option to output a more extensive directory listing—one that contains
each file’s size in bytes, last modification time, file type, and ownership and permissions (see Section 6.2
[File Ownership], page 76).

e To output a verbose listing of the */usr/doc/bash’ directory, type:

5zl

e A
$ 1s -1 /usr/doc/bash

total 72

-Irw-r--r-- 1 root root 13744 Oct 19 22:57 CHANGES.gz
-Irw-r--r-- 1 root root 1816 Oct 19 22:57 COMPAT.gz
-Yw-r--r-- 1 root root 16398 Oct 19 22:57 FAQ.gz
-Irw-r--r-- 1 root root 2928 Oct 19 22:57 INTRO.gz
-rw-r--r-- 1 root root 4751 Oct 19 22:57 NEWS.gz
-rw-r--r-- 1 root root 1588 Oct 19 22:57 POSIX.NOTES.gz
-Iw-r--r-- 1 root root 2718 Oct 19 22:57 README.Debian.
-YW-Y--Yr-- 1 root root 19596 Oct 19 22:57 changelog.gz
-rw-r--r-- 1 root root 1446 Oct 19 22:57 copyright
drwxr-xr-x 9 root root 1024 Jul 25 1997 examples

$

\ J

2 Called a URN, or “Uniform Resource Name.”

This command outputs a verbose listing of the files in */usr/doc/bash’. The first line of output
gives the total amount of disk space, in 1024-byte blocks, that the files take up (in this example, 72).
Each subsequent line displays several columns of information about one file.

The first column displays the file’s type and permissions. The first character in this column specifies
the file type; the hyphen (“-) is the default and means that the file is a regular file. Directories are denoted
by ‘d’, and symbolic links (see Section 5.7 [Giving a File More than One Name], page 71) are denoted
by ‘1’. The remaining nine characters of the first column show the file permissions (see Section 6.3
[Controlling Access to Files], page 76). The second column lists the number of hard links to the file. The
third and fourth columns give the names of the user and group that the file belongs to. The fifth column
gives the size of the file in bytes, the sixth column gives the date and time of last modification, and the
last column gives the file name.

5.3.2 Listing Directories Recursively

Use the “-R’ option to list a directory recursively, which outputs a listing of that directory and all of its
subdirectories.

e To output a recursive directory listing of the current directory, type:

4 N

$ 1s -R RED
play work

play:
notes

work:
notes

$

- J

In this example, the current working directory contains two subdirectories, ‘work’ and ‘play’, and
no other files. Each subdirectory contains a file called ‘notes’.

e To list all of the files on the system, type:
$ 1s -R /

This command recursively lists the contents of the root directory, */’, and all of its subdirectories. It
is common to combine this with the attribute option, *-1’, to output a verbose listing of all the files on
the system:

$ 1s -1R / RED

NOTE: You can’t list the contents of some directories on the system if you don’t have permission to do
S0 (see Section 6.3 [Controlling Access to Files], page 76).

5.3.3 Listing Newest Files First

Use the ‘-t option with 1s to sort a directory listing so that the newest files are listed first.
e To list all of the files in the ‘ /usr/tmp’ directory sorted with newest first, type:

$ 1s -t Jusr/tmp

5.3.4 Listing Hidden Files

By default, 1s does not output files that begin with a period character (‘.”). To reduce clutter, many
applications “hide” configuration files in your home directory by giving them names that begin with a

The Linux Cookbook: Tips and Techniques for Everyday Use

period; these are called dot files, or sometimes “hidden” files. As mentioned earlier, every directory has
two special dot files: “. .’, the parent directory, and *.’, the directory itself.

To list all contents of a directory, including these dot files, use the “-a’ option.

e To list all files in the current directory, type:

$ 1Is -a (RET)

Use the “-A’ option to list almost all files in the directory: it lists all files, including dot files, with the
exception of “. .” and “.".

e To list all files in the current directory except for “. .” and *.’, type:

$ 1s -A RED

5.3.5 Listing Directories in Color

Use 1s with the ‘- -coloxr’ option to list the directory contents in color; files appear in different colors
depending on their content. Some of the default color settings include displaying directory names in
blue, text files in white, executable files in green, and links in turquoise.

e To list the files in the root directory in color, type:

4 N
$ 1s —--color /
etc man usr
floppy mnt var
bin home proc
boot initrd root
cdrom lib sbin
dev lost+found tmp
5
N J

NOTE: It’s common practice to create a command alias that substitutes ‘1s - -coloxr’ for ‘1s’, so that
typing just 1s outputs a color listing. To learn more about making aliases, see Section 3.6.2 [Making a
Command Alias], page 43.

5.3.6 Listing Directory Tree Graphs

Debian: ‘tree’
WWW: ftp://mama.indstate.edu/linux/tree/

Use tree to output an ASCII text tree graph of a given directory tree.

e To output a tree graph of the current directory and all its subdirectories, type:

(" N

S tree

| -- projects
| | -- current
| ‘-- old
| - 1
| .- 2
‘-- trip
‘-- schedule. txt

4 directories, 3 files

$

. J

In the preceding example, a tree graph is drawn showing the current directory, which contains the
two directories ‘projects’ and ‘trip’; the ‘projects’ directory in turn contains the directories
‘current’and ‘old’.

To output a tree graph of a specific directory tree, give the name of that directory tree as an argument.
e To output a tree graph of your home directory and all its subdirectories, type:
S tree T (RET
To output a graph of a directory tree containing directory names only, use the ‘-d’ option. This is

useful for outputting a directory tree of the entire system, or for getting a picture of a particular directory
tree.

e To output a tree graph of the entire system to the file ‘tree’, type:
S tree -d / > tree

e To peruse a tree graph of the “/usr/local’ directory tree, type:
$ tree -d /usr/local |less

NOTE: Another tool for outputting directory trees is described in Section 24.2 [Listing a File’s Disk
Usage], page 233.

5.3.7 Additional Directory Listing Options

The 1s tool has many options to control the files listed and the information given for each file; the
following table describes some of them. (The options are case sensitive.)

OPTION DESCRIPTION

--color Colorize the names of files depending on their type.

-R Produce a recursive listing.

-a List all files in a directory, including hidden, or “dot,” files.

-d List directories by name instead of listing their contents.

-f Do not sort directory contents; list them in the order they are written
on the disk.

-1 Produce a verbose listing.

-r Sort directory contents in reverse order.

-8 Output the size—as an integer in 1K blocks—of each file to the left of
the file name.

-t Sort output by timestamp instead of alphabetically, so the newest files

are listed first.

The Linux Cookbook: Tips and Techniques for Everyday Use

NOTE: You can combine any of these options; for example, to list the contents of a directory sorted
newest first, and display all attributes, use ‘-1t’. To recursively list all hidden files and display all
attributes, use ‘-1Ra’. It doesn’t matter what order you put the options in—so ‘- 1Ra’ is the same as,
say, ‘“-alR’.

5.4 Copying Files and Directories

Use cp (“copy”) to copy files. It takes two arguments: the source file, which is the existing file to copy,
and the target file, which is the file name for the new copy. cp then makes an identical copy of the source
file, giving it the specified target name. If a file with the target name already exists, cp overwrites it. It
does not alter the source file.

e To copy the file ‘my-copy’ to the file ‘neighbor-copy’, type:
S cp my-copy neighbor-copy
This command creates a new file called ‘neighbor-copy’ that is identical to ‘my-copy’ in every

respect except for its name, owner, group, and timestamp—the new file has a timestamp that shows the
time when it was copied. The file ‘my-copy’ is not altered.

Use the “-p’ (“preserve”) option to preserve all attributes of the original file, including its timestamp,
owner, group, and permissions.

e To copy the file ‘my-copy’ to the file ‘neighbor-copy’, preserving all of the attributes of the
source file in the target file, type:
S cp -p my-copy neighbor-copy
This command copies the file ‘my-copy’ to a new file called ‘neighbor-copy’ that is identical
to ‘my-copy’ in every respect except for its name.

To copy a directory along with the files and subdirectories it contains, use the -R option—it makes a
recursive copy of the specified directory and its entire contents.

e To copy the directory ‘public _html’, and all of its files and subdirectories, to a new directory
called ‘private html’, type:
$ cp -R public html private html
The “-R’ option does not copy files that are symbolic links (see Section 5.7 [Giving a File More than
One Name], page 71), and it does not retain all original permissions. To recursively copy a directory

including links, and retain all of its permissions, use the ‘-a’ (“archive”) option. This is useful for
making a backup copy of a large directory tree.

e Tomake an archive copy of the directory tree ‘public_html’to the directory ‘private html’,
type:
$ cp -a public html private html

5.5 Moving Files and Directories

Use the mv (“move”) tool to move, or rename, a file or directory to a different location. It takes two
arguments: the name of the file or directory to move followed by the path name to move it to. If you
move a file to a directory that contains a file of the same name, the file is overwritten.

e To move the file ‘notes’ in the current working directory to “. . /play’, type:
$ mv notes ../play

This command moves the file ‘notes’ in the current directory to ‘play’, a subdirectory of the
current working directory’s parent. If a file ‘notes’ already exists in ‘play’, that file is overwritten.
If the subdirectory ‘play’ does not exist, this command moves ‘notes’ to its parent directory and
renames it ‘play’.

To move a file or directory that is not in the current directory, give its full path name as an argument.

e To move the file */usr/tmp/notes’ to the current working directory, type:
$ mv /usr/tmp/notes . (RET

This command moves the file * /usr/tmp/notes’ to the current working directory.

To move a directory, give the path name of the directory you want to move and the path name to move
it to as arguments.

e To move the directory ‘work’ in the current working directory to ‘play’, type:
$ mv work play
This command moves the directory ‘work’ in the current directory to the directory ‘play’. If the
directory ‘play’ already exists, mv puts ‘work’ inside ‘play’—it does not overwrite directories.

Renaming a file is the same as moving it; just specify as arguments the file to rename followed by the
new file name.

e To rename the file ‘notes’ to ‘notes.old’, type:
S mv notes notes.old

5.5.1 Changing File Names to Lowercase

WWW: http://eternity.2y.net/chcase

To change the uppercase letters in a file name to lowercase (or vice versa), use chcase. It takes as
arguments the files whose names it should change.

e To change the file names of all of the files in the current directory to lowercase letters, type:
S chcase *

Use the “-u’ option to change file names to all uppercase letters.
e To change file names of all of the files with a “. dos” extension in the *~/tmp’ directory to all
uppercase letters, type:
$ chcase -u ~/tmp/*.dos
By default, chcase does not rename directories; use the ‘-d’ option to rename directories as well
as other files. The ‘-’ option recursively descends into any subdirectories and renames those files, too.
e To change all of the files and subdirectory names in the current directory to all lowercase letters,
type:
S chcase -d *
e To change all of the files and subdirectory names in the current directory to all uppercase letters,
and descend recursively into all subdirectories, type:
$ chcase -d -r -u *
e To change all of the files in the current directory to all lowercase letters, and descend recursively
into all subdirectories (but do not change any directory names), type:

S chcase -r *

5.5.2 Renaming Multiple Files with the Same Extension

WWW: http://eternity.2y.net/chcase

To give a different file name extension to a group of files that share the same file name extension, use
chcase with the *-x’ option for specifying a Perl expression; give the patterns to match the source and
target files as a quoted argument.

For example, you can rename all file names ending in “.htm’ to end in ‘.html’ by giving
‘s/htm/html/’ as the expression to use.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To rename all of the files in the current directory with a *. htm’ extension to ‘. html’, type:
S chcase -x ’‘s/htm/html/’ ’*.htm’
By default, chcase will not overwrite files; so if you want to rename ‘index.htm’ to

‘index.html’, and both files already exist in the current directory, the above example will do nothing.
Use the - o’ option to specify that existing files may be overwritten.

e To rename all of the files in the current directory with a * . htm’ extension to *. htm1” and overwrite
any existing files, type:

$ chcase -o -x ’s/htm/html/’ ’'*.htm’

NOTE: Renaming multiple files at once is a common request.

5.6 Removing Files and Directories

Use rm (“remove”) to delete a file and remove it from the system. Give the name of the file to remove as
an argument.

e To remove the file ‘notes’ in the current working directory, type:
S rm notes

To remove a directory and all of the files and subdirectories it contains, use the *-R’ (“recursive”)
option.
e To remove the directory ‘waste’ and all of its contents, type:
S rm -R waste
To remove an empty directory, use rmdir; it removes the empty directories you specify. If you
specify a directory that contains files or subdirectories, rmdi r reports an error.
e To remove the directory ‘empty’, type:

S rmdir empty

5.6.1 Removing a File with a Strange Name

Files with strange characters in their names (like spaces, control characters, beginning hyphens, and so
on) pose a problem when you want to remove them. There are a few solutions to this problem.

One way is to use tab completion to complete the name of the file (see Section 3.1.2 [Letting the
Shell Complete What You Type], page 35). This works when the name of the file you want to remove
has enough characters to uniquely identify it so that completion can work.

e To use tab completion to remove the file ‘“No Way’ in the current directory, type:
$ rm No(TAB) Way

In the above example, after was typed, the shell filled in the rest of the file name (* way”’).

When a file name begins with a control character or other strange character, specify the file name
with a file name pattern that uniquely identifies it (see Section 5.8 [Specifying File Names with Patterns],
page 72, for tips on building file name patterns). Use the “- i’ option to verify the deletion.

e To delete the file “"Acat’ in a directory that also contains the files ‘cat’ and ‘dog’, type:

S rm -1 ?cat
rm: remove ‘"Acat’? y
$

In the above example, the expansion pattern ‘?cat’ matches the file ‘~Acat’ and no other files in
the directory. The *-1i’ option was used because, in some cases, no unique pattern can be made for a
file—for example, if this directory also contained a file called ‘1cat’, the above rm command would
also attempt to remove it; with the ‘- i’ option, you can answer n to it.

These first two methods will not work with files that begin with a hyphen character, because rm will
interpret such a file name as an option; to remove such a file, use the *- -’ option—it specifies that what
follows are arguments and not options.

e Toremove the file ‘- cat’ from the current directory, type:
S rm -- -cat

5.6.2 A Safe Way to Remove a File

WWW: ftp://ftp.wg.omron.co.jp/pub/unix-faqg/docs
WWW: http://dsl.org/comp/tinyutils/

Once a file is removed, it is permanently deleted and there is no command you can use to restore it; you
cannot “undelete” it. (Although if you can unmount the filesystem that contained the file immediately
after you deleted the file, a wizard might be able to help reconstruct the lost file by using grep to search
the filesystem device file.)

A safer way to remove files is to use del, which is simply an alias to rm with the *-i” option. This
specifies for rm to run in interactive mode and confirm the deletion of each file. It may be good practice
to get in the habit of using de1 all the time, so that you don’t make an accidental slip and rm an important
file.

NOTE: Question 3.6 in the Unix FAQ (see ‘/usr/doc/FAQ/unix-faqg-part3’) discusses this
issue, and gives a shell script called can that you can use in place of rm—it puts files in a “trashcan”
directory instead of removing them; you then periodically empty out the trashcan with rm.

5.7 Giving a File More than One Name

Links are special files that point to other files; when you act on a file that is a link, you act on the file it
points to. There are two kinds of links: hard links and symbolic links. A hard link is another name for an
existing file; there is no difference between the link and the original file. So if you make a hard link from
file ‘“foo’ to file *bar’, and then remove file ‘baxr’, file ‘foo’ is also removed. Each file has at least
one hard link, which is the original file name itself. Directories always have at least two hard links—the
directory name itself (which appears in its parent directory) and the special file “.” inside the directory.
Likewise, when you make a new subdirectory, the parent directory gains a new hard link for the special
file *. .’ inside the new subdirectory.

A symbolic link (sometimes called a “symlink” or *“soft link™) passes most operations—such as
reading and writing—to the file it points to, just as a hard link does. However, if you remove a symlink,
you remove only the symlink itself, and not the original file.

Use 1n (“link”) to make links between files. Give as arguments the name of the source file to link
from and the name of the new file to link to. By default, 1n makes hard links.

e To create a hard link from ‘seattle’to ‘emerald-city’, type:
S 1ln seattle emerald-city
This command makes a hard link from an existing file, ‘seattle’, toanewfile, ‘emerald-city’.
You can read and edit file ‘emerald-city’ just as you would ‘seattle’; any changes you

make to ‘emerald-city’ are also written to ‘seattle’ (and vice versa). If you remove the file
‘emerald-city’, file ‘seattle’ is also removed.

To create a symlink instead of a hard link, use the “- s’ option.
e To create a symbolic link from ‘seattle’to ‘emerald-city’, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

$ In -s seattle emerald-city

After running this command, you can read and edit ‘emerald-city’; any changes you make
to ‘emerald-city’ will be written to ‘seattle’ (and vice versa). But if you remove the file
‘emerald-city’, the file ‘seattle’ will not be removed.

5.8 Specifying File Names with Patterns

The shell provides a way to construct patterns, called file name expansions, that specify a group of files.
You can use them when specifying file and directory names as arguments to any tool or application.

The following table lists the various file expansion characters and their meaning.

CHARACTER DESCRIPTION

* The asterisk matches a series of zero or more characters, and is some-
times called the “wildcard” character. For example, * alone matches
all file names, a * matches all file names that consist of an ‘a’ character
followed by zero or more characters, and a *b matches all file names
that begin with an ‘a’ character and end with a ‘b’ character, with any
(or no) characters in between.

? The question mark matches exactly one character. Therefore, ? alone
matches all file names with exactly one character, ?? matches all file
names with exactly two characters, and a ? matches any file name that
begins with an “a’ character and has exactly one character following
it.

[list] Square brackets match one character in list. For example, [ab]
matches exactly two file names: ‘a’ and ‘b’. The pattern c[io]
matches ‘ci’ and ‘co’, but no other file names.

The tilde character expands to your home directory. For exam-
ple, if your username is joe and therefore your home directory is
‘/home/joe’, then *~’ expands to ‘/home/joe’. You can follow
the tilde with a path to specify a file in your home directory—for ex-
ample, *~ /work’ expands to ‘/home/joe/work’.
Brackets also have special meaning when used in conjunction with other characters, as described by
the following table.

CHARACTER DESCRIPTION

- A hyphen as part of a bracketed list denotes a range of characters
to match—so [a-m] matches any of the lowercase letters from ‘a’
through ‘m’. To match a literal hyphen character, use it as the first
or last character in the list. For example, a [-b] ¢ matches the files
‘a-c’and ‘abce’.

! Put an exclamation point at the beginning of a bracketed list to match
all characters except those listed. For example, a [!b] ¢ matches all
files that begin with an “a’ character, end with a ‘c’ character, and
have any one character, except a ‘b’ character, in between; it matches
‘aac’, ‘a-c’, ‘adc’, and so on.

You can combine these special expansion characters in any combination, and you can specify more
than one pattern as multiple arguments. The following examples show file expansion in action using
commands described in this chapter.

e Tolistall files in the */usr/bin’ directory that have the text ‘tex’ anywhere in their name, type:
S 1s /usr/bin/*tex*
e To copy all files whose names end with “. txt’ to the ‘doc’ subdirectory, type:

S cp *.txt doc

e Tooutput a verbose listing of all files whose names end with eithera “ . txt’ or *. text’ extension,
sorting the list so that newer files are listed first, type:

$ 1s -1t *.txt *.text
e To move all files in the * /usr/tmp’ directory whose names consist of the text ‘song’ followed by
an integer from0to 9 and a “. cdda’ extension, placing them in a directory ‘music’ in your home
directory, type:
$ mv /usr/tmp/song[0-9].cdda ~/music
e Toremove all files in the current working directory that begin with a hyphen and have the text ‘out’
somewhere else in their file name, type:

S rm -- -*out*
e To concatenate all files whose names consist of an ‘a’ character followed by two or more characters,
type:
S cat arr#

5.9 Browsing Files

You can view and peruse local files in a Web browser, such as the text-only browser 1ynx or the graphical
Mozilla browser for X.

The 1ynx tool is very good for browsing files on the system—give the name of the directory to
browse, and 1ynx will display a listing of available files and directories in that directory.

You can use the cursor keys to browse and press on a subdirectory to traverse to that direc-
tory; 1ynx can display plain text files, compressed text files, and files written in HTML,; it’s useful for
browsing system documentation inthe */usr/doc’and */usr/share/doc’ directories, where many
software packages come with help files and manuals written in HTML.

e To browse the system documentation files in the */usr/doc’ directory, type:
$ lynx /usr/doc
For more about using 1ynx, see Section 31.3 [Reading Text from the Web], page 288.

With Mozilla and some other browsers you must precede the full path name with the ‘file:/’
URN—so the “/usr/doc’ directory would be ‘file://usr/doc’. With 1ynx, just give a local
path name as an argument.

e To browse the system documentation files in the */usr/doc’ directory in Mozilla, type the fol-
lowing in Mozilla’s Location window:

file://usr/doc

The Linux Cookbook: Tips and Techniques for Everyday Use

6 Sharing Files

Groups, file ownership, and access permissions are Linux features that enable users to share files with
one another. But even if you don’t plan on sharing files with other users on your system, familiarity with
these concepts will help you understand how file access and security work in Linux.

6.1 Groups and How to Work in Them

A group is a set of users, created to share files and to facilitate collaboration. Each member of a group can
work with the group’s files and make new files that belong to the group. The system administrator can
add new groups and give users membership to the different groups, according to the users’ organizational
needs. For example, a system used by the crew of a ship might have groups such as galley, deck,
bridge, and crew; the user captain might be a member of all the groups, but user steward might
be a member of only the galley and crew groups.

On a Linux system, you’re always a member of at least one group: your login group. You are the only
member of this group, and its group name is the same as your username.

Let’s look at how to manage your group memberships.

6.1.1 Listing the Groups a User Belongs To

To list a user’s group memberships, use the groups tool. Give a username as an argument, and groups
outputs a line containing that username followed by all of the groups the user is a member of. With no
arguments, groups lists your own username and group memberships.

e To list your group memberships, type:

$ groups
steward galley crew

$

In this example, three groups are output: steward (the user’s login group), galley, and crew.
e To list the group memberships of user blackbeard, type:

$ groups blackbeard
blackbeard : blackbeard
$

In this example, the command outputs the given username, blackbeard, followed by the name
of one group, blackbeard, indicating that user blackbeard belongs to only one group: his login

group.
6.1.2 Listing the Members of a Group

Debian: ‘members’

To list the members of a particular group, use the members tool, giving the name of the particular group
as an argument.

e To output a list of the members of the galley group, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

S members galley
captain steward pete

$

In this example, three usernames are output, indicating that these three users are the members of the
galley group.

6.2 File Ownership

Every file belongs to both a user and a group—usually to the user who created it and to the group the user
was working in at the time (which is almost always the user’s login group). File ownership determines
the type of access users have to particular files (see Section 6.3 [Controlling Access to Files], page 76).

6.2.1 Determining the Ownership of a File

To find out which user and group own a particular file, use 1s with the *-1" option to list the file’s
attributes (see Section 5.3.1 [Listing File Attributes], page 64). The name of the user who owns the file
appears in the third column of the output, and the name of the group that owns the file appears in the
fourth column.

For example, suppose the verbose listing for a file called ‘cruise’ looks like this:
-IrWXrw-Yr-- 1 captain crew 8,420 Jan 12 21:42 cruise
The user who owns this file is captain, and the group that owns it is crew.

NOTE: When you create a file, it normally belongs to you and to your login group, but you can change
its ownership, as described in the next recipe. You normally own all of the files in your home directory.

6.2.2 Changing the Ownership of a File

You can’t give away a file to another user, but other users can make copies of a file that belongs to you,
provided they have read permission for that file (see Section 6.3 [Controlling Access to Files], page 76).
When you make a copy of another user’s file, you own the copy.

You can also change the group ownership of any file you own. To do this, use chgrp; it takes as
arguments the name of the group to transfer ownership to and the names of the files to work on. You
must be a member of the group you want to give ownership to.

e To change the group ownership of file ‘cruise’ to bridge, type:
$ chgrp bridge cruise
This command transfers group ownership of ‘cruise’ to bridge; the file’s group access permis-
sions (see Section 6.3 [Controlling Access to Files], page 76) now apply to the members of the bridge
group.
Use the “-R’ option to recursively change the group ownership of directories and all of their contents.
e To give group ownership of the ‘maps’ directory and all the files it contains to the bridge group,
type:
$ chgrp -R bridge maps

6.3 Controlling Access to Files

Each file has permissions that specify what type of access to the file users have. There are three kinds
of permissions: read, write, and execute. You need read permission for a file to read its contents, write
permission to write changes to or remove it, and execute permission to run it as a program.

Normally, users have write permission only for files in their own home directories. Only the superuser
has write permission for the files in important directories, such as “/bin’ and ‘/etc’—s0 as a regular
user, you never have to worry about accidentally writing to or removing an important system file.

Permissions work differently for directories than for other kinds of files. Read permission for a
directory means that you can see the files in the directory; write permission lets you create, move, or
remove files in the directory; and execute permission lets you use the directory name in a path (see
Chapter 5 [Files and Directories], page 59).

If you have read permission but not execute permission for a directory, you can only read the names
of files in that directory—you can’t read their other attributes, examine their contents, write to them, or
execute them. With execute but not read permission for a directory, you can read, write to, or execute
any file in the directory, provided that you know its name and that you have the appropriate permissions
for that file.

Each file has separate permissions for three categories of users: the user who owns the file, all other
members of the group that owns the file, and all other users on the system. If you are a member of the
group that owns a file, the file’s group permissions apply to you (unless you are the owner of the file, in
which case the user permissions apply to you).

When you create a new file, it has a default set of permissions—usually read and write for the user,
and read for the group and all other users. (On some systems, the default permissions are read and write
for both the user and group, and read for all other users.)

The file access permissions for a file are collectively called its access mode. The following sections
describe how to list and change file access modes, including how to set the most commonly used access
modes.

NOTE: The superuser, root, can always access any file on the system, regardless of its access permis-
sions.

See Infofile ‘fileutils.info’,node ‘File permissions’, for more information on file per-
missions and access modes.

6.3.1 Listing the Permissions of a File

To list a file’s access permissions, use 1 s with the -1 option (see Section 5.3.1 [Listing File Attributes],
page 64). File access permissions appear in the first column of the output, after the character for file type.

For example, consider the verbose listing of the file ‘cruise’:
-IrWXYrw-Y-- 1 captain crew 8,420 Jan 12 21:42 cruise

The first character (*-’) is the file type; the next three characters (‘rwx’) specify permissions for the
user who owns the file; and the next three (‘rw-") specify permissions for all members of the group that
owns the file except for the user who owns it. The last three characters in the column (‘r--") specify
permissions for all other users on the system.

All three permissions sections have the same format, indicating from left to right, read, write, and
execute permission with ‘r’, ‘w’, and ‘x’ characters. A hyphen (“-’) in place of one of these letters
indicates that permission is not given.

In this example, the listing indicates that the user who owns the file, captain, has read, write, and
execute permission, and the group that owns the file, crew, has read and write permission. All other
users on the system have only read permission.

6.3.2 Changing the Permissions of a File

To change the access mode of any file you own, use the chmod (“change mode”) tool. It takes two
arguments: an operation, which specifies the permissions to grant or revoke for certain users, and the
names of the files to work on.

To build an operation, first specify the category or categories of users as a combination of the follow-
ing characters:
CHARACTER CATEGORY
u The user who owns the file.

The Linux Cookbook: Tips and Techniques for Everyday Use

All other members of the file’s group.

o All other users on the system.

a All users on the system; this is the same as ‘ugo’.
Follow this with the operator denoting the action to take:

OPERATOR ACTION

+ Add permissions to the user’s existing permissions.

- Remove permissions from the user’s existing permissions.

= Make these the only permissions the user has for this file.
Finally, specify the permissions themselves:

CHARACTER PERMISSION

r Set read permission.

w Set write permission.

X Set execute permission.

For example, use ‘u+w’ to add write permission to the existing permissions for the user who owns
the file, and use ‘a+rw’ to add both read and write permissions to the existing permissions of all users.
(You could also use ‘ugo+rw’ instead of ‘a+rw’.)

6.3.3 Write-Protecting a File

If you revoke users’ write permissions for a file, they can no longer write to or remove the file. This
effectively “write-protects” a file, preventing accidental changes to it. A write-protected file is sometimes
called a “read only” file.

To write-protect a file so that no users other than yourself can write to it, use chmod with ‘go-w’ as
the operation.

e To write-protect the file ‘cruise’ so that no other users can change it, type:
S chmod go-w cruise

6.3.4 Making a File Private

To make a file private from all other users on the system, use chmod with ‘go=" as the operation. This
revokes all group and other access permissions.

e To make the file ‘cruise’ private from all users but yourself, type:
$ chmod go= cruise

6.3.5 Making a File Public

To allow anyone with an account on the system to read and make changes to a file, use chmod with
‘a+rw’ as the operation. This grants read and write permission to all users, making the file “public.”
When a file has read permission set for all users, it is called world readable, and when a file has write
permission set for all users, it is called world writable.

e To make the file ‘cruise’ both world readable and world writable, type:
$ chmod a+rw cruise

6.3.6 Making a File Executable

An executable file is a file that you can run as a program. To change the permissions of a file so that all
users can run it as a program, use chmod with ‘a+x’ as the operation.

e To give execute permission to all users for the file ‘myscript’, type:
S chmod a+x myscript

NOTE: Often, shell scripts that you obtain or write yourself do not have execute permission set, and
you’ll have to do this yourself.

The Linux Cookbook: Tips and Techniques for Everyday Use

7 Finding Files

Sometimes you will need to find files on the system that match given criteria, such as name and file size.
This chapter will show you how to find a file when you know only part of the file name, and how to find
a file whose name matches a given pattern. You will also learn how to list files and directories by their
size and to find the locations of commands.

NOTE: When you want to find files in a directory whose contents match a particular pattern, search
through the files with grep—see Chapter 14 [Searching Text], page 147. A method of searching for a
given pattern in the contents of files in different directories is given in Section 7.2.5 [Running Commands
on the Files You Find], page 84.

See Info file ‘find . info’, node ‘Top’, for more information on finding files.

7.1 Finding All Files That Match a Pattern

The simplest way to find files is with GNU locate. Use it when you want to list all files on the
system whose full path name matches a particular pattern—for example, all files with the text ‘audio’
somewhere in their full path name, or all files ending with *‘ogg’; 1ocate outputs a list of all files on the
system that match the pattern, giving their full path name. When specifying a pattern, you can use any
of the file name expansion characters (see Section 5.8 [Specifying File Names with Patterns], page 72).

e To find all the files on the system that have the text ‘audio’ anywhere in their name, type:
S locate audio

e To find all the files on the system whose file names end with the text ‘ogg’, type:
S locate *ogg

e To find all hidden *“dotfiles” on the system, type:
$ locate /. RET

NOTE: locate searches are not case sensitive.

Sometimes, a 1ocate search will generate a lot of output. Pipe the output to 1ess to peruse it (see
Section 9.1 [Perusing Text], page 99).

7.2 Finding Files in a Directory Tree

Use £ind to find specific files in a particular directory tree, specifying the name of the directory tree to
search, the criteria to match, and—optionally—the action to perform on the found files. (Unlike most
other tools, you must specify the directory tree argument before any other options.)

You can specify a number of search criteria, and format the output in various ways; the following
sections include recipes for the most commonly used £ ind commands, as well as a list of £ind’s most
popular options.

7.2.1 Finding Files in a Directory Tree by Name

Use £ ind to find files in a directory tree by name. Give the name of the directory tree to search through,
and use the ‘-name’ option followed by the name you want to find.

e To list all files on the system whose file name is *top’, type:
$ find / -name top
This command will search all directories on the system to which you have access; if you don’t have
execute permission for a directory, £ind will report that permission is denied to search the directory.

The *-name’ option is case sensitive; use the similar ‘- iname’ option to find name regardless of
case.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To list all files on the system whose file name is ‘top’, regardless of case, type:
$ find / -iname top
This command would match any files whose name consisted of the letters ‘top’, regardless of case—
including ‘Top’, ‘top’, and “TOP’.
Use file expansion characters (see Section 5.8 [Specifying File Names with Patterns], page 72) to find
files whose names match a pattern. Give these file name patterns between single quotes.
e To list all files on the system whose names begin with the characters ‘top’, type:
$ find / -name ‘top*’
e To list all files whose names begin with the three characters ‘top’ followed by exactly three more
characters, type:
$ find / -name ’‘top???’
e To list all files whose names begin with the three characters ‘top’ followed by five or more charac-
ters, type:

e To list all files in your home directory tree that end in *. tex’, regardless of case, type:
$ find ~ -iname ‘*.tex’
e To listall filesin the ‘ /usr/share’ directory tree with the text ‘£arm’ somewhere in their name,
type:
$ find /usr/share -name ’*farm*’
Use ‘-regex’ in place of ‘-name’ to search for files whose names match a regular expression, or

a pattern describing a set of strings (see Section 14.2 [Regular Expressions—Matching Text Patterns],
page 148).
e To list all files in the current directory tree whose names have either the string ‘net’ or ‘comm’
anywhere in their file names, type:

$ find . -regex ’.*\ (net\|comm\).*’

NOTE: The ‘-regex’ option matches the whole path name, relative to the directory tree you specify,
and not just file names.

7.2.2 Finding Files in a Directory Tree by Size

To find files of a certain size, use the ‘-size’ option, following it with the file size to match. The file
size takes one of three forms: when preceded with a plus sign (“+7), it matches all files greater than the
given size; when preceded with a hyphen or minus sign (“-), it matches all files less than the given size;
with neither prefix, it matches all files whose size is exactly as specified. (The default unit is 512-byte
blocks; follow the size with ‘k’ to denote kilobytes or ‘b’ to denote bytes.)

e To list all files in the */usr/local’ directory tree that are greater than 10,000 kilobytes in size,
type:
$ find /usr/local -size +10000k
e To list all files in your home directory tree less than 300 bytes in size, type:
S find ~ -size -300b
e To list all files on the system whose size is exactly 42 512-byte blocks, type:
$ find / -size 42
Use the ‘-empty’ option to find empty files—files whose size is 0 bytes. This is useful for finding
files that you might not need, and can remove.
¢ To find all empty files in your home directory tree, type:

$ find © -empty

NOTE: To find the largest or smallest files in a given directory, output a sorted listing of that directory
(see Section 7.3 [Finding Files in Directory Listings], page 86).

7.2.3 Finding Files in a Directory Tree by Modification Time

To find files last modified during a specified time, use £ind with the ‘-mtime’ or ‘-mmin’ options;
the argument you give with ‘-mtime’ specifies the number of 24-hour periods, and with ‘-mmin’ it
specifies the number of minutes.

e To list the files in the “* /usr/local’ directory tree that were modified exactly 24 hours ago, type:
$ find /usr/local -mtime 1
e To list the files in the * /usx’ directory tree that were modified exactly five minutes ago, type:
$ find /usr -mmin 5
To specify a range of time, precede the number you give with either a plus sign (*+°) to match times

that are equal to or greater than the given argument, or a hyphen or minus sign (“-’) to match times that
are equal to or less than the given argument.

e To list the files in the */usr/local’ directory tree that were modified within the past 24 hours,
type:
$ find /usr/local -mtime -1
e To list the files in the * /usx’ directory tree that were modified within the past five minutes, type:
$ find /usr -mmin -5
Include the ‘-daystart’ option to measure time from the beginning of the current day instead of
24 hours ago.
e To list all of the files in your home directory tree that were modified yesterday, type:
$ find © -mtime 1 -daystart
e To list all of the files in the */usx’ directory tree that were modified one year or longer ago, type:
$ find /usr -mtime +356 -daystart
e To list all of the files in your home directory tree that were modified from two to four days ago,
type:
S find ° -mtime 2 -mtime -4 -daystart
In the preceding example, the combined options ‘-mtime 2’ and ‘-mtime -4’ matched files that
were modified between two and four days ago.
To find files newer than a given file, give the name of that file as an argument to the ‘-newexr’ option.
e Tofind files in the ‘ /etc’ directory tree that are newer than the file */etc/motd’, type:
$ find /etc -newer /etc/motd
To find files newer than a given date, use the trick described in the £ind Info documentation: create

a temporary file in */tmp’ with touch whose timestamp is set to the date you want to search for, and
then specify that temporary file as the argument to ‘-newer’.

e To list all files in your home directory tree that were modified after May 4 of the current year, type:
$ touch -t 05040000 /tmp/timestamp
$ find ~ -newer /tmp/timestamp

In this example, a temporary file called */tmp/timestamp’ is written; after the search, you can
remove it (see Section 5.6 [Removing Files and Directories], page 70).

NOTE: You can also find files that were last accessed a number of days after they were modified by
giving that number as an argument to the “-used’ option. This is useful for finding files that get little
use—files matching ‘-used +100’, say, were accessed 100 or more days after they were last modified.

The Linux Cookbook: Tips and Techniques for Everyday Use

7.2.4 Finding Files in a Directory Tree by Owner

To find files owned by a particular user, give the username to search for as an argument to the ‘-user’
option.
e Tolistall filesin the ‘*/usr/local/fonts’ directory tree owned by the user warwick, type:
$ find /usr/local/fonts -user warwick

The ‘-group’ option is similar, but it matches group ownership instead of user ownership.
e To list all files in the * /dev’ directory tree owned by the audio group, type:
$ find /dev -group audio

7.2.5 Running Commands on the Files You Find

You can also use £ ind to execute a command you specify on each found file, by giving the command as
an argument to the ‘-exec’ option. If you use the string ** { } * in the command, this string is replaced
with the file name of the current found file when the command executes. Mark the end of the command
with the string 7 ; ' .
e Tofind all files in the *~/html /’ directory tree with an *. html’ extension, and output lines from
these files that contain the string ‘organic’, type:

$ find ~/html/ -name ’'*.html’ -exec grep organic ‘{}’ ’;’
In this example, the command grep organic file is executed for each file that £ind finds, with
file being the name of each file in turn.
To have f£ind pause and confirm execution for each file it finds, use ‘-ok’ instead of ‘-exec’.

e To remove files from your home directory tree that were accessed more than one year after they
were last modified, pausing to confirm before each removal, type:

$ find ~ -used +365 -ok rm ‘{}’ ’;’

7.2.6 Finding Files by Multiple Criteria

You can combine many of £ind’s options to find files that match multiple criteria.

e To list files in your home directory tree whose names begin with the string ‘top’, and that are newer
than the file */etc/motd’, type:

$ find ~ -name ‘top*’ -newer /etc/motd
e To compress all the files in your home directory tree that are two megabytes or larger, and that are
not already compressed with gzip (having a “. gz’ file name extension), type:
$ find ~ -size +2000000c -regex ’.*["gz]’ -exec gzip "{}’ ’;’ REDN

The following tables describe many other options you can use with £ind. The first table lists and
describes £ind’s general options for specifying its behavior. As you will see, £ind can take many
different options; see its man page or its info documentation for all of them.

OPTION DESCRIPTION

-daystart Use the beginning of today rather than 24 hours previous for time cri-
teria.

-depth Search the subdirectories before each directory.

-help Output a help message and exit.

-maxdepth levels Specify the maximum number of directory levels to descend in the

specified directory tree.
-mount or -xdev Do not descend directories that have another disk mounted on them.

-version

Output the version number and exit.

The following table lists and describes £ ind’s options for specifying which files to find.

Specify the numeric arguments to these options in one of three ways: preceded with a plus sign (‘+’
to match values equal to or greater than the given argument; preceded with a hyphen or minus sign (*-’)
to match values equal to or less than the given argument; or give the number alone to match exactly that

value.

OPTION
-amin minutes

-anewer file
-atime days
-cmin minutes
-cnewer file
-ctime days
-empty
-group group
-iname pattern

-ipath pattern

-iregex regexp

-1links links

-mmin minutes
-mtime days
-name pattern
-newer file

-path pattern

-perm access mode

-regex regexp

-size size

-type type

-user user

DESCRIPTION
Time in minutes since the file was last accessed.

File was accessed more recently than file.

Time in days since the file was last accessed.
Time in minutes since the file was last changed.
File was changed more recently than file.

Days since the file was last changed.

File is empty.

Name of the group that owns file.

Case-insensitive file name pattern to match (‘report’ matches the
files ‘Report’, ‘report’, ‘REPORT’, etc.).

Full path name of file matches the pattern pattern, regard-
less of case (*./r*rt’ matches ‘./records/report’ and
‘./Record-Labels/ART’.

Path name of file, relative to specified directory tree, matches the reg-
ular expression regexp, regardless of case (‘t ?p’ matches ‘“TIP’ and
‘top’).

Number of links to the file (see Section 5.7 [Giving a File More than
One Name], page 71).

Number of minutes since the file’s data was last changed.
Number of days since the file’s data was last changed.
Base name of the file matches the pattern pattern.

File was modified more recently than file.

Full path name of file matches the pattern pattern (. /r*rt’ matches
‘. /records/report’).

File’s permissions are exactly access mode (see Section 6.3 [Control-
ling Access to Files], page 76).

Path name of file, relative to specified directory tree, matches the reg-
ular expression regexp.

File uses size space, in 512-byte blocks. Append size with ‘b’ for
bytes or ‘k’ for kilobytes.

File is type type, where type can be *d’ for directory, ‘£’ for regular
file, or *1” for symbolic link.

File is owned by user.

The following table lists and describes £1ind’s options for specifying what to do with the files it finds.

OPTION

DESCRIPTION

The Linux Cookbook: Tips and Techniques for Everyday Use

-exec commands Specifies commands, separated by semicolons, to be executed on
matching files. To specify the current file name as an argument to a
command, use ‘{ }".

-ok commands Like ‘-exec’ but prompts for confirmation before executing com-
mands.
-print Outputs the name of found files to the standard output, each followed

by a newline character so that each is displayed on a line of its own.
On by default.

-printf format Use “C-style” output (the same as used by the print £ function in the
C programming language), as specified by string format.
The following table describes the variables may be used in the format string used by the *-print£’
option.

VARIABLE DESCRIPTION

\a Ring the system bell (called the “alarm” on older systems).
\b Output a backspace character.

\f Output a form feed character.

\n Output a newline character.

\r Output a carriage return.

\t Output a horizontal tab character.

AN\ Output a backslash character.

o°
o\°

Output a percent sign character.

o\°
o

Output file’s size, rounded up in 512-byte blocks.

o\°
h

Output base file name.

o
ny

Output the leading directories of file’s name.

o\°
o

Output file’s size, rounded up in 1K blocks.
Output file’s size in bytes.

o°
0

7.3 Finding Files in Directory Listings

The following recipes show how to find the largest and smallest files and directories in a given directory
or tree by listing them by size. They also show how to find the number of files in a given directory.

7.3.1 Finding the Largest Files in a Directory

To find the largest files in a given directory, use 1s to list its contents with the ‘- S’ option, which sorts
files in descending order by their size (normally, 1s outputs files sorted alphabetically). Include the *-1”
option to output the size and other file attributes.

e To list the files in the current directory, with their attributes, sorted with the largest files first, type:
$ 1s -1S8

NOTE: Pipe the output to 1ess to peruse it (see Section 9.1 [Perusing Text], page 99).
7.3.2 Finding the Smallest Files in a Directory

To list the contents of a directory with the smallest files first, use 1 s with both the - S’ and “-r’ options,
which reverses the sorting order of the listing.

e To list the files in the current directory and their attributes, sorted from smallest to largest, type:
S 1s -1Sr

7.3.3 Finding the Smallest Directories

To output a list of directories sorted by their size—the size of all the files they contain—use du and
sort. The du tool outputs directories in ascending order with the smallest first; the “-S’ option puts
the size in kilobytes of each directory in the first column of output. Give the directory tree you want to
output as an option, and pipe the output to sort with the “-n’ option, which sorts its input numerically.

e To output a list of the subdirectories of the current directory tree, sorted in ascending order by size,
type:
$ du -S . | sort -n

7.3.4 Finding the Largest Directories

Use the ‘- ¢’ option with sort to reverse the listing and output the largest directories first.
e To output a list of the subdirectories in the current directory tree, sorted in descending order by size,
type:
$ du -S . | sort -nr

e To output a list of the subdirectories in the ‘/usr/local’ directory tree, sorted in descending
order by size, type:

$ du -S /usr/local | sort -nr

7.3.5 Finding the Number of Files in a Listing

To find the number of files in a directory, use 1s and pipe the output to ‘wc -1’, which outputs the
number of lines in its input (see Section 12.1 [Counting Text], page 133).

e To output the number of files in the current directory, type:

$ 1s | we -1 RED
19

$

In this example, the command outputs the text “19°, indicating that there are 19 files in the current
directory.

Since 1s does not list hidden files by default (see Section 5.3.4 [Listing Hidden Files], page 65), the
preceding command does not count them. Use 1s’s ‘-2’ option to count dot files as well.

e To count the number of files—including dot files—in the current directory, type:

$ 1s -A | we -1
81
$

This command outputs the text ‘81’, indicating that there are 81 files, including hidden files, in the
current directory.

To list the number of files in a given directory tree, and not just a single directory, use £ind instead
of 1s, giving the special £ind predicate *\ ! -type 4’ to exclude the listing (and therefore, counting)
of directories.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To list the number of files in the */usr/share’ directory tree, type:
$ find /usr/share \! -type d | wc -1

e To list the number of files and directories in the */usr/share’ directory tree, type:
$ find /usr/share | wc -1

e To list the number of directories in the */usr/share’ directory tree, type:
$ find /usr/share \! -type £ | wc -1

7.4 Finding Where a Command Is Located

Use which to find the full path name of a tool or application from its base file name; when you give the
base file name as an option, which outputs the absolute file name of the command that would have run
had you typed it. This is useful when you are not sure whether or not a particular command is installed
on the system.

e To find out whether per1 is installed on your system, and, if so, where it resides, type:

$ which perl
/usr/bin/perl

In this example, which output */usr/bin/perl’, indicating that the perl binary is installed in
the ‘*/usr/bin’ directory.

NOTE: This is also useful for determining “which” binary would execute, should you type the name,
since some systems may have different binaries of the same file name located in different directories. In
that case, you can use which to find which one would execute.

8 Managing Files

File management tools include those for splitting, comparing, and compressing files, making backup
archives, and tracking file revisions. Other management tools exist for determining the contents of a file,
and for changing its timestamp.

8.1 Determining File Type and Format

When we speak of a file’s type, we are referring to the kind of data it contains, which may include text,
executable commands, or some other data; this data is organized in a particular way in the file, and
this organization is called its format. For example, an image file might contain data in the JPEG image
format, or a text file might contain unformatted text in the English language or text formatted in the EX
markup language.

The £ile tool analyzes files and indicates their type and—if known—the format of the data they
contain. Supply the name of a file as an argument to £i1e and it outputs the name of the file, followed
by a description of its format and type.

e To determine the format of the file ‘ /usr/doc/HOWTO/README .gz’, type:

$ file /usr/doc/HOWTO/README.gz

/usr/doc/HOWTO/README.gz: gzip compressed data, deflated, origina
filename, last modified: Sun Apr 26 02:51:48 1998, os: Unix

$

This command reports that the file */usr/doc/HOWTO/README . gz’ contains data that has been
compressed with the gzip tool.

To determine the original format of the data in a compressed file, use the *-z’ option.

e To determine the format of the compressed data contained in the file
‘/usr/doc/HOWTO/README.gz’, type:

$ file -z /usr/doc/HOWTO/README.gz

/usr/doc/HOWTO/README.gz: English text (gzip compressed data, deflated,li
original filename, last modified: Sun Apr 26 02:51:48 1998, os: Unix)H

$

This command reports that the data in */usr/doc/HOWTO/README.gz’, a compressed file, is
English text.

NOTE: Currently, £ile differentiates among more than 100 different data formats, including several
human languages, many sound and graphics formats, and executable files for many different operating
systems.

8.2 Changing File Modification Time

Use touch to change a file’s timestamp without modifying its contents. Give the name of the file to be
changed as an argument. The default action is to change the timestamp to the current time.

e To change the timestamp of file ‘pizzicato’ to the current date and time, type:
S touch pizzicato
To specify a timestamp other than the current system time, use the *-d’ option, followed by the date

and time that should be used enclosed in quote characters. You can specify just the date, just the time, or
both.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To change the timestamp of file ‘pizzicato’to ‘17 May 1999 14:16’, type:
S touch -d ’17 May 1999 14:16’ pizzicato

e To change the timestamp of file ‘pizzicato’to ‘14 May’, type:
S touch -d ’14 May’ pizzicato

e To change the timestamp of file ‘pizzicato’to *14:16’, type:
$ touch -d ’14:16’ pizzicato

NOTE: When only the date is given, the time is set to ‘0 : 00’; when no year is given, the current year is
used.

See Info file ‘fileutils.info’, node ‘Date input formats’, for more information on date
input formats.

8.3 Splitting a File into Smaller Ones

It’s sometimes necessary to split one file into a number of smaller ones. For example, suppose you have a
very large sound file in the near-CD-quality MPEG2, level 3 (“MP3”) format. Your file, ‘large .mp3’,
is 4,394,422 bytes in size, and you want to transfer it from your desktop to your laptop, but your laptop
and desktop are not connected on a network—the only way to transfer files between them is by floppy
disk. Because this file is much too large to fit on one floppy, you use split.

The split tool copies a file, chopping up the copy into separate files of a specified size. It takes as
optional arguments the name of the input file (using standard input if none is given) and the file name
prefix to use when writing the output files (using ‘x’ if none is given). The output files’ names will
consist of the file prefix followed by a group of letters: ‘aa’, ‘ab’, ‘ac’, and so on—the default output
file names would be ‘xaa’, ‘xab’, and so on.

Specify the number of lines to put in each output file with the “- 1 option, or use the *-b’ option to
specify the number of bytes to put in each output file. To specify the output files’ sizes in kilobytes or
megabytes, use the ‘-b’ option and append ‘k’ or ‘m’, respectively, to the value you supply. If neither
‘-1’ nor ‘-b’ is used, split defaults to using 1,000 lines per output file.

e To split ‘large.mp3’ into separate files of one megabyte each, whose names begin with
‘large.mp3.’, type:
$ split -blm large.mp3 large.mp3. (RET

This command creates five new files whose names begin with ‘large.mp3.’. The first four files
are one megabyte in size, while the last file is 200,118 bytes—the remaining portion of the original file.
No alteration is made to ‘large . mp3’.

You could then copy these five files onto four floppies (the last file fits on a floppy with one of the
larger files), copy them all to your laptop, and then reconstruct the original file with cat (see Section 10.6
[Concatenating Text], page 116).

e To reconstruct the original file from the split files, type:
S cat large.mp3.* > large.mp3
$ rm large.mp3.*

In this example, the rm tool is used to delete all of the split files after the original file has been
reconstructed.

8.4 Comparing Files

There are a number of tools for comparing the contents of files in different ways; these recipes show how
to use some of them. These tools are especially useful for comparing passages of text in files, but that’s
not the only way you can use them.

8.4.1 Determining Whether Two Files Differ

Use cmp to determine whether or not two text files differ. It takes the names of two files as arguments,
and if the files contain the same data, cmp outputs nothing. If, however, the files differ, cmp outputs the
byte position and line number in the files where the first difference occurs.

e To determine whether the files ‘master’ and ‘backup’ differ, type:
S cmp master backup

8.4.2 Finding the Differences between Files

Use diff to compare two files and output a difference report (sometimes called a “diff”) containing
the text that differs between two files. The difference report is formatted so that other tools (namely,
patch—see Section 8.4.3 [Patching a File with a Difference Report], page 91) can use it to make a file
identical to the one it was compared with.

To compare two files and output a difference report, give their names as arguments to dif f.
e To compare the files ‘manuscript.old’and ‘manuscript .new’, type:
S diff manuscript.old manuscript.new
The difference report is output to standard output; to save it to a file, redirect the output to the file to
save to:
S diff manuscript.old manuscript.new > manuscript.diff
In the preceding example, the difference report is saved to a file called ‘manuscript .diff’.

The difference report is meant to be used with commands such as patch, in order to apply the
differences to a file. See Info file ‘diff.info’, node “Top’, for more information on diff and the
format of its output.

To better see the difference between two files, use sdiff instead of diff; instead of giving a
difference report, it outputs the files in two columns, side by side, separated by spaces. Lines that differ
in the files are separated by * | ’; lines that appear only in the first file end with a ‘<’, and lines that appear
only in the second file are preceded with a *>’.

e To peruse the files ‘1aurel’and ‘hardy’ side by side on the screen, with any differences indicated
between columns, type:

$ sdiff laurel hardy | less

To output the difference between three separate files, use dif£3.

e To output a difference report for files ‘larry’, ‘curly’, and ‘moe’, and output it in a file called
‘stoogeg’, type:

$ diff3 larry curly moe > stooges

8.4.3 Patching a File with a Difference Report

To apply the differences in a difference report to the original file compared in the report, use patch.
It takes as arguments the name of the file to be patched and the name of the difference report file (or
“patchfile”). It then applies the changes specified in the patchfile to the original file. This is especially
useful for distributing different versions of a file—small patchfiles may be sent across networks easier
than large source files.

e To update the original file ‘manuscript .new’ with the patchfile ‘manuscript.diff’, type:
S patch manuscript.new manuscript.diff

The Linux Cookbook: Tips and Techniques for Everyday Use

8.5 Compressed Files

File compression is useful for storing or transferring large files. When you compress a file, you shrink it
and save disk space. File compression uses an algorithm to change the data in the file; to use the data in
a compressed file, you must first uncompress it to restore the original data (and original file size).

The following recipes explain how to compress and uncompress files.

8.5.1 Compressing a File

Use the gzip (“GNU zip”) tool to compress files. It takes as an argument the name of the file or files to
be compressed; it writes a compressed version of the specified files, appends a “. gz’ extension to their
file names, and then deletes the original files.

e To compress the file ‘war-and-peace’, type:
$ gzip war-and-peace

This command compresses the file ‘war-and-peace’, putting it in a new file named
‘war-and-peace.gz’; gzip then deletes the original file, ‘war-and-peace’.

8.5.2 Decompressing a File

To access the contents of a compressed file, use gunzip to decompress (or “uncompress”) it.

Like gzip, gunzip takes as an argument the name of the file or files to work on. It expands
the specified files, writing the output to new files without the “. gz’ extensions, and then deletes the
compressed files.

e To expand the file ‘war-and-peace.gz’, type:
$ gunzip war-and-peace.gz

This command expands the file ‘war-and-peace.gz’ and puts it in a new file called
‘war-and-peace’; gunzip then deletes the compressed file, ‘war-and-peace.gz’.

NOTE: You can view a compressed text file without uncompressing it by using zless. This is useful
when you want to view a compressed file but do not want to write changes to it. (For more information
about z1less, see Section 9.1 [Perusing Text], page 99).

8.6 File Archives

An archive is a single file that contains a collection of other files, and often directories. Archives are
usually used to transfer or make a backup copy of a collection of files and directories—this way, you can
work with only one file instead of many. This single file can be easily compressed as explained in the
previous section, and the files in the archive retain the structure and permissions of the original files.

Use the tar tool to create, list, and extract files from archives. Archives made with tar are some-
times called “tar files,” “tar archives,” or—because all the archived files are rolled into one—*tarballs.”

The following recipes show how to use tar to create an archive, list the contents of an archive,
and extract the files from an archive. Two common options used with all three of these operations are
‘-f£”and ‘-v’: to specify the name of the archive file, use ‘- £’ followed by the file name; use the “-v’
(“verbose™) option to have tar output the names of files as they are processed. While the “-v’ option is
not necessary, it lets you observe the progress of your tar operation.

NOTE: The name of this tool comes from “tape archive,” because it was originally made to write the
archives directly to a magnetic tape device. Itis still used for this purpose, but today, archives are almost
always saved to a file on disk.

See Info file ‘tar.info’, node *Top’, for more information about managing archives with tar.

8.6.1 Creating a File Archive

To create an archive with tar, use the “-c’ (“create”) option, and specify the name of the archive file
to create with the “- £’ option. It’s common practice to use a name with a ‘. tar’ extension, such as
‘my-backup.tar’.

Give as arguments the names of the files to be archived; to create an archive of a directory and all of
the files and subdirectories it contains, give the directory’s name as an argument.

e To create an archive called ‘project. tar’ from the contents of the ‘project’ directory, type:
S tar -cvf project.tar project
This command creates an archive file called ‘project . tar’ containing the ‘project’ directory
and all of its contents. The original ‘project’ directory remains unchanged.

Use the ‘-z’ option to compress the archive as it is being written. This yields the same output as
creating an uncompressed archive and then using gz ip to compress it, but it eliminates the extra step.

e To create a compressed archive called ‘project.tar.gz’ from the contents of the ‘project’
directory, type:

$ tar -zcvf project.tar.gz project

This command creates a compressed archive file, ‘project.tar.gz’, containing the ‘project’
directory and all of its contents. The original ‘project’ directory remains unchanged.

NOTE: When you use the “-z’ option, you should specify the archive name with a “. tar.gz’ exten-
sion and not a ‘. tar’ extension, so the file name shows that the archive is compressed. This is not a
requirement, but it serves as a reminder and is the standard practice.

8.6.2 Listing the Contents of an Archive

To list the contents of a tar archive without extracting them, use tar with the ‘-t option.
e To list the contents of an archive called ‘project.tar’, type:
$ tar -tvf project.tar
This command lists the contents of the ‘project . tar’ archive. Using the *-v’ option along with
the *-t’ option causes tar to output the permissions and modification time of each file, along with its

file name—the same format used by the 1s command with the ‘-1’ option (see Section 5.3.1 [Listing
File Attributes], page 64).

Include the ‘-z’ option to list the contents of a compressed archive.
e To list the contents of a compressed archive called ‘project.tar.gz’, type:
S tar -ztvf project.tar

8.6.3 Extracting Files from an Archive

To extract (or unpack) the contents of a tar archive, use tar with the “-x’ (“extract”) option.
e To extract the contents of an archive called ‘project. tar’, type:
$ tar -xvf project.tar

This command extracts the contents of the ‘project . tar’ archive into the current directory.

If an archive is compressed, which usually means it will have a . tar.gz’ or “.tgz’ extension,
include the *-z’ option.

e To extract the contents of a compressed archive called ‘project.tar.gz’, type:
$ tar -zxvf project.tar.gz

The Linux Cookbook: Tips and Techniques for Everyday Use

NOTE: If there are files or subdirectories in the current directory with the same name as any of those in
the archive, those files will be overwritten when the archive is extracted. If you don’t know what files
are included in an archive, consider listing the contents of the archive first (see Section 8.6.2 [Listing the
Contents of an Archive], page 93).

Another reason to list the contents of an archive before extracting them is to determine whether the

files in the archive are contained in a directory. If not, and the current directory contains many unrelated
files, you might confuse them with the files extracted from the archive.

To extract the files into a directory of their own, make a new directory, move the archive to that
directory, and change to that directory, where you can then extract the files from the archive.

8.7 Tracking Revisions to a File

The Revision Control System (RCS) is a set of tools for managing multiple revisions of a single file.

To store a revision of a file so that RCS can keep track of it, you check in the file with RCS. This
deposits the revision of the file in an RCS repository—a file that RCS uses to store all changes to that
file. RCS makes a repository file with the same file name as the file you are checking in, but with a *, v’
extension appended to the name. For example, checking in the file ‘foo. text” with RCS creates a
repository file called ‘foo.text,v’.

Each time you want RCS to remember a revision of a file, you check in the file, and RCS writes to
that file’s RCS repository the differences between the file and the last revision on record in the repository.

To access a revision of a file, you check out the revision from RCS. The revision is obtained from the
file’s repository and is written to the current directory.

Although RCS is most often used with text files, you can also use it to keep track of revisions made
to other kinds of files, such as image files and sound files.

Another revision control system, Concurrent Versions System (CVS), is used for tracking collections
of multiple files whose revisions are made concurrently by multiple authors. While much less simple than

RCS, it is very popular for managing free software projects on the Internet. See Info file ‘cvs.info’,
node ‘“Top’, for information on using CVS.

8.7.1 Checking In a File Revision

When you have a version of a file that you want to keep track of, use c1i to check in that file with RCS.
Type ci followed by the name of a file to deposit that file into the RCS repository. If the file has
never before been checked in, ci prompts for a description to use for that file; each subsequent time the
file is checked in, ci prompts for text to include in the file’s revision log (see Section 8.7.3 [Viewing a
File’s Revision Log], page 96). Log messages may contain more than one line of text; type a period (*.’)
on a line by itself to end the entry.
For example, suppose the file ‘novel’ contains this text:

This is a tale about many things, including a long voyage across
America.

e To check in the file ‘novel’ with RCS, type:

e B\
S c¢i novel
novel,v <-- novel

enter description, terminated with single '.’ or end of file:
NOTE: This is NOT the log message!

>> The Great American Novel.

>> . (RET

$

- J

This command deposits the file in an RCS repository file called ‘novel, v’, and the original file,
‘novel’, isremoved. To edit or access the file again, you must check out a revision of the file from RCS
with which to work (see Section 8.7.2 [Checking Out a File Revision], page 95).

Whenever you have a new revision that you want to save, use ci as before to check in the file. This
begins the process all over again.

For example, suppose you have checked out the first revision of ‘novel’ and changed the file so that
it now looks like this:

This is a very long tale about a great many things, including my longll
voyage across America, and back home again.

e To deposit this revision in RCS, type:

s N
S ci novel
novel,v <-- novel

new revision: 1.2; previous revision: 1.1

enter log message, terminated with single '.’ or end of file:
>> Second draft. (RET

>> . (RET

$

- J

If you create a subdirectory called ‘RCS’ (in all uppercase letters) in the current directory, RCS
recognizes this specially named directory instead of the current directory as the place to store the *, v’
revision files. This helps reduce clutter in the directory you are working in.

If the file you are depositing is a text file, you can have RCS insert a line of text, every time the
file is checked out, containing the name of the file, the revision number, the date and time in the UTC
(Coordinated Universal Time) time zone, and the user ID of the author. To do this, put the text ‘$14s’
at a place in the file where you want this text to be written. You only need to do this once; each time you
check the file out, RCS replaces this string in the file with the header text.

For example, this chapter was written to a file, ‘managing-files.texinfo’, whose revisions
were tracked with RCS; the “$1ds’ string in this file currently reads:

$Id: managing-files.texinfo,v 1.32 2001/05/16 16:57:58 m Exp m $

8.7.2 Checking Out a File Revision

Use co to check out a revision of a file from an RCS repository.

To check out the latest revision of a file that you intend to edit (and to check in later as a new revision),
use the -1 (for “lock™) option. Locking a revision in this fashion prevents overlapping changes being
made to the file should another revision be accidentally checked out before this revision is checked in.

e To check out the latest revision of the file ‘novel’ for editing, type:
S co -1 novel

This command checks out the latest revision of file ‘novel’ from the ‘novel, v’ repository, writing
it to a file called ‘novel’ in the current directory. (If a file with that name already exists in the current
directory, co asks whether or not to overwrite the file.) You can make changes to this file and then check
it in as a new revision (see Section 8.7.1 [Checking In a File Revision], page 94).

You can also check out a version of a file as read only, where changes cannot be written to it. Do this
to check out a version to view only and not to edit.

To check out the current version of a file for examination, type co followed by the name of the file.
e To check out the current revision of file ‘novel’, but not permit changes to it, type:
S co novel

The Linux Cookbook: Tips and Techniques for Everyday Use

This command checks out the latest revision of the file ‘novel’ from the RCS repository ‘novel, v’
(either from the current directory or in a subdirectory named ‘RCS’).

To check out a version other than the most recent version, specify the version number to check out
with the “-r” option. Again, use the *-1" option to allow the revision to be edited.

e To check out revision 1.14 of file ‘novel’, type:
S co -1 -rl.14 novel

NOTE: Before checking out an old revision of a file, remember to check in the latest changes first, or
they may be lost.

8.7.3 Viewing a File’s Revision Log

Use rlog to view the RCS revision log for a file—type r1og followed by the name of a file to list all
of the revisions of that file.

e To view the revision log for file ‘novel’, type:

4 N

$ rlog novel

RCS file: novel,v

Working file: novel

head: 1.2

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 2; selected revisions: 2
description:

The Great American Novel.

revision 1.2

date: 1991/06/20 15:31:44; author: leo; state: Exp; lines: +2
2

Second draft.

revision 1.1

date: 1991/06/21 19:03:58; author: leo; state: Exp;
Initial revision

This command outputs the revision log for the file ‘novel’; it lists information about the RCS
repository, including its name (‘novel, v’) and the name of the actual file (‘novel’). It also shows that
there are two revisions—the first, which was checked in to RCS on 20 June 1991, and the second, which
was checked in to RCS the next day, on 21 June 1991.

PART THREE: Text

The Linux Cookbook: Tips and Techniques for Everyday Use

9 Viewing Text

Dealing with textual matter is the meat of Linux (and of most computing), so there are going to be many
chapters about the various aspects of text. This first chapter in this part of the book shows how to view
text on your display screen.

There are many ways to view or otherwise output text. When your intention is to edit the text of a
file, open it in a text editor, as described in Chapter 10 [Text Editing], page 107.

Some kinds of files—such as PostScript, DVI, and PDF files—often contain text in them, but they
are technically not text files. These are image format files, and | describe methods for viewing them in
Section 17.1 [Previewing Print Files], page 183.

NOTE: To learn how to browse files and their contents in a Web browser, see Section 5.9 [Browsing
Files], page 73.

9.1 Perusing Text

Use 1ess to peruse text, viewing it one screen (or “page”) at atime. The 1ess tool works on either files
or standard output—it is popularly used as the last command on a pipeline so that you can page through
the text output of some commands. For an example, see Section 3.2.4 [Redirecting Output to Another
Command’s Input], page 37.

zless is identical to 1ess, but you use it to view compressed text files; it allows you to read a
compressed text file’s contents without having to uncompress it first (see Section 8.5 [Compressed Files],
page 92). Most of the system documentation in the ‘' /usr/doc’ and ‘/usr/share/doc’ directories,
for example, consists of compressed text files.

You may, on occasion, be confronted with a reference to a command for paging text called more.
It was the standard tool for paging text until it gave way to less in the early to mid-1990s; less
comes with many more options—its most notable advantage being the ability to scroll backward through
a file—»but at the expense of being almost exactly three times the size of more. Hence there are two
meanings to the saying, “less is more.”

9.1.1 Perusing a Text File

To peruse or page through a text file, give the name of the file as an argument to less.
e To page through the text file ‘README’, type:
S less README

This command starts 1ess and displays the file ‘README’ on the screen.

You can more forward through the document a line at a time by typing), and you can move forward
through the document a screenful at a time by typing gbn). To move backward by a line, type (f), and
type to move backward by a screenful.

You can also search through the text you are currently perusing—this is described in Section 14.7
[Searching Text in Less], page 155.

To stop viewing and exit 1ess, press Q).

9.1.2 Perusing Multiple Text Files

You can specify more than one file to page through with 1ess, and you can specify file patterns in order
to open all of the files that match that pattern.

e To page through all of the Unix FAQ files in */usr/doc/FAQ’, type:
$ less /usr/doc/FAQ/unix-faqg-part*

The Linux Cookbook: Tips and Techniques for Everyday Use

This command starts less, opens in it all of the files that match the given pattern
‘/usr/doc/FAQ/unix-fag-part*’,and begins displaying the first one:

Path: zenator-bedfellow.mit.edul fagzery

From: tmatimar@izgtec,com {(Ted Timar}

Hewsgroups: comp.,unix,questions,comp,unix,shell,comp, answers,news, answers
Subject: Unix - Frequently Asked Ouestions (1/7} [Frequent postingl
Supersedes: <{unix-fagfag/partl_BEIEDOOLIRrtFm.mit,edu>

Followup-Toj comp,unix,guestions

Date: 31 Jul 1857 O7:B5:27 CGMT

Organization: ISG Technologies, Inc

Linezy 413

Approved: news-anzswers-requestEMIT, Edu

Distribution: world

Expires: 28 Aug 1997 07:55:00 GHT

Message-101; <unix-fag fagpartl_B703307050tFrm mit, edu>

References: <unixz-fag/fag contents_ 870330700t Fm, mit, edul
MWHTP-Posting-Host: penguin-lust,mit,edu

#-Last-Updated: 1996/06/11

Originator: fagservipenguin-lust,HIT.EDU

¥ref: senator-bedfellow,.mit,edu comp.unix,questions:131651 comp,unix,shell:52166
comp,answers:27310 news,answers; 108512

Archive-name: unix-fag fag/partl
Version: $Id: partl,w 2,9 1996706711 13307:06 tmatimar Exp

artl ifile 1 of 72

NOTE: When you specify more than one file to page, 1ess displays each file in turn, beginning with
the first file you specify or the first file that matches the given pattern. To move to the next file, press(v);
to move to the previous file, press @.

9.1.3 Commands Available While Perusing Text

The following table gives a summary of the keyboard commands that you can use while paging through
text in Less. It lists the keystrokes and describes the commands.

KEYSTROKE
®

@
o=

or
c-1

/ pattern

? pattern

<

>

COMMAND
Scroll back through the text (“up”) one line.

Scroll forward through the text (“down’) one line.

Scroll horizontally (left or right) one tab stop; useful for perusing files
that contain long lines.

Scroll forward through the text by one screenful.

Scroll backward through the text by one screenful.

Redraw the screen.

Search forward through the file for lines containing pattern.
Search backward through the file for lines containing pattern.
Move to beginning of the file.

Move to end of the file.

Display a help screen.

Quit viewing the file and exit 1ess.

9.2 Outputting Text

The simplest way to view text is to output it to standard output. This is useful for quickly looking at part
of a text, or for passing part of a text to other tools in a command line.

Many people still use cat to view a text file, especially if it is a very small file. To output all of a
file’s contents on the screen, use cat and give the file name as an argument.

This isn’t always the best way to peruse or read text—a very large text will scroll off the top of the
screen, for example—but sometimes the simple outputting of text is quite appropriate, such as when you
just want to output one line of a file, or when you want to output several files into one new file.

This section describes the tools used for such purposes. These tools are best used as filters, often at
the end of a pipeline, outputting the standard input from other commands.

NOTE: Tools and methods for outputting text for printing, such as outputting text in a font, are described
in Section 15.2 [Converting Plain Text for Output], page 159.

9.2.1 Showing Non-printing Characters

Use cat with the ‘-v’ option to output non-printing characters, such as control characters, in such a
way so that you can see them. With this option, cat outputs those characters in hat notation, where they
are represented by a “*~” and the character corresponding to the actual control character (for example, a
bell character would be output as *~G’).

e To peruse the file ‘translation’ with non-printing characters displayed in hat notation, type:
$ cat -v translation | less
In this example, the output of cat is piped to 1ess for viewing on the screen; you could have piped
it to another command, or redirected it to a file instead.

To visually display the end of each line, use the “-E’ option; it specifies that a *$’ should be output
after the end of each line. This is useful for determining whether lines contain trailing space characters.

Also useful is the *-T” option, which outputs tab characters as “*~1’.
The -2’ option combines all three of these options—it is the same as specifying *-vET’.

9.2.2 Outputting a Beginning Part of a Text

Use head to output the beginning of a text. By default, it outputs the first ten lines of its input.
e To output the first ten lines of file ‘placement-1ist’, type:
$ head placement-1list
You can specify as a numeric option the number of lines to output. If you specify more lines than a
file contains, head just outputs the entire text.
e To output the first line of file ‘placement-1ist’, type:
S head -1 placement-1list
e To output the first sixty-six lines of file ‘placement-1ist’, type:
$ head -66 placement-1list
To output a given number of characters instead of lines, give the number of characters to output as
an argument to the *-c’ option.
e To output the first character in the file ‘placement-1ist’, type:
S head -cl placement-1list

The Linux Cookbook: Tips and Techniques for Everyday Use

9.2.3 Outputting an Ending Part of a Text

The tail tool works like head, but outputs the last part of its input. Like head, it outputs ten lines by
default.

e To output the last ten lines of file ‘placement-1ist’, type:
S tail placement-1list
e To output the last fourteen lines of file ‘placement-1ist’, type:
$ tail -14 placement-1list
It is sometimes useful to view the end of a file on a continuing basis; this can be useful for a “growing”

file, a file that is being written to by another process. To keep viewing the end of such a file, use tail
with the *- £ (“follow”) option. Type C-c to stop viewing the file.

e To follow the end of the file ‘access log’, type:
$ tail -f access log

NOTE: You can achieve the same result with 1ess; to do this, type F while perusing the text (see
Section 9.1 [Perusing Text], page 99).

9.2.4 Outputting a Middle Part of a Text

There are a few ways to output only a middle portion of a text.

To output a particular line of a file, use the sed tool (see Section 10.5 [Editing Streams of Text],
page 116). Give as a quoted argument the line number to output followed by ‘1 d’. Give the file name as
the second argument.

e To output line 47 of file ‘placement-1ist’, type:
S sed "47!d’ placement-1list
To output a region of more than one line, give the starting and ending line numbers, separated by a
comma.
e To output lines 47 to 108 of file ‘placement-1list’, type:
S sed "47,108!d’ placement-list
You can also combine multiple head or tail commands on a pipeline to get the desired result (see
Section 3.2.4 [Redirecting Output to Another Command’s Input], page 37).
e To output the tenth line in the file ‘placement-1ist’, type:
$ head placement-list | tail -1
e To output the fifth and fourth lines from the bottom of file ‘placement-1ist’, type:
$ tail -5 placement-list | head -2
e To output the 500th character in ‘placement-1ist’, type:
$ head -c500 placement-list | tail -cl
e To output the first character on the fifth line of the file ‘placement-1ist’, type:
$ head -5 placement-list | tail -1 | head -cli
In the preceding example, three commands were used: the first five lines of the file
‘placement-1ist’ are passed to tail, which outputs the last line in the output (the fifth line in the

file); then, the last head command outputs the first character in that last line, which achieves the desired
result.

9.2.5 Outputting the Text between Strings

Use sed to select lines of text between strings and output either just that section of text, or all of the
lines of text except that section. The strings can be words or even regular expressions (see Section 14.2
[Regular Expressions—Matching Text Patterns], page 148).

Use the “-n’ option followed by “ /first/, /last/p*’ to output just the text between the strings first
and last, inclusive. This is useful for outputting, say, just one chapter or section of a text file when you
know the text used to begin the sections with.

e To output all the text from file ‘book-draft’ between ‘Chapter 3’ and ‘Chapter 4’, type:
$ sed -n ’/Chapter 3/,/Chapter 4/p’ book-draft

To output all of the lines of text except those between two patterns, omit the “-n’ option.
e To output all the text from file ‘book-draft’, except that which lies between the text ‘Chapter
3’ and ‘Chapter 4’, type:
$ sed ’/Chapter 3/,/Chapter 4/p’ book-draft

NOTE: For a more thorough introduction to sed, see Section 10.5 [Editing Streams of Text], page 116.

9.2.6 Outputting Text in a Dialect

Debian: ‘filters’
WWW: http://www.princeton.edu/ mkporwit/pub links/davido/slang/
WWW: http://www.mathlab.sunysb.edu/"elijah/src.html

There are all kinds of tools that work as filters on text; this recipe describes a specific group of filters—
those that filter their standard input to give the text an accent or dialect, and are intended to be humorous.

Generally speaking, a filter is a tool that works on standard input, changing it in some way, and then
passing it to standard output.

e To apply the kraut filter to the text in the file * /et c/motd’, type:
$ cat /etc/motd | kraut

These commands pass the contents of the file ‘*/etc/motd’ to the kraut filter, whose output is
then sent to standard output. The contents of ‘/etc/motd’ are not changed.

Some of the dialect filters available include nyc, which gives a “New Yawker” dialect to text, and
newspeak, which translates text into the approved language of the thought police, as described in
George Orwell’s novel, 1984. Hail Big Brother!

9.3 Streaming Text

WWW: http://www.maurer-it.com/open-source/sview/

It’s been demonstrated that people read and comprehend printed text faster than they read and com-
prehend text displayed on a computer display screen. Rapid serial visual presentation, or RSVP, is
a technigue that aims to increase reading speed and comprehension with the use of computer display
screens. With this technique, text is displayed streamed on the screen, one word at a time, with pauses
between words and punctuation. The average reading time is lowered and comprehension is increased
significantly with this technique.

GNOME sview is a “streaming viewer” for X; it streams text a word at a time on the screen, at a
default rate of 450 words per minute. Use it to read text files and the X selection, which is text you have
selected with the mouse (see Section 10.4 [Selecting Text], page 115).

To open afile in sview, either specify it as an argument to the command, or choose Open from the
File menuin sview, and select the file from there.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To view the contents of the text file ‘alice-in-wonderland’in sview, type:
S sview alice-in-wonderland
To start streaming the text, either press) once, or left-click on the button marked RSVP. Both)
and the RSVP button toggle the streaming; the left and right arrow keys control the speed.
Text being streamed with sview looks like this:

File Bufier Help

< @, 450
Prev nhext RSVP T

beginning

_t

A ALICE was [EepRewsbbely tc get very tired of sitting by her sister con
the bank, and of having
nmothing to do: cnce or twice she had peseped into the beook her sister
was reading, but it had
no pictures or conversaticns in it, "and what is the use of a book,"
thought aAlice, "without
[pictures or conversation?"

/ rl

The large area with the word ‘beginning’ in it is where the text is being streamed. The text in the
lower-left window is a shrunken view of the entire file, the text in the lower-right window is the paragraph
from which the current word comes from.

To open another file, choose it from the menu; you can have many files open in sview at once.
sview places each file in its own buffer. You can also paste the X selection into a buffer of its own—to
switch to a different buffer, choose its name from the Buf fer menu.

Type (@ to quit reading and exit sview.
The following table lists the keyboard commands used in sview and describes their meaning.
KEYSTROKE DESCRIPTION

Decrease the stream speed.

Increase the stream speed.

C-o Open afile.

C-qgq Quit viewing text and exit sview.

C-w Erase the current text buffer.

M-n Move forward to the next word.

M-p Move backward to the previous word.

® Toggle the streaming of text.

x) Display the X selection in its own buffer.
N Move forward to the next paragraph.

® Move backward to the previous paragraph.

9.4 Viewing a Character Chart

To view a character chart containing a list of all the valid characters in the ASCII character set and the
character codes to use to type them, view the ascii man page.

e To view an ASCII character set, type:

S man ascii

You can use the octal codes listed for each character to type them in Emacs—see Section 10.2.5
[Inserting Special Characters in Emacs], page 113.

The default Linux character set, the ISO 8859-1 (“Latin 1”) character set, contains all of the standard
ASCII character set plus an additional 128 characters.

To view the ISO 8859-1 character set, which contains an extended set of characters above the standard
127 ASCII characters, view the iso 8859 1 man page.

e To view the ISO 8859-1 character set, type:
$ man iso 8859 1

You can use this page to see all of the characters in this character set and how to input them.

NOTE: There’s a special way to “quote” these characters in Emacs; this technique is described in Sec-
tion 10.2.5 [Inserting Special Characters in Emacs], page 113.

The ‘miscfiles’ package also contains charts for these character sets, as explained in Section 11.4
[Word Lists and Reference Files], page 130.

The Linux Cookbook: Tips and Techniques for Everyday Use

10 Text Editing

Text editing is one of the most fundamental activities of computing on Linux-based systems, or most any
computer for that matter. We edit text when writing a document, sending email, making a Web page,
posting an article for Usenet, programming—and the list goes on. Most people spend a good deal of their
computing time editing text with a text editor application.

There are a lot of text editors to choose from on Linux systems, as the first recipe in this chapter
shows, but the majority of editors fit in one of two families of editor: Emacs and Vi. Most users prefer
one or the other; rarely is one adept at both. | give more coverage to Emacs, and not only because it’s
my preferred editor—its keystroke commands are used by default in many other tools and applications,
including the bash shell (see Chapter 3 [The Shell], page 33).

10.1 Choosing the Perfect Text Editor

The following table describes some of the more interesting text editors available, and includes informa-
tion about their special traits and characteristics.

TEXT EDITOR DESCRIPTION

ae Anthony’s Editor, ae, is asimple, easy-to-use text editor. It has modes to emulate
the behavior of other text editors.
Debian: ‘ae’

WWW: http://dmoz.org/Computers/Software/Editors/Vi/

cooledit Cooledit is a popular, fast text editor for use in X; its features include anti-aliased

fonts, Unicode support, and extensibility via the Python programming language.
Debian: ‘cooledit’
WWW: http://cooledit.sourceforge.net/

dedit DEdit is a simple editor for use in X with GNOME installed. It can read com-

Bress_ed files and display Japanese characters.
ebian: ‘dedit’

ee Intended to be an editor that novices can begin using immediately, the Easy Editor
features pop-up menus.
Debian: ‘ee’
WWW: http://mahon.cwx.net/

elvis Elvis is a modern implementation of Vi that comes with many new features and
extensions.

Debian: ‘elvis’
WWW: http://www.fh-wedel.de/elvis/

emacs Emacs is one of the two most-popular text editors. 1’ve devoted an entire section
to it in this book: Section 10.2 [Emacs], page 108.
Debian: ‘emacsen-common
Debian: ‘emacs20’
WWW: ‘http://www.emacs.org/

jed John E. Davis’s jed offers many of the conveniences of Emacs and is geared
specifically toward programmers. It loads quickly, and makes editing files at a
shell prompt easy and fast.

Debian: ‘jed’
WWW: http://space.mit.edu/ "davis/jed.html

joe Joe’s Own Editor, joe, is a full-screen editor with a look and feel reminiscent of
old DOS text editors like EDIT.
Debian: ‘joe’
WWW: ftp://ftp.std.com/src/editors/

nano

ted

the

vi

vim

wily

xedit

xXemacs

10.2 Emacs

The Linux Cookbook: Tips and Techniques for Everyday Use

Nano is a free software editor inspired by Pico, the editor that is included with
the University of Washington’s proprietary Pine email program. It’s also faster

than Pico, and comes with more features.
Debian: ‘nano’
WWW: http://www.nano-editor.org/

Ted is a WYSIWYG text editor for use in X which reads and writes . rt £’ files

in Microsoft’s “Rich Text Format.”
Debian: ‘ted’
WWW: http://www.nllgg.nl/Ted/

The Hessling Editor is a configurable editor that uses the Rexx macro language.

It was inspired by the XEDIT editor for VM/CMS and the Kedit editor for DOS.
Debian: ‘the’

Debian: ‘the-doc’

WWW: http://www.lightlink.com/hessling/THE/

Vi (pronounced “vye,” or sometimes “vee-eye”) is a visual, or full-screen, editor.

Touch typists often find its keystroke commands enable very fast editing.
Together with Emacs, Vi shares the spotlight for most popular editor on Linux

and Unix-based systems in general. Both were initially written in the same pe-
riod, and both have their staunch adherents. To run a hands-on tutorial, see Sec-

tion 10.3 [Running a Vi Tutorial], page 114.
Debian: ‘nvi’
WWW: ftp://mongoose.bostic.com/pub/nvi.tar.gz

Like the Elvis editor, Vim (“Vi improved”) is a modern implementation of Vi
whose new features include syntax coloring, scrollbars and menus, mouse sup-
ort, and built-in help.
ebian: ‘vim’
WWW: http://www.vim.org/
Wily, an interesting mouse-centric editor, is inspired by the Acme editor from
AT&T’s Plan 9 experimental operating system. Wily commands consist of vari-
ous combinations of the three mouse buttons, called chords, which can be tricky

to master.
Debian: ‘wily’
WWW: http://www.cs.su.oz.au/ "gary/wily/

Xedit is a simple text editor that comes with, and works in, X. It lets you insert,

delete, copy and paste text as well as open and save files—the very basics.
Debian: ‘xcontrib’

XEmacs is a version of Emacs with advanced capabilities for use in X, including
the ability to display images.

Debian: *emacsen-common’

Debian: ‘xemacs’

WWW: http://www.xemacs.org/

Debian: ‘emacsen-common
WWW: ‘http://www.emacs.org/

To call Emacs a text editor does not do it justice—it’s a large application capable of performing many
functions, including reading email and Usenet news, browsing the World Wide Web, and even perfunc-

tory psychoanalysis.

There is more than one version of Emacs. GNU Emacs is the Emacs released under the auspices of
Richard Stallman, who wrote the original Emacs predecessor in the 1970s. XEmacs (formerly Lucid

Emacs) offers essentially the same features GNU Emacs does, but also contains its own features for use
with the X Window System (it also behaves differently from GNU Emacs in some minor ways).

GNU Emacs and XEmacs are by far the most popular emacsen (as they are referred to in number);
other flavors include jed (described in the previous section) and Chet’s Emacs, ce, developed by a
programmer at Case Western Reserve University.

Following is a brief introduction to using Emacs, interspersed with the necessary Emacs jargon;
following that are recipes that describe how to use some of Emacs’s advanced editing features.

10.2.1 Getting Acquainted with Emacs

Start Emacs in the usual way, either by choosing it from the menu supplied by your window manager in
X, or by typing its name (in lowercase letters) at a shell prompt.

e To start GNU Emacs at a shell prompt, type:
S emacs

e To start XEmacs at a shell prompt, type:
S xemacs

Upon startup in X, a typical GNU Emacs window looks like this (the window frame will differ
depending on your window manager):

emacs@gatsby.dsliorg EIEES

Buffers Files Tools Edit Search Hule Help

@elcome to GNU Emacs, one comporent of a Linux-based GNU susten.
The memu bar and scroll bar are sufficient for basic editimg with the mouse.

Useful Files menu items:
Exit Emacs (or type Control-x followed by Comtrol-c)
Recover Session recover files you were editing before a crash

Important Help menu items:

Emacs Tutorial Learn—by-toing tutorial for using Emacs efficiently.
(Non) Warranty GMU Emacs comes with ABSOLUTELY ND WARRANTY

Copying Conditions Conditions for redistributing and changing Emacs.
Getting New Versions — How to obtain the latest version of Emacs.

GNU Emacs 20.7.2 [i386-debian-linux-gnu, X toolkit)
of Tue Jun 20 2000 on raven
Copyright (C) 1999 Free Softuare Foundation, Inc.

H kSCratohk (Lisp Imteraction)-——11--Al]l-——————————————————————————]
MFor information about the GNU Project and its goals, type C—h C—p.
-

The welcome message appears when Emacs first starts, and it tells you, among other things, how to
run a tutorial (which we’ll look at in just a minute).

The top bar is called the menu bar, and you can pull down its menus with the mouse (or, in the
console, with C-F10)).

A file or other text open in Emacs is held in its own area called a buffer. By default, the current buffer
appears in the large area underneath the menu bar. To write text in the buffer, just type it. The place in
the buffer where the cursor is at is called point, and is referenced by many Emacs commands.

The horizontal bar near the bottom of the Emacs window and directly underneath the current buffer is
called the mode line; it gives information about the current buffer, including its name, what percentage
of the buffer fits on the screen, what line point is on, and whether or not the buffer is saved to a file.

The mode line also lists the modes active in the buffer. Emacs modes are general states that control the
way Emacs behaves—for example, when Overwrite mode is set, text you type overwrites the text at
point; in Insert mode (the default), text you type is inserted at point. Usually, either Fundamental
mode (the default) or Text mode will be listed.

The Linux Cookbook: Tips and Techniques for Everyday Use

The echo area is where Emacs writes brief status messages, such as error messages; it is the last line
in the Emacs window. When you type a command that requires input, that input is requested in this area
(and when that happens, the place you type your input, in the echo area, is then called the minibuffer).

Emacs commands usually begin with a Control or Meta (Escape) key sequence; many commands
begin with the C-x sequence, which you type by pressing and holding the €TRL) key and then pressing
the (x) key (see [Typographical Conventions], page 3).

Because Emacs is different in culture from the editors and approach of the Microsoft Windows and
Apple MacOS world, it has gotten a rather unfounded reputation in those corners that it is odd and
difficult to use. This is not so. The keyboard commands to run its various functions are designed for ease
of use and easy recall.

For example, the £ind-£file function prompts for the name of a file and opens a copy of the file in
a new buffer; its keyboard accelerator is C-x C-£ (you can keep (CTRL) depressed while you press and
release the (x) and E keys).

You can run any Emacs function by typing M- x followed by the function name and pressing RET).
e Torunthe £ind-£file function, type:
M-x find-file
This command runs the £ind-file function, which prompts for the name of a file and opens a
copy of the file in a new buffer.

Type C-g in Emacs to quit a function or command,; if you make a mistake when typing a command,
this is useful to cancel and abort the keyboard input.

Now that we have run through the essential Emacs terminology, I’ll show you how to exit the
program—just type C-x C-c.

Emacs can have more than one buffer open at once. To switch between buffers, type ¢-x C-b. Then,
give the name of the buffer to switch to, followed by RET); alternatively, type without a buffer name
to switch to the last buffer you had visited. (Viewing a buffer in Emacs is called visiting the buffer.)

e To switch to a buffer called ‘rolo’, type:
C-x C-b rolo
A special buffer called ‘*scratch*’ is for notes and things you don’t want to save; it always exists
in Emacs.
e To switch to the ‘*scratch=*’ buffer, type:
C-x C-b *scratch*

Any file names you give as an argument to emacs will open in separate buffers:
S emacs todo rolo /usr/local/src/nirvarna/README
(You can also make new buffers and open files in buffers later, of course.)

Emacs comes with an interactive, self-paced tutorial that teaches you how to use the basics. In my
experience, setting aside 25 minutes to go through the tutorial is one of the best things you can do in
your computing career—even if you decide that you don’t like Emacs very much, a great many other
applications use Emacs-like keyboard commands and heuristics, so familiarizing yourself with them will
always pay off.

To start the tutorial at any time when you are in Emacs, type C-h t.

Incidentally, C-his the Emacs help key; all help-related commands begin with this key. For example,
to read the Emacs FAQ, type C-h F, and to run the Info documentation browser (which contains The
GNU Emacs Manual), type C-h 1.

10.2.2 Basic Emacs Editing Keys

The following table lists basic editing keys and describes their function. Where two common keystrokes
are available for a function, both are given.

KEYS

@ or C-p

@ orcC-n
or C-b
orc-f
orC-v
or M-v
or C-h
or c-d
(INS)
(Shift)-(INS) or C-y

C-@&po)
C-_

C-a

C-e

C-g
C-hF
C-h a function
C-hi
C-h k key
C-ht
C-k

Cc-1

Cc-t

C-u humber

C-w

C-xC-c

C-x C-f file

C- left-click

- left-click

DESCRIPTION
Move point up to the previous line.

Move point down to the next line.

Move point back through the buffer one character to the left.
Move point forward through the buffer one character to the right.
Move point forward through the buffer one screenful.

Move point backward through the buffer one screenful.

Delete character to the left of point.

Delete character to the right of point.

Toggles between Insert mode and Overwrite mode.

Yank text in the Kill ring at point (see Section 10.4.2 [Pasting Text],
page 115).

Set mark (see Section 10.4.1 [Cutting Text], page 115).
Undo the last action (control-underscore).
Move point to the beginning of the current line.
Move point to the end of the current line.
Cancel the current command.

Open a copy of the Emacs FAQ in a new buffer.
List all Emacs commands related to function.
Start Info.

Describe key.

Start the Emacs tutorial.

Kill text from point to end of line.

Re-center the text in the Emacs window, placing the line where point
is in the middle of the screen.

Transpose the character at point with the character to the left of point.
Repeat the next command or keystroke you type number times.

Kill text from mark to point.

Save all buffers open in Emacs, and then exit the program.

Open file in a new buffer for editing. To create a new file that does
not yet exist, just specify the file name you want to give it. To browse
through your files, type instead of a file name.

Display a menu of all open buffers, sorted by major mode (works in X
only).

Display a font selection menu (works in X only).

The Linux Cookbook: Tips and Techniques for Everyday Use

10.2.3 Making Abbreviations in Emacs

An abbrev is a word that is an abbreviation of a (usually) longer word or phrase. Abbrevs exist as a
convenience to you—you can define abbrevs to expand to a long phrase that is inconvenient to type, or
you can define a misspelling that you tend to make to expand to its correct spelling. Abbrevs only expand
when you have Abbrev mode enabled.

e To turn on Abbrev mode, type:
M-x abbrev-mode
To define an abbrev, type the abbrev you want to use and then type C-x aig. Emacs will prompt in
the minibuffer for the text you want the abbrev to expand to; type that text and then type®ED).
e To define ‘rbf’ as an abbrev for ‘R. Buckminster Fuller’, do the following:
e First, type the abbrev itself:
rbf
e Next, specify that this text is to be an abbrev; type:
C-x aig
e Now type the text to expand it to:
Global expansion for "rbf": R. Buckminster Fuller
Now, whenever you type ‘rbf’ followed by a whitespace or punctuation character in the current
buffer, that text will expand to the text ‘R. Buckminster Fuller’.

To save the abbrevs you have defined so that you can use them later, use the write-abbrev-
file function. This saves all of the abbrevs currently defined to a file that you can read in a future
Emacs session. (You can also open the file in a buffer and edit the abbrevs if you like.)

e To save the abbrevs you have currently defined to afile *~/ .misspelling-abbrevs’, type:
M-x write-abbrev-file ~/.misspelling-abbrevs
Then, in a future Emacs session, you can use the read-abbrev-£file function to define those
abbrevs for that session.
e To read the abbrevs from the file *~/ .misspelling-abbrevs’, and define them for the current
session, type:
M-x read-abbrev-file ~/.misspelling-abbrevs

NOTE: Emacs mode commands are toggles. So to turn off Abbrev mode in a buffer, just type M-x
abbrev-mode again. If you turn Abbrev mode on in that buffer later on during the Emacs
session, the abbrevs will be remembered and will expand again.

10.2.4 Recording and Running Macros in Emacs

A macro is like a recording of a sequence of keystrokes—when you run a macro, Emacs executes that
key sequence as if you had typed them.

To begin recording a macro, type C-x (. Then, everything you type is recorded as the macro until
you stop recording by typing C-x). After you have recorded a macro, you can play it back at any
time during the Emacs session by typing C-x e. You can precede it with the universal-argument
command, C-u, to specify a number of times to play it back.

e To record a macro that capitalizes the first word of the current line (M- c capitalizes the word to the
right of point) and then advances to the next line, type:
C-x (C-a M-¢c C-n C-x)
e To play the macro back 20 times, type:
C-u 20 C-x e

Macros are primary to how Emacs works—in fact, the name Emacs is derived from ‘Editing
MACroS’, because the first version of Emacs in 1976 was actually a collection of such macros written
for another text editor.

10.2.5 Inserting Special Characters in Emacs

There are some characters that you cannot normally type into an Emacs buffer. For example, in a text
file, you can specify a page break by inserting the formfeed character, ASCIlI C-1 or octal code 014;
when you print a file with formfeeds, the current page is ejected at this character and printing is resumed
on a new page.

However, C-1 has meaning as an Emacs command. To insert a character like this, use the quoted-
insert function, C-gq. It takes either a literal keystroke to insert, or the octal code of the character to
insert. It inserts that character at point.

e To insert a formfeed character at point by specifying its actual keystroke (C-1), type:
Cc-g C-1
e To insert a formfeed character at point by specifying its octal character code, type:
C-g 014
The preceding examples both do the same thing: they insert a formfeed character at point.

An interesting use of C-qg is to underline text. To do this, insert a literal C-h character followed by
an underscore (“_’) after each character you want to underline.

e To underline the character before point, type:
C-g C-h _
You can then use ul to output the text to the screen (see Section 13.3 [Underlining Text], page 143).

Another kind of special character insert you might want to make is for accented characters and other
characters used in various languages.

To insert an accented character, use ISO Accents mode. When this mode is active, you can type a
special accent character followed by the character to be accented, and the proper accented character will
be inserted at point.

The following table shows the special accent characters and the key combinations to use.

PREFIX. .. PLUS THIS LETTER YI1ELDS THIS RESULT
n a a
n e e
n l 1
n O O
n u u
n s I'S
/ a a
, e é
’ i i
! o o
! u 1]
\ a a
\ e \é
' i i
' o 0
\ u u
~ a a
- - ¢
~ d d
~ n fi
~ t t
~ u]

The Linux Cookbook: Tips and Techniques for Everyday Use

< <<
~ > >>
~ | i
- 5 ;
~ a a
~ e 8
~ i i
~ o 0
~ u a
/ a a
/ e ®
/ o a

When a buffer contains accented characters, it can no longer be saved as plain ASCII text, but must
instead be saved as text in the 1SO-8859-1 character set (see Section 9.4 [Viewing a Character Chart],
page 104). When you save a buffer, Emacs will notify you that it must do this.

e To type the line *Emacs ist spaR !’ in the current buffer, type:

M-x iso-accents-mode
Emacs ist spa"ss!

In the event that you want to type the literal key combinations that make up an accented character in
a buffer where you have ISO Accents mode on, type the prefix character twice.
e To type the text “’ o’ (and not the accent character 0) in a buffer while ISO Accents mode is on,
type:

//O

NOTE: GNU Emacs has recently added a number of internationalization functions. A complete dis-
cussion of their use is out of the scope of this book; for more information on this topic, see section
“International Character Set Support” in The GNU Emacs Manual.

10.3 Running a Vi Tutorial

Debian: ‘nvi’
WWW: ftp://mongoose.bostic.com/pub/nvi.tar.gz
WWW: http://www.cs.cmu.edu/ vaschelp/Editors/Vi/

The Vi editor comes with a hands-on, self-paced tutorial, which you can use in vi to learn how to use it.
It’s stored as a compressed file in the * /usr/doc/nvi’ directory; copy this file to your home directory,
uncompress it, and open it with vi to start the tutorial.

e To run the v1i tutorial, type the following from your home directory:

$ cp /usr/doc/nvi/vi.beginner.gz . (RET,
S gunzip vi.beginner
$ vi vi.beginner

NOTE: An advanced tutorial is also available in “*/usr/doc/nvi’.

10.4 Selecting Text

In X, you can cut and paste text between other windows, including xterm and Emacs windows. The
most recently selected text is called the X selection.

In the console, you can cut and paste text in the same virtual console or into a different virtual console.
To do this, you need the gpm package installed and set up for your mouse (it’s a default, recommended
package).

The operations described in this section work the same both in X and in virtual consoles. You cannot
presently cut and paste text between X and a virtual console.

Three buttons on the mouse are used for cutting and pasting. If you have a two-button mouse, your
administrator can set it to emulate three buttons—to specify the middle button, press the left and right
buttons simultaneously.

Click the left mouse button and drag the mouse over text to select it. You can also double-click the
left mouse button on a word to select that word, and triple-click the left mouse button on a line to select
that line. Furthermore, you can click the left mouse button at one end of a portion of text you want to
select, and then click the right mouse button at the other end to select all of the text between the points.

NOTE: In an xterm window, when you’re running a tool or application locally in a shell (such as the
1ynx Web browser), the left mouse button alone won’t work. When this happens, press and hold the
key while using the mouse to select text.

10.4.1 Cutting Text

You don’t have to select text to cut it. At a shell prompt or in Emacs, type C-k to cut the text from the
cursor to the end of the line.

In Emacs parlance, cutting text is known as killing text. Emacs has additional commands for killing
text:

e When you have selected an area of text with the mouse as described previously, you can typeShift) -
to delete it.

e You can also click the left mouse button at one end of an area of text and then double-click the right
mouse button at the other end of the area to kill the area of text.

e Finally, to kill a large portion of text in an Emacs buffer, set the mark at one end of the text by
moving point to that end and typing C-&pPC). Then, move point to the other end of the text, and type
c-wto kill it.

10.4.2 Pasting Text

Debian: ‘xpaste’

To paste the text that was last selected with the mouse, click the middle mouse button at the place you
want to paste to. You can also use the keyboard by moving the cursor to where you want to paste and
then typing -(INS). These commands work both in X and in the console.

In X, to display the contents of the X selection in its own window, run the xpaste X client; its only
purpose in life is to display this text in its window.

In Emacs, pasting text is called yanking the text. Emacs offers the additional key, C-y (*yank™), to
yank the text that was last selected or killed. This key also works in the bash shell, where it pastes the
last text that was killed with C-k in that shell session, if any.

The Linux Cookbook: Tips and Techniques for Everyday Use

10.5 Editing Streams of Text

Some of the recipes in this book that work on text use sed, the “stream editor.” It is not a text editor
in the usual sense—you don’t open a file in sed and interactively edit it; instead, it performs editing
operations on a stream of text sent to its standard input, and it writes the results to the standard output.
This is more like a filter than an editor, and sed is a useful tool for formatting and searching through
text.

“The seder’s grab-bag” (http://seders.icheme.org/)is auseful collection of sed informa-
tion including a FAQ and many example scripts.

The sed “one-liners” (http://www-h.eng.cam.ac.uk/help/tpl/unix/sed.html)
are useful commands for editing and processing text.

See Info file ‘sed. info’, node “Top’, for more information on sed usage.

Other tools that are good for stream editing include the AWK and Perl programming languages; to
learn more about using these powerful languages, | recommend the following books:
e The GNU Awk User’s Guide (http://www.gnu.org/manual/gawk-3.0.3/gawk.html)j

e Picking Up Perl (http://www.ebb.org/PickingUpPerl/)

10.6 Concatenating Text

The cat tool gets its name because it concatenates all of the text given to it, outputting the result to the
standard output. It is useful for concatenating files of text together.

For example, suppose you have two files, ‘early’ and ‘later’. The file ‘early’ contains this
text:

This Side of Paradise
The Beautiful and Damned

And the file ‘1ater’ contains this text:

The Great Gatsby
Tender is the Night
The Last Tycoon

e To concatenate these files into a new file, ‘novels’, type:
S cat early later > novels

This command redirects the standard output to a new file, ‘novels’, which would then contain the
following text:

This Side of Paradise
The Beautiful and Damned
The Great Gatsby

Tender is the Night

The Last Tycoon

The files ‘early’ and ‘later’ are not altered.
Had you typed cat later early > novels instead, the files would be concatenated in that re-
versed order instead, beginning with ‘1ater’; so the file ‘novels’ would contain the following:

The Great Gatsby

Tender is the Night

The Last Tycoon

This Side of Paradise
The Beautiful and Damned

The following sections give other recipes for concatenating text.

NOTE: You can also use cat to concatenate files that are not text, but its most popular usage is with
text files. Another way to concatenate files of text in an automated way is to use file inclusion—see
Section 10.7 [Including Text Files], page 118.

A similar tool, zcat, reads the contents of compressed files.

10.6.1 Writing Text to Files

Sometimes, it’s too much trouble to call up a text editor for a particular job—you just want to write a text
file with two lines in it, say, or you just want to append a text file with one line. There are ways of doing
these kind of micro-editing jobs without a text editor.

To write a text file without using a text editor, redirect the standard output of cat to the file to write.
You can then type your text, typing C-d on a line of its own to end the file. This is useful when you
want to quickly create a small text file, but that is about it; usually, you open or create a text file in a text
editor, as described in the previous sections in this chapter.

e To make a file, ‘novels’, with some text in it, type:

4 N

$ cat > novels

This Side of Paradise
The Beautiful and Damned
The Great Gatsby

Tender is the Night

Cc-d

$

- J

In this example, the text file ‘novels’ was created and contains four lines of text (the last line with
the C-d s never part of the file).

Typing text like this without an editor will sometimes do in a pinch but, if you make a mistake, there
is not much recourse besides starting over—you can type C-u to erase the current line, and C- ¢ to abort
the whole thing and not write the text to a file at all, but that’s about it.

10.6.2 Appending Text to a File

To add text to a text file without opening the file in a text editor, use cat with the append operator, *>>".
(Using >’ instead would overwrite the file.)

e To add a line of text to the bottom of file ‘novels’, type:

$ cat >> novels
The Last Tycoon
c-d

In this example, no files were specified to cat for input, so cat used the standard input; then, one
line of text was typed, and this text was appended to file ‘novels’, the file used in the example of the
previous recipe. So now this file would contain the following:

This Side of Paradise
The Beautiful and Damned
The Great Gatsby

Tender is the Night

The Last Tycoon

The Linux Cookbook: Tips and Techniques for Everyday Use

10.6.3 Inserting Text at the Beginning of a File

WWW: http://dsl.org/comp/tinyutils/

Inserting text at the beginning of a text file without calling up a text editor is a bit trickier than appending
text to a file’s end—»but it is possible.

To insert one or more lines of text at the beginning of a file, use ins. Give the name of the file in
which to insert text as an argument; ins will read lines of text from the standard input and insert them
at the beginning of the file. (It works by opening the file in ed, a simple line editor.)

Give the EOF—that is, type C-don a line by itself—to signify the end of the lines of text to insert.
e To insert several lines of text at the beginning of the file ‘novels’, type:

4 N

$ ins novels
The Novels of F. Scott Fitzgerald

c-d

s

- J

This command inserts two lines of text at the beginning of novels, the file used in the previous
examples in this section. This file would now contain the following:

The Novels of F. Scott Fitzgerald
This Side of Paradise

The Beautiful and Damned

The Great Gatsby

Tender is the Night

The Last Tycoon

10.7 Including Text Files

Debian: ‘m4’

File inclusion is where the contents of a file can be included at a particular place within some other file,
just by specifying the file’s name at that place in the other file.

This is useful if you want or need to frequently rearrange divisions or sections of a document, if you
need to keep a document in more than one arrangement, or if you have some sections of text that you
frequently insert in more than one document. For these situations, you can keep each section in a separate
file and build an include file that contains the file names for the various sections in the order you want to
generate that file.

To include a file in a text file, specify the file to be included on a line of its own, like this:
include (file)

When you process this file for inclusion, the line with the ‘include’ statement is replaced with the
contents of the file file (whose path is relative to the current directory of the include file).

Use the m4 tool, the GNU macro processor, to process an include file. It takes as an argument the
name of the include file, and it outputs the inclusion to the standard output. You can use redirection to
redirect the output to a file.

For example, suppose the file ‘soups’ contains this text:

Clam Chowder
Lobster Bisque
Vegetable

And suppose the file ‘sandwiches’ contains this text:

BLT
Ham on Rye
Roast Beef

And finally, suppose the file ‘menu’ contains this text:

Diner Menu For Today

include (soups)

Sandwiches

include (sandwiches)
\

e To process the file and write to the file ‘monday . txt’, type:
S m4 menu > monday.txt

This command writes a new file, ‘monday . txt’, which looks like this:

s

Diner Menu For Today

Clam Chowder
Lobster Bisque
Vegetable

Sandwiches

BLT
Ham on Rye
Roast Beef

N

The Linux Cookbook: Tips and Techniques for Everyday Use

NOTE: You can write more than one include file that will use your files—and the files themselves can
have include files of their own.

This is a fairly simple use of m4; it can do much more, including run commands, manipulate text, and
run custom macros. See Info file ‘m4 . info’, node ‘Top’ for more information on this tool.

11 Grammar and Reference

The tools and resources for writing and editing on Linux-based systems include spell checkers, dictio-
naries, and reference files. This chapter shows methods for using them.

11.1 Spelling

There are several ways to spell check text and files on Linux; the following recipes show how to find
the correct spellings of particular words and how to perform batch, interactive, and Emacs-based spell
checks.

The system dictionary file, ‘/usr/dict /words’! is nothing more than a word list (albeit a very
large one), sorted in alphabetical order and containing one word per line. Words that are correct regard-
less of case are listed in lowercase letters, and words that rely on some form of capitalization in order to
be correct (such as proper nouns) appear in that form. All of the Linux spelling tools use this text file to
check spelling; if a word does not appear in the dictionary file, it is considered to be misspelled.

NOTE: None of the computerized spell-check tools will correct your writing if you are using the wrong
word to begin with—for example, if you have ‘there’ when you mean ‘their’, the computer will not
catch it (yet!).

11.1.1 Finding the Correct Spelling of a Word

If you’re unsure whether or not you’re using the correct spelling of a word, use spell to find out.
spell reads from the standard input and outputs any words not found in the system dictionary—so if a
word is misspelled, it will be echoed back on the screen after you type it.

e For example, to check whether the word ‘occurance’ is misspelled, type:

4 N

$ spell
occurance
occurance

c-d

$

. J

In the example, spell echoed the word ‘occurance’, meaning that this word was not in the
system dictionary and therefore was quite likely a misspelling. Then, Cc-d was typed to exit spell.

11.1.2 Listing the Misspellings in a Text

To output a list of misspelled words in a file, give the name of the file to check as an argument to spell.
Any misspelled words in the file are output, each on a line of its own and in the order that they appear in
the file.

e To spell check the file ‘“fall-lecture.draft’, type:

4 N

$ spell fall-lecture.draft
occurance

willl

occurance

$

. J

L Onan increasing number of systems, this file is being replaced with * /usr/share/dict /words’;administrators should
make a symbolic link from this to the shorter, preferred form.

The Linux Cookbook: Tips and Techniques for Everyday Use

In this example, three words are output: ‘occurance’,‘willl’and ‘occurance’again, meaning
that these three words were found in ‘fall-lecture.draft’, in that order, and were not in the
system dictionary (and so were probably misspelled). Note that the misspelling ‘occurance’ appears
twice in the file.

To correct the misspellings, you could then open the file in your preferred text editor and edit it. Later
in this section I’ll describe an interactive spell checker that allows you to correct misspellings as they are
found. Still another option is to use a text editor with spell-checking facilities built in, such as Emacs.

e To spell check the file ‘fall-lecture.draft’, and output any possibly misspelled words to a
file ‘fall-lecture.spelling’, type:

S spell fall-lecture.draft > fall-lecture.spelling
In this example, the standard output redirection character, ‘>’, is used to redirect the output to a file
(see Section 3.2.2 [Redirecting Output to a File], page 37).

To output an alphabetical list of the misspelled words, pipe the output to sort; then pipe the sorted
output to the uniq filter to remove duplicates from the list (uniqg removes duplicate adjacent lines from
its input, outputting the “unique” lines).

e To output a sorted list of the misspelled words that are in the file ‘fall-lecture.draft’, type:
$ spell fall-lecture.draft | sort | unig

11.1.3 Keeping a Spelling Word List

The stock American English dictionary installed with Linux-based systems includes over 45,000 words.
However large that number may seem, a lot of words are invariably left out—including slang, jargon,
and some proper names.

You can view the system dictionary as you would any other text file, but users never edit this file to
add words to it.? Instead, you add new words to your own personal dictionary, a file in the same format
as the system dictionary, but kept in your home directory as the file *~/.ispell default’.

Users can have their own personal dictionary; the spelling commands discussed in this chapter auto-
matically use your personal dictionary, if you have one, in addition to the system dictionary.

You build your personal dictionary using the i and u options of ispell, which insert words into
your personal dictionary. Use these options either with the stand-alone tool or with the various ispell
Emacs functions (see Section 11.1.4 [Interactive Spell Checking], page 122 and Section 11.1.5 [Spell
Checking in Emacs], page 124).

NOTE: You can also add (or remove) words by manually editing the file with a text editor, but take
care so that the list is kept in alphabetical order!

Over time, personal dictionaries begin to look very personal, as a reflection of their
owners; Gregory Cosmo made a work of art by photographing the portraits of a
dozen wusers superimposed with listings of their personal dictionaries (accessible online at
http://www.reed.edu/ cosmo/art/DictPort.html).

11.1.4 Interactive Spell Checking

Use ispell to spell check a file interactively, so that every time a misspelling is found, you’re given a
chance to replace it then and there.

e To interactively spell check ‘fall-lecture.notes’, type:
S ispell fall-lecture.notes

2 If a word is reasonably universal, you may, of course, contact the global maintainers of wenglish or other appropriate

packages and try to convince them that said word ought to be included.

When you type this, 1spell begins checking the file. It stops at the first misspelling it finds:

lecutres File: fall-lecture,notes

The focuz of my zeries of |[E=ldged this fall are the aspectz of the nowel,

02 lectures

[5F]1 <rumber> Riepl Alccept Dinzert Llookup Uincap Qiuit e{8rit or 7 for help

- J

On the top line of the screen, ispel1l displays the misspelled word, followed by the name of the file.
Underneath this is the sentence in which the misspelling appears, with the word in question highlighted.
Following this is a list of suggested words, each offset by a number—in this example, i spel11 has only
one suggestion: ‘lectures’.

To replace a misspelling with a suggested word, type the number that corresponds to the suggested
word (in this example, you would type 0 to replace the misspelling with ‘1lectures’). You only need
to type the number of your selection—a is not required.

You can also type a correction yourself; this is useful when ispel1l either offers no suggestions, or
when it does and the word you want is not one of them. To do this, type = (for “replace”) and then type
the replacement word, followed by RET).

Sometimes, ispell will question a word that you may not want to count as a misspelling, such as
proper names and the like—words that don’t appear in the system dictionary. There are a few things you
can do in such cases, as follows.

To accept a misspelled word as correct for the current ispell session only, type a; from then on
during the current session, this word will be considered correct.

If, however, you want ispell (and spell, and all other tools that access the system dictionary) to
remember this word as being correct for this and all future sessions, insert the word in your own personal
dictionary. Type u to insert a copy of the word uncapitalized, in all lowercase letters—this way, even if
the word is capitalized at the beginning of a sentence, the lowercase version of the word is saved. From
then on, in the current ispell session and in future sessions, this word, regardless of case, will be
considered correct.

When case is important to the spelling—for example, in a word that is a proper name such as
‘Seattle’, or a word with mixed case, such as ‘LaTeX’—type i to insert a copy of the word in
your personal dictionary with its case just as it appears; this way, words spelled with the same letters but
with different case will be considered misspellings.

When ispell finishes spell checking a file, it saves its changes to the file and then exits. It
also makes a copy of the original file, without the changes applied; this file has the same name
as the original but with *.bak’ added to the end—so in our example, the backup file is called
‘fall-lecture.notes.bak’. This is useful if you regret the changes you’ve made and want to
restore the file to how it was before you mucked it up—just remove the spell-checked file and then
rename the ‘. bak’ file to its original name.

The Linux Cookbook: Tips and Techniques for Everyday Use

The following table is a reference to the 1spell key commands.

KEY COMMAND

SPC Accept misspelled word as correct, but only for this particular instance.

number Replace the misspelled word with the suggestion that corresponds to
the given number.

? Display a help screen.

a Accept misspelled word as correct for the remainder of this ispell
session.

i Accept misspelled word as correct and add it to your private dictionary
with the capitalization as it appears.

1 Look up words in the system dictionary according to a pattern you then
give.

Quit checking and restore the file to how it was before this session.
r Replace misspelled word with a word you type.

u Accept misspelled word as correct and add it to your private dictionary
in all lowercase letters.

X Save the changes thus made, and then stop checking this file.

11.1.5 Spell Checking in Emacs

Emacs has several useful commands for spell checking. The ispell-word, ispell-region,and
ispell-buffer functions, as you might guess from their names, use the ispell command inside
Emacs to check portions of the current buffer.

The first command, ispell-word, checks the spelling of the word at point; if there is no word at
point, it checks the first word to the left of point. This command has a keyboard shortcut, M-$. The
second command, ispell-region, checks the spelling of all words in the currently selected region
of text. The third command, ispell-buffer,checks the spelling of the entire buffer.

e To check the spelling of the word at point, type:
M-x ispell-word
e To check the spelling of all words in the currently selected region of text, type:
M-x ispell-region
e To check the spelling of all words in the current buffer, type:
M-x ispell-buffer
Flyspell mode is another useful Emacs spelling command that, when set in a buffer, highlights

misspelled words. This function is useful when you are writing a first draft in a buffer, because it lets
you catch misspellings as you type them.

e Toturnon Flyspell mode in a buffer, type:
M-x flyspell-mode

NOTE: This command is a toggle; run it again to turn it off.

To correct a word in Flyspell mode, click and release the middle mouse button on the word to
pull up a menu of suggestions; you then use the mouse to select the replacement word or add it to your
personal dictionary.

If there are words you frequently misspell, you can define abbrevs for them (see Section 10.2.3
[Making Abbreviations in Emacs], page 112). Then, when you type the misspelled word, Emacs will
automatically replace it with the correct spelling.

Finally, if you prefer the sparse, non-interactive interface of spell, you can use the Emacs inter-
faces to that command instead: Spell word, Spell region, and Spell buffer. When any of
these commands find a misspelling, they prompt for a replacement in the minibuffer but do not offer
suggestions or provide any of i spel1’s other features.

11.2 Dictionaries

Debian: ‘wordnet-dev’
WWW: http://www.cogsci.princeton.edu/ “wn/

The term dictionary on Linux systems generally refers to one of two things: the traditional Unix-style
dictionary, which is an alphabetically sorted word list containing no actual definitions, and the newer
database-style dictionary that contains the headwords as well as their definitions. The latter is the kind of
thing most people mean when they talk about dictionaries. (When most Unix folk talk about dictionaries,
however, they almost always mean the former.)

WordNet is a lexical reference system in the form of a database containing thousands of words ar-
ranged in synonym sets. You can search the database and output the results in text with the wn tool or
the wnb X client (the “WordNet browser”).

Use of the X client is fairly straightforward—type a word in the dialog box near the top of the screen,
followed by RED), to get its definition(s), which are displayed in the large output window underneath the
dialog box.

For example, this is what appears when you do a search for the definition of the word ‘browse’:

File History Options Help

Search Word: [browse

Searches for browse: Noun| Verb Senses

The noun browse has 2 senses (no senses from tagged texts)

1. hrowse, browsing —— (reading superficially or at randorn)
[2. browse, browsing —— (the act of feeding by continual nibbling)

The verb browse has 4 senses (no senses from tagged texts)

1. shop, hrowse —— {shop around; not necessarily buying)

[2. crop, browse, graze, range, pasture —— (feed as in ameadow or pasture; "the herd was grazing")
[3. browse —— (look around casually and randomly, as through files and directories on a computer)
4. browse, graze —— (eat ightly, try different dishes)

Querview of browse

Between the dialog box and the output window, there are menus for searching for synonyms and
other word senses. A separate menu is given for each part of speech a word may have; in the preceding
example, the word ‘browse’ can be either a noun or a verb, so two menus are shown.

To get a list of all word sense information available for a given word, run wn with the name of the
word as an argument. This outputs a list of all word sense information available for the word, with each
possible sense preceded with the name of the option to use to output it.

e To output a list of word senses available for the word ‘browse’, type:
S wn browse

The following sections show how to use wn on the command line.

NOTE: For more information on WordNet, consult the wnintro man page (see Section 2.8.4 [Reading
a Page from the System Manual], page 28).

The Linux Cookbook: Tips and Techniques for Everyday Use

11.2.1 Listing Words that Match a Pattern

There are several ways to search for and output words from the system dictionary.

Use 1ook to output a list of words in the system dictionary that begin with a given string—this is
useful for finding words that begin with a particular phrase or prefix. Give the string as an argument; it
iS not case sensitive.

e To output a list of words from the dictionary that begin with the string ‘homew’, type:
$ look homew

This command outputs words like “homeward’ and ‘homework’.

Since the system dictionary is an ordinary text file, you can also use grep to search it for words
that match a given pattern or regular expression (see Section 14.2 [Regular Expressions—Matching Text
Patterns], page 148).

e To list all words in the dictionary that contain the string ‘dont’, regardless of case, type:
$ grep -i dont /usr/dict/words
e To list all words in the dictionary that end with ‘ing’, type:
$ grep ing” /usr/dict/words
e To list all of the words that are composed only of vowels, type:
$ grep -i ‘" [aeiou] *$’ /usr/dict/words
To find some words that rhyme with a given word, use grep to search ‘/usr/dict/words’ for

words ending in the same last few characters as the word they should rhyme with (see Section 14.2.2
[Matching Lines Ending with Certain Text], page 150).

e Tooutput a list of words that rhyme with ‘friend’, search */usr/dict/words’ for lines ending
with ‘end’:
$ grep ’‘end$’ /usr/dict/words
Finally, to do a search on the WordNet dictionary, use wn with one of the ‘-grep’ options. When you
give some text to search for as an argument, this command does the equivalent search as 1ook, except
only the particular kind of word sense you specify is searched: ‘-grepn’ searches nouns, ‘-grepv’

searches verbs, ‘-grepa’ searches adjectives, and ‘-grepr’ searches adverbs. You can combine op-
tions to search multiple word senses.

e To search the WordNet dictionary for nouns that begin with ‘homew’, type:
S wn homew -grepn

e To search the WordNet dictionary for both nouns and adjectives that begin with “homew’, type:
$ wn homew -grepn -grepa

11.2.2 Listing the Definitions of a Word

To list the definitions of a word, give the word as an argument to wn, followed by the “-over’ option.
e To list the definitions of the word ‘s1lope’, type:

S wn slope -over

11.2.3 Listing the Synonyms of a Word

A synonym of a word is a different word with a similar meaning that can be used in place of the first
word in some context. To output synonyms for a word with wn, give the word as an argument, followed
by one of the following options: ‘-synsn’ for nouns, ‘-synsv’ for verbs, ‘-synsa’ for adjectives,
and ‘-sysnr’ for adverbs.

e To output all of the synonyms for the noun ‘break’, type:

S wn break -synsn
e To output all of the synonyms for the verb ‘break’, type:

S wn break -synsv

11.2.4 Listing the Antonyms of a Word

An antonym of a word is a different word that has the opposite meaning of the first in some context.
To output antonyms for a word with wn, give the word as an argument, followed by one the following
options: ‘-antsv’ for verbs, ‘-antsa’ for adjectives, and ‘-antsr’ for adverbs.

e To output all of the antonyms for the adjective ‘sad’, type:
S wn sad -antsa

11.2.5 Listing the Hypernyms of a Word

A hypernym of a word is a related term whose meaning is more general than the given word. (For
example, the words ‘mammal’ and ‘animal’ are hypernyms of the word ‘cat’.)

To output hypernyms for a word with wn, use one of the following options: ‘-hypen’ for nouns and
‘~-hypev’ for verbs.

e To output all of the hypernyms for the noun ‘cat’, type:
$ wn cat -hypen

11.2.6 Online Dictionaries

Debian ‘dict’
WWW: http://www.dict.org/

The DICT Development Group has a number of free dictionaries on their Web site at
http://www.dict.org/. On that page, you can look up the definitions of words (including
thesaurus and other searches) from a dictionary that contains over 300,000 headwords, or make a copy
of their dictionary for use on your own system. A dict client exists for accessing DICT servers and
outputting definitions locally; this tool is available in the ‘dict’ package.

DICT also has a number of specialized dictionaries that are plain text files (including the author’s Free
Journalism Dictionary, containing jargon and terms used in the journalism and publishing professions).
Their FILE project, The Free Internet Lexicon and Encyclopedia, is an effort to build a free, open source
collection of modern-word, idiom, and jargon dictionaries. FILE is a volunteer effort and depends on the
support of scholars and lexicographers; the DICT pages contain information on how to help contribute
to this worthy project.

11.3 Checking Grammar

WWW: http://www.gnu.org/software/diction/diction.html

Two venerable Unix tools for checking writing have recently been made available for Linux-based sys-
tems: styleand diction.

Old-timers probably remember these names—the originals came with AT&T UNIX as part of the
much-loved “Writer’s Workbench” (WWB) suite of tools back in the late 1970s and early 1980s?

3 There was also a set of tools for formatting text called the “Documenter’s Workbench” (DWB), and there was a planned
“Reader’s Workbench”; we can only guess at what that might have been, but today we do have Project Gutenbook
(http://www.gutenbook.org/),a new etext reader.

The Linux Cookbook: Tips and Techniques for Everyday Use

AT&T *“unbundled” the Writer’s Workbench from their UNIX version 7 product, and as the many
flavors of Unix blossomed over the years, these tools were lost by the wayside—eventually becoming
the stuff of Unix lore.

In 1997, Michael Haardt wrote new Linux versions of these tools from scratch. They support both
the English and German languages, and they’re now part of the GNU Project.

Two additional commands that were part of the Writer’s Workbench have long been standard on
Linux: 1ook and spell, described previously in this chapter.

11.3.1 Checking Text for Misused Phrases

Use diction to check for wordy, trite, clichéd, or misused phrases in a text. It checks
for all the kind of expressions William Strunk warned us about in his Elements of Style
(http://coba.shsu.edu/help/strunk/).

According to The UNIX Environment, by Andrew Walker, the diction tool that came with the
old Writer’s Workbench just found the phrases, and a separate command called suggest would output
suggestions. In the GNU version that works for Linux systems, both functions have been combined in
the single diction command.

In GNU diction, the words or phrases are enclosed in brackets ‘[1ike this]’. If diction
has any suggested replacements, it gives them preceded by a right arrow, *-> 1ike this’.

When checking more than just a screenful of text, you’ll want to pipe the output to 1ess so that you
can peruse it on the screen (see Section 9.1 [Perusing Text], page 99), or pipe the output to a file for later
examination.

e To check file *dissertation’ for clichés or other misused phrases, type:
$ diction dissertation | less

e To check file *dissertation’ for clichés or other misused phrases, and write the output to a file
called ‘dissertation.diction’, type:

S diction dissertation > dissertation.diction

If you don’t specify a file name, diction reads text from the standard input until you type Cc-don
a line by itself. This is especially useful when you want to check a single sentence:

4 N

$ diction

Let us ask the question we wish to state. (RET
(stdin) :1: Let us [ask the question -> ask]
[we wish to state -> (cliche, avoid)].

c-d

$

. J

To check the text of a Web page, use the text-only Web browser 1ynx with the ‘-dump’ and
‘-nolist’ options to output the plain text of a given URL, and pipe this output to diction. (If
you expect there to be a lot of output, add another pipe at the end to 1ess so you can peruse it.)

To peruse a copy of the text of http://example.org/1.html with markings for possible
wordy and misused phrases, type:

$ lynx -dump -nolist http://example.org/l.html | diction | less REDJ

11.3.2 Checking Text for Doubled Words

One of the things that diction looks for is doubled words—words repeated twice in a row. If it finds
such a sequence, it encloses the second member of the doubled pair in brackets, followed by a right arrow
and the text ‘Double word’, like ‘this [<i>this -> Double word.]’.

To check a text file for doubled words only, and not for any of the other things diction checks, use
grep to find only those lines in diction’s output that contain the text ‘Double word’, if any.

e To output all lines containing double words in the file ‘dissertation’, type:
$ diction dissertation | grep ’‘Double word’

11.3.3 Checking Text for Readability

The style command analyzes the writing style of a given text. It performs a number of readability tests
on the text and outputs their results, and it gives some statistical information about the sentences of the
text. Give as an argument the name of the text file to check.

e To check the readability of the file ‘dissertation’, type:
S style dissertation
Like diction, style reads text from the standard input if no text is given—this is useful for the
end of a pipeline, or for checking the writing style of a particular sentence or other text you type.
The sentence characteristics of the text that style outputs are as follows:
e Number of characters
e Number of words, their average length, and their average number of syllables
e Number of sentences and average length in words
e Number of short and long sentences
e Number of paragraphs and average length in sentences
e Number of questions and imperatives

The various readability formulas that style uses and outputs are as follows:

¢ Kincaid formula, originally developed for Navy training manuals; a good readability for technical
documentation

e Automated Readability Index (ARI)
e Coleman-Liau formula
e Flesch Reading Ease Score, which gives an approximation of readability from 0 (difficult) to 100

(easy)
e Fog Index, which gives a school-grade reading level

e WSTF Index, a readability indicator for German documents

e Wheeler-Smith Index, Lix formula, and SMOG-Grading tests, all readability indicators that give a
school-grade reading level

11.3.4 Checking Text for Difficult Sentences

To output just the “difficult” sentences of a text, use style with the ‘-’ option followed by a number;
style will output only those sentences whose Automated Readability Index (ARI) is greater than the
number you give.

e To output all sentences in the file *dissertation’whose ARI is greater than a value of 20, type:
S style -r 20 dissertation

11.3.5 Checking Text for Long Sentences

Use style to output sentences longer than a certain length by giving the minimum number of words as
an argument to the ‘-1 option.

e To output all sentences longer than 14 words in the file ‘dissertation’, type:
S style -1 14 dissertation

The Linux Cookbook: Tips and Techniques for Everyday Use

11.4 Word Lists and Reference Files

Debian: ‘miscfiles’

WWW: ftp://ftp.gnu.org/pub/gnu/miscfiles/miscfiles-1.1.tar.gz

The GNU Miscfiles are a collection of text files containing various facts and reference material, such as
common abbreviations, telephone area codes, and English connective phrases.

The files are stored in the ‘ /usr/share/misc’ directory, and they are all compressed; use zless
to peruse them (see Section 9.1 [Perusing Text], page 99).

The following table lists the files in “*/usr/share/misc’ and describes their contents.

FILE
GNU-manifesto.gz

abbrevs.talk.gz
abbrevs.gen.gz

airport.gz

ascii.gz
birthtoken.gz

cities.dat.gz

inter.phone.gz
languages.gz

latinl.gz

mailinglists.gz
na.phone.gz
operator.gz
postal.codes.gz

us-constitution.gz

us-declaration.gz

rfc-index. txt

zipcodes.gz

DESCRIPTION
The GNU Manifesto.

Collections of common abbreviations used in electronic communica-
tion. (This is the place to look to find the secrets of “TTYL’ and ‘LOL’.)

List of three-letter city codes for some of the major airports. The city
code is useful for querying the National Weather Service computers to
get the latest weather report for your region.

A chart of the ASCII character set.
The traditional stone and flower tokens for each month.

The population, political coordinates (nation, region), and geographic
coordinates (latitude, longitude) of many major cities.

International country and city telephone codes.
Two-letter codes for languages, from 1SO 639.

A chart of the extended ASCII character set, also known as the 1SO
8859 (“Latin-1") character set.

Description of all the public Project GNU-related mailing lists.
North American (+1) telephone area codes.

Precedence table for operators in the C language.

Postal codes for U.S. and Mexican states and Canadian provinces.

The Constitution of the United States of America (no Bill of
Rights, though). (On Debian systems, this file is placed in
‘/usr/share/state’.)

The Declaration of Independence of the Thirteen Colonies. (On De-
bian systems, this file is placed in */usr/share/state’.)

Indexes of Internet standardization Request For Comments
(RFC) documents. (On Debian systems, this file is placed in
‘/usr/share/rfc’).

U.S. five-digit Zip codes.

‘miscfiles’is not the only reference package available for Debian systems, though; other related

packages include the following:

PACKAGE
doc-iana

DESCRIPTION
Internet protocol parameter registry documents, as published by the
Internet Assigned Numbers Authority.

doc-rfc A collection of important RFCs, stored in */usr/share/rfc’.
jargon The “Jargon file,” which is the definitive dictionary of hacker slang.

vera List of computer acronyms.

The Linux Cookbook: Tips and Techniques for Everyday Use

NOTE: The official GNU miscfiles distribution also includes the Jargon file and the
‘/usr/dict/words’ dictionary file, which are available in separate packages for Debian, and
are removed from the Debian ‘miscfiles’ distribution. ‘/usr/dict/words’ is part of the
standard spelling packages, and the Jargon file comes in the optional ‘jargon’ package, and installs in
‘/usr/share/jargon’.

12 Analyzing Text

There are many ways to use command-line tools to analyze text in various ways, such as counting the
number of words in a text, creating a concordance, and comparing texts to see if (and where) they differ.
There are also other tricks you can do with text that count as analysis, such as finding anagrams and
palindromes, or cutting up text to generate unexpected combinations of words. This chapter covers all
these topics.

12.1 Counting Text

Use the “word count” tool, wec, to count characters, words, and lines in text.

Give the name of a file as an argument; if none is given, we works on standard input. By default, wc
outputs three columns, displaying the counts for lines, words, and characters in the text.

e To output the number of lines, words, and characters in file ‘out1ine’, type:
$ wc outline

The following subsections describe how to specify just one kind of count with we, and how to count
text in Emacs.

NOTE: You can get a count of how many different words are in a text, too—see Section 12.2 [Making a
Concordance of a Text], page 134. To count the average length of words, sentences, and paragraphs, use
style (see Section 11.3.3 [Checking Text for Readability], page 129).

12.1.1 Counting the Characters in a Text

Use wc with the ‘- ¢’ option to specify that just the number of characters be counted and output.
e To output the number of characters in file ‘classified.ad’, type:
S wc -c classified.ad

12.1.2 Counting the Words in a Text

Use wc with the “-w’ option to specify that just the number of words be counted and output.
e To output the number of words in the file *story’, type:
$ wc -w story

To output counts for several files, first concatenate the files with cat, and then pipe the output to wc.

e To output the combined number of words for all the files with a *. txt’ file name extension in the
current directory, type:

$ cat *.txt | wc -w

NOTE: To read more about concatenation with cat, see Section 10.6 [Concatenating Text], page 116.

12.1.3 Counting the Lines in a Text

Use wc with the ‘-1 option to specify that just the number of lines be counted and output.
e To output the number of lines in the file ‘out1ine’, type:
S wc -1 outline

The Linux Cookbook: Tips and Techniques for Everyday Use

12.1.4 Counting the Occurrences of Something

To find the number of occurrences of some text string or pattern in a file or files, use grep to search the
file(s) for the text string, and pipe the output to wc with the *-1” option.

e To find the number of lines in the file ‘out 1ine’ that contain the string ‘chapter’, type:
$ grep chapter outline | wc -1

NOTE: For more recipes for searching text, and more about grep, see Chapter 14 [Searching Text],
page 147.

12.1.5 Counting Lines per Page in Emacs

The count - 1lines-page function in Emacs outputs in the minibuffer the number of lines on the cur-
rent page (as delimited by pagebreak characters, if any—see Section 13.2 [Paginating Text], page 142),
followed by the number of lines in the buffer before the line that point is on, and the number of lines in
the buffer after point.

e To count the number of lines per page in the current buffer in Emacs, type:
C-x 1
Emacs outputs the number of lines per page of the current buffer in the echo area.
For example, if the output in the minibuffer is
Page has 351 lines (69 + 283)

this means that the current page contains 351 lines, and point is on line number 70—there are 69 lines
before this line, and 283 lines after this line.

12.2 Making a Concordance of a Text

A concordance is an index of all the words in a text, along with their contexts. A concordance-like
functionality—an alphabetical listing of all words in a text and their frequency—can be made fairly
easily with some basic shell tools: tr, sort, and uniq.

e To output a word-frequency list of the text file ‘naked_lunch’, type:

S tr 7 7Y
> ’ < naked lunch | sort | unig -c

These commands translate all space characters to newline characters, outputting the text with each
word on its own line; this is then sorted alphabetically, and that output is passed to uniqg, which outputs
only the unique lines—that is, all non-duplicate lines—while the ‘-c’ option precedes each line with its
count (the number of times it occurs in the text).

To get a word frequency count—that is, the total number of different words in a text—just pipe the
output of the frequency list to wec with the “-1’ option. This counts all the lines of its input, which in this
case will be the list of unique words, one per line.

e To output a count of the number of unique words in the text file ‘naked_lunch’, type:

$ tr 1 7
> / < naked lunch | sort | unig -c | wc -1

12.3 Text Relevance

The following recipes show how to analyze a given text for its relevancy to other text, either to keywords
or to whole files of text.

You can also use the dif£f family of tools to analyze differences in text; those tools are especially
good for comparing different revisions of the same file (see Section 8.4 [Comparing Files], page 90).

12.3.1 Sorting Text in Order of Relevance

Debian: ‘rel’
WWW: http://www.johncon.com/

Use rel to analyze text files for relevance to a given set of keywords. It outputs the names of those files
that are relevant to the given keywords, ranked in order of relevance; if a file does not meet the criteria,
it is not output in the relevance listing.

rel takes as an option the keyword to search for in quotes; you can build a boolean expression by
grouping multiple keywords in parentheses and using any of the following operators between them:

OPERATOR DESCRIPTION
| Logical “or.”
& Logical “and.”

! Logical “not.”
Give as arguments the names of the files to rank.
e To rank the files ‘report.a’, ‘report.b’, and ‘report.c’ in order of relevance to the key-
words ‘saving’ and ‘profit’, type:
S rel " (saving & profit)" report.a report.b report.c
Give the name of a directory tree to analyze all files in the directory tree.
e To output a list of any files containing either ‘“invitation’ or ‘request’ in the *~/mail’
directory, ranked in order of relevancy, type:
$ rel " (invitation | request)" ~/mail
e To output a list of any files containing ‘invitation’ and not ‘wedding’ in the *~/mail’ di-
rectory, ranked in order of relevancy, type:
$ rel " (invitation ! wedding)" ~/mail
e To output a list of any files containing ‘invitation’ and ‘party’ in the *~/mail’ directory,
ranked in order of relevancy, type:
$ rel " (invitation & party)" ~/mail

12.3.2 Listing Relevant Files in Emacs

Debian: ‘remembrance-agent’
WWW: http://www.media.mit.edu/ rhodes/RA/

The purpose of the Remembrance Agent is to analyze the text you type in an Emacs session and, in the
background, find similar or relevant passages of text within your other files. It then outputs in a smaller
window a list of suggestions—those files that it has found—which you can open in a new buffer.

When installing the Remembrance Agent, you create three databases of the files to use when making
relevance suggestions; when remembrance-agent is running, it searches these three databases in
parallel, looking for relevant text. You could create, for example, one database of saved email, one of
your own writings, and one of saved documents.

e To toggle the Remembrance Agent in the current buffer, type:
C-crt
When remembrance-agent is running, suggested buffers will be displayed in the small

‘*Remembrance*’ buffer at the bottom of the screen. To open a suggestion in a new buffer, type C-c
r number, where number is the number of the suggestion.

e To open the second suggested file in a new buffer, type:
C-c r 2

The Linux Cookbook: Tips and Techniques for Everyday Use

12.4 Finding Anagrams in Text

Debian: ‘an’

An anagram is a word or phrase whose characters consist entirely of all the characters of a given word
or phrase—for example, ‘stop’ and ‘tops’ are both anagrams of ‘pots’.

Use an to find and output anagrams. Give as an argument the word or quoted phrase to use; an writes
its results to the standard output.

e To output all anagrams of the word ‘lake’, type:
$ an lake
e To output all anagrams of the phrase ‘lakes and oceans’, type:
$ an ’‘lakes and oceans’
To limit the anagrams output to those containing a given string, specify that string with the ‘-c¢’
option.
e To output only anagrams of the phrase ‘lakes and oceans’ which contain the string ‘seas’,
type:
S an -c seas ’‘lakes and oceans’
To print all of the words that some or all letters in a given word or phrase can make, use the ‘-w’

option. This outputs words that are not anagrams, since anagrams must contain all of the letters of the
other word or phrase.

e To output all of the words that can be made from the letters of the word *seas’, type:
S an -w seas

This command outputs all of the words that can be formed from all or some of the characters in
‘seas’, including ‘see’ and ‘as’.

12.5 Finding Palindromes in Text

A palindrome is a word that reads the same both forwards and backwards; for example, “Mom,”
“madam,” and “nun” are all palindromes.

To find palindromes in a file, use this simple Perl “one-liner,” and substitute file for the name of the
file to check:
perl -lne ’'print if $ eqg reverse’ file
To check for palindromes in the standard input, specify ‘-’ as the file name to check. This is useful
for putting at the end of a pipeline.
e To output all of the palindromes in the system dictionary, type:
$ perl -lne ’‘print if $§ eqg reverse’ /usr/dict/words

12.6 Text Cut-Ups

A cut-up is a random rearrangement of a physical layout of text, made with the intention of finding
unique or interesting phrases in the rearrangement. Software for rearranging text in random ways has
existed since the earliest text-processing tools; the popularity of these tools will never die.

The cut-up technique in literature was discovered by painter Brion Gysin and American writer
William S. Burroughs in 1959; they believed it brought the montage technique of painting to the written
word.

“All writing is in fact cut-ups,” Burroughs wrote! “A collage of words read heard overheard . . .
[u]se of scissors renders the process explicit and subject to extension and variation.”

L In The Third Mind, by William S. Burroughs and Brion Gysin.

These recipes describe a few of the common ways to make text cut-ups; more free software tools for
making cut-ups are listed at http://dsl.org/comp/cutups.shtml.

12.6.1 Making Simple Text Cut-Ups

WWW: http://dsl.org/comp/tinyutils/

To perform a simple cut-up of a text, use cutup. It takes the name of a file as input and cuts it both
horizontally and vertically along the middle, rearranges the four sections to their diagonally opposite
corners, and then writes that cut-up to the standard output. The original file is not modified.

e To make a cut-up from a file called ‘nova’, type:
S cutup nova

12.6.2 Making Random Word Cut-Ups

Debian: ‘dadadodco’
WWW: http://www.jwz.org/dadadodo/

No simple cut-up filter, Jamie Zawinski’s dadadodo uses the computer to go one step beyond—it
generates passages of random text whose structure and characters are similar to the text input you give
it. The program works better on larger texts, where more subtleties can be analyzed and hence more
realistic-looking text is output.

Give as an argument the name of the text file to be used; by default, dadadodo outputs text to
standard output until you interrupt it by typing C-c.

e To output random text based on the text in the file ‘nova’, type:
S dadadodo nova
This command will output passages of random text based on the text in the file ‘nova’ until it is
interrupted by the user.

You can analyze a text and save the analysis to a file of compiled data; this analysis can then be used
to generate random text when the original input text is not present. The following table describes this
and other dadadodo options.

OPTION DESCRIPTION

-c integer Generate integer sentences (default is 0, meaning “generate an infinite
amount until interrupted”).

-1 file Load compiled data in file and use it to generate text.

-o file Output compiled data to file file for later use.

-p integer Pause for integer seconds between paragraphs.

12.6.3 Making Cut-Ups in Emacs

The dissociated-press function in Emacs makes random cut-ups of the current buffer in a new
buffer called ‘*Dissociation*’; the original buffer is not modified. The text in the new buffer is
generated by combining random portions of the buffer by overlapping characters or words, thus (usu-
ally) creating plausible-sounding sentences. It pauses occasionally and asks whether or not you want to
continue the dissociation.

e To generate a Dissociated Press cut-up from the current buffer, type:
M-x dissociated-press

Give a positive argument to the di ssociated-press function to specify the number of characters
to use for overlap; give a negative argument to specify the number of words for overlap.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To generate a Dissociated Press cut-up from the current buffer, always overlapping by three charac-
ters, type:

C-u 3 M-x dissociated-press
e To generate a Dissociated Press cut-up from the current buffer, always overlapping by one word,
type:
C-u -1 M-x dissociated-press

13 Formatting Text

Methods and tools for changing the arrangement or presentation of text are often useful for preparing
text for printing. This chapter discusses ways of changing the spacing of text and setting up pages, of
underlining and sorting and reversing text, and of numbering lines of text.

13.1 Spacing Text

These recipes are for changing the spacing of text—the whitespace that exists between words, lines, and
paragraphs.

The filters described in this section send output to standard output by default; to save their output to
a file, use shell redirection (see Section 3.2.2 [Redirecting Output to a File], page 37).

13.1.1 Eliminating Extra Spaces in Text

To eliminate extra whitespaces within lines of text, use the fmt filter; to eliminate extra whitespace
between lines of text, use cat.

Use £mt with the *-u’ option to output text with “uniform spacing,” where the space between words
is reduced to one space character and the space between sentences is reduced to two space characters.

e To output the file “term-paper’ with uniform spacing, type:
S fmt -u term-paper
Use cat with the ‘- s’ option to “squeeze” multiple adjacent blank lines into one.
e To output the file ‘*term-paper’ with multiple blank lines output as only one blank line, type:
$ cat -s term-paper

You can combine both of these commands to output text with multiple adjacent lines removed and
give it a unified spacing between words. The following example shows how the output of the combined
commands is sent to 1ess so that it can be perused on the screen.

e To peruse the text file ‘term-paper’ with multiple blank lines removed and giving the text unified
spacing between words, type:

$ cat -s term-paper | fmt -u | less

Notice that in this example, both £mt and 1ess worked on their standard input instead of on a file—
the standard output of cat (the contents of ‘term-paper’ with extra blank lines squeezed out) was
passed to the standard input of £mt, and its standard output (the space-squeezed ‘term-paper’, now
with uniform spacing) was sent to the standard input of 1ess, which displayed it on the screen.

13.1.2 Single-Spacing Text

There are many methods for single-spacing text. To remove all empty lines from text output, use grep
with the regular expression “.’, which matches any character, and therefore matches any line that isn’t
empty (see Section 14.2 [Regular Expressions—Matching Text Patterns], page 148). You can then redi-
rect this output to a file, or pipe it to other commands; the original file is not altered.

e To output all non-empty lines from the file ‘term-paper’, type:
S grep . term-paper

This command outputs all lines that are not empty—so lines containing only non-printing characters,
such as spaces and tabs, will still be output.

To remove from the output all empty lines, and all lines that consist of only space characters, use * [~
1 .7 as the regexp to search for. But this regexp will still output lines that contain only tab characters; to
remove from the output all empty lines and lines that contain only a combination of tab or space charac-
ters, use ‘[~ [: space:]] .’ as the regexp to search for. It uses the special predefined ‘[: space:]’
regexp class, which matches any kind of space character at all, including tabs.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To output only the lines from the file ‘term-paper’ that contain more than just space characters,
type:
S grep ' ["].’ term-paper
To output only the lines from the file ‘term-paper’ that contain more than just space or tab
characters, type:

S grep ’["[:space:]].’ term-paper
If a file is already double-spaced, where all even lines are blank, you can remove those lines from the
output by using sed with the ‘n; d’ expression.
e To output only the odd lines from file ‘term-paper’, type:
$ sed ’‘n;d’ term-paper

13.1.3 Double-Spacing Text

To double-space text, where one blank line is inserted between each line in the original text, use the pr
tool with the *-d’ option. By default, pr paginates text and puts a header at the top of each page with
the current date, time, and page number; give the -t option to omit this header.

e To double-space the file ‘term-paper’ and write the output to the file ‘term-paper.print’,
type:
S pr -d -t term-paper > term-paper.print
To send the output directly to the printer for printing, you would pipe the output to 1pr:
$ pr -d -t term-paper | Ipr

NOTE: The pr (“print”) tool is a text pre-formatter, often used to paginate and otherwise prepare text
files for printing; there is more discussion on the use of this tool in Section 13.2 [Paginating Text],
page 142.

13.1.4 Triple-Spacing Text

To triple-space text, where two blank lines are inserted between each line of the original text, use sed
with the “" G; G’ ’ expression.
e To triple-space the file ‘term-paper’ and write the output to the file ‘term-paper.print’,
type:
S sed 'G;G’ term-paper > term-paper.print
The ‘G’ expression appends one blank line to each line of sed’s output; using *;’ you can specify
more than one blank line to append (but you must quote this command, because the semicolon (“; ’) has

meaning to the shell—see Section 3.1.1 [Passing Special Characters to Commands], page 34). You can
use multiple ‘G” characters to output text with more than double or triple spaces.

e To quadruple-space the file ‘term-paper’, and write the output to the file
‘term-paper.print’, type:
S sed 'G;G;G’ term-paper > term-paper.print

The usage of sed is described in Section 10.5 [Editing Streams of Text], page 116.

13.1.5 Adding Line Breaks to Text

Sometimes a file will not have line breaks at the end of each line (this commonly happens during file
conversions between operating systems). To add line breaks to a file that does not have them, use the
text formatter £mt. It outputs text with lines arranged up to a specified width; if no length is specified, it
formats text up to a width of 75 characters per line.

e To output the file ‘*term-paper’ with lines up to 75 characters long, type:

$ fmt term-paper

Use the *-w’ option to specify the maximum line width.
e To output the file ‘*term-paper’ with lines up to 80 characters long, type:
S fmt -w 80 term-paper

13.1.6 Adding Margins to Text

Giving text an extra left margin is especially good when you want to print a copy and punch holes in it
for use with a three-ring binder.

To output a text file with a larger left margin, use pr with the file name as an argument; give the *-t’
option (to disable headers and footers), and, as an argument to the ‘- o’ option, give the number of spaces
to offset the text. Add the number of spaces to the page width (whose default is 72) and specify this new
width as an argument to the *-w’ option.

e To output the file ‘owners-manual’ with a five-space (or five-column) margin to a new file,
‘owners-manual .pr’, type:

S pr -t -o 5 -w 77 owners-manual > owners-manual.pr
This command is almost always used for printing, so the output is usually just piped to 1pr instead
of saved to a file. Many text documents have a width of 80 and not 72 columns; if you are printing such
a document and need to keep the 80 columns across the page, specify a new width of 85. If your printer

can only print 80 columns of text, specify a width of 80; the text will be reformatted to 75 columns after
the 5-column margin.

e To print the file ‘owners-manual’ with a 5-column margin and 80 columns of text, type:
$ pr -t -o 5 -w 85 owners-manual | lpr

e To print the file ‘owners-manual’ with a 5-column margin and 75 columns of text, type:
$ pr -t -o 5 -w 80 owners-manual | lpr

13.1.7 Swapping Tab and Space Characters

Use the expand and unexpand tools to swap tab characters for space characters, and to swap space
characters with tabs, respectively.

Both tools take a file name as an argument and write changes to the standard output; if no files are
specified, they work on the standard input.

To convert tab characters to spaces, use expand. To convert only the initial or leading tabs on each
line, give the ‘-1’ option; the default action is to convert all tabs.

e To convert all tab characters to spaces in file *1ist’, and write the output to “‘1ist2’, type:
$ expand list > list2
e To convert only initial tab characters to spaces in file ‘1ist’, and write the output to the standard
output, type:
S expand -1 list
To convert multiple space characters to tabs, use unexpand. By default, it only converts leading

spaces into tabs, counting eight space characters for each tab. Use the *-a’ option to specify that all
instances of eight space characters be converted to tabs.

e To convert every eight leading space characters to tabs in file ‘1ist2’, and write the output to
‘list’, type:
S unexpand list2 > list

e To convert all occurrences of eight space characters to tabs in file “1ist2’, and write the output to
the standard output, type:

The Linux Cookbook: Tips and Techniques for Everyday Use

$ unexpand -a list2
To specify the number of spaces to convert to a tab, give that number as an argument to the ‘-t’
option.

e To convert every leading space character to a tab character in “1ist2’, and write the output to the
standard output, type:

S unexpand -t 1 1ist2

13.2 Paginating Text

The formfeed character, ASCII C-1 or octal code 014, is the delimiter used to paginate text. When you
send text with a formfeed character to the printer, the current page being printed is ejected and a new
page begins—thus, you can paginate a text file by inserting formfeed characters at a place where you
want a page break to occur.

To insert formfeed characters in a text file, use the pr filter.

Give the *- £” option to omit the footer and separate pages of output with the formfeed character, and
use ‘-h " "’ to output a blank header (otherwise, the current date and time, file name, and current page
number are output at the top of each page).

e To paginate the file ‘1istings’ and write the output to a file called ‘1istings.page’, type:
S pr -f -h "" listings > listings.page
By default, pr outputs pages of 66 lines each. You can specify the page length as an argument to the
‘-1 option.

e To paginate the file ‘1istings’ with 43-line pages, and write the output to a file called
‘listings.page’, type:

S pr -f -h "" -1 43 listings > listings.page
NOTE: If a page has more lines than a printer can fit on a physical sheet of paper, it will automatically
break the text at that line as well as at the places in the text where there are formfeed characters.

You can paginate text in Emacs by manually inserting formfeed characters where you want them—see
Section 10.2.5 [Inserting Special Characters in Emacs], page 113.

13.2.1 Placing Headers on Each Page

The pr tool is a general-purpose page formatter and print-preparation utility. By default, pr outputs text
in pages of 66 lines each, with headers at the top of each page containing the date and time, file name,
and page number, and footers containing five blank lines.

e To print the file *duchess’ with the default pr preparation, type:
$ pr duchess | Ipr

13.2.2 Placing Text in Columns
You can also use pr to put text in columns—give the number of columns to output as an argument. Use
the “-t” option to omit the printing of the default headers and footers.
e To print the file ‘news . update’ in four columns with no headers or footers, type:
$ pr -4 -t news.update | lpr

13.2.3 Options Available When Paginating Text

The following table describes some of pr’s options; see the pr info for a complete description of its
capabilities (see Section 2.8.5 [Using the GNU Info System], page 29).

OPTION DESCRIPTION

+first : last Specify the first and last page to process; the last page can be omitted,
S0 + 7 begins processing with the seventh page and continues until the
end of the file is reached.

-column Specify the number of columns to output text in, making all columns
fit the page width.

-a Print columns across instead of down.

-c Output control characters in hat notation and print all other unprintable
characters in “octal backslash” notation.

-d Specify double-spaced output.

-f Separate pages of output with a formfeed character instead of a footer
of blank lines (63 lines of text per 66-line page instead of 53).

-h header Specify the header to use instead of the default; specify -h " for a
blank header.

-1 length Specify the page length to be length lines (default 66). If page length
is less than 11, headers and footers are omitted and existing form feeds
are ignored.

-m Use when specifying multiple files; this option merges and outputs
them in parallel, one per column.

-0 spaces Set the number of spaces to use in the left margin (default 0).

-t Omit the header and footer on each page, but retain existing formfeeds.

-T Omit the header and footer on each page, as well as existing formfeeds.

-v Output non-printing characters in “octal backslash” notation.

-w width Specify the page width to use, in characters (default 72).

NOTE: It’s also common to use pr to change the spacing of text (see Section 13.1 [Spacing Text],
page 139).

13.3 Underlining Text

In the days of typewriters, text that was meant to be set in an italicized font was denoted by underlining
the text with underscore characters; now, it’s common practice to denote an italicized word in plain text
by typing an underscore character, *_’, just before and after a word in a text file, like * this ’.

Some text markup languages use different methods for denoting italics; for example, in EX or LaTeX
files, italicized text is often denoted with brackets and the “\ it’ command, like ‘{\it this}’. (LaTeX
files use the same format, but ‘\emph’ is often used in place of *\it’.)

You can convert one form to the other by using the Emacs replace-regular-expression
function and specifying the text to be replaced as a regexp (see Section 14.2 [Regular Expressions—
Matching Text Patterns], page 148).

e To replace plaintext-style italics with TeX *\ it’ commands, type:

M-x replace-regular-expression
_\N([7_1+\)_ RET

The Linux Cookbook: Tips and Techniques for Everyday Use

VWit \1}
e To replace TeX-style italics with plaintext _underscores_, type:
M-x replace-regular-expression

V{VNZe NV (VTR

~\1 ET

Both examples above used the special regexp symbol “\1°, which matches the same text matched
by the first *\ (... \)’ construct in the previous regexp. See Info file ‘emacs-e20.info’, node
‘Regexps’ for more information on regexp syntax in Emacs.

To put a literal underline under text, you need to use a text editor to insert a C-h character followed
by an underscore (*_’) immediately after each character you want to underline; you can insert the C-h
in Emacs with the C-g function (see Section 10.2.5 [Inserting Special Characters in Emacs], page 113).

When a text file contains these literal underlines, use the ul tool to output the file so that it is viewable
by the terminal you are using; this is also useful for printing (pipe the output of ul to 1pr).

e To output the file ‘*term-paper’ so that you can view underbars, type:
S ul term-paper

To output such text without the backspace character, C-h, in the output, use col with the “-u’ option.
e To output the file ‘term-paper’ with all backspace characters stripped out, type:
S col -u term-paper

13.4 Sorting Text

You can sort a list in a text file with sort. By default, it outputs text in ascending alphabetical order;
use the ‘-’ option to reverse the sort and output text in descending alphabetical order.

For example, suppose a file ‘provinces’ contains the following:

Shantung
Honan
Szechwan
Hunan
Kiangsu
Kwangtung
Fukien

e To sort the file ‘provinces’ and output all lines in ascending order, type:

4 N

$ sort provinces
Fukien

Honan

Hunan

Kiangsu

Kwangtung

Shantung

Szechwan

$

- J

e To sort the file ‘provinces’ and output all lines in descending order, type:

e N
S sort -r provinces

Szechwan

Shantung

Kwangtung

Kiangsu

Hunan

Honan

Fukien

$

. J

The following table describes some of sort’s options.

OPTION DESCRIPTION

-b Ignore leading blanks on each line when sorting.

-d Sort in “phone directory” order, with only letters, digits, and blanks being sorted.

-f When sorting, fold lowercase letters into their uppercase equivalent, so that dif-
ferences in case are ignored.

-1 Ignore all spaces and all non-typewriter characters when sorting.

-n Sort numerically instead of by character value.

-o file Write output to file instead of standard output.

13.5 Numbering Lines of Text

There are several ways to number lines of text.

One way to do it is to use the n1 (“number lines”) tool. Its default action is to write its input (either
the file names given as an argument, or the standard input) to the standard output, with an indentation
and all non-empty lines preceded with line numbers.

e To peruse the file ‘report’ with each line of the file preceded by line numbers, type:
$ nl report | less

You can set the numbering style with the “-b’ option followed by an argument. The following table
lists the possible arguments and describes the numbering style they select.

ARGUMENT NUMBERING STYLE

a Number all lines.

t Number only non-blank lines. This is the default.

n Do not number lines.

pregexp Only number lines that contain the regular expression regexp (see Sec-

tion 14.2 [Regular Expressions—Matching Text Patterns], page 148).
The default is for line numbers to start with one, and increment by one. Set the initial line number by
giving an argument to the “-v’ option, and set the increment by giving an argument to the ‘- i’ option.
e To output the file ‘report’ with each line of the file preceded by line numbers, starting with the
number two and counting by fours, type:
$ nl -v 2 -1 4 report
e To number only the lines of the file ‘cantos’ that begin with a period (*.), starting numbering at
zero and using a numbering increment of five, and to write the output to ‘cantos.numbered’,
type:
$ nl -1 5 -v 0 -b p’"\.’” cantos > cantos.numbered

The other way to number lines is to use cat with one of the following two options: the ‘-n’ option
numbers each line of its input text, while the “-b’ option only numbers non-blank lines.

The Linux Cookbook: Tips and Techniques for Everyday Use

e To peruse the text file ‘report’ with each line of the file numbered, type:
$ cat -n report | less
e To peruse the text file ‘report’ with each non-blank line of the file numbered, type:
$ cat -b report | less
In the preceding examples, output from cat is piped to less for perusal; the original file is not
altered.

To take an input file, number its lines, and then write the line-numbered version to a new file, send
the standard output of the cat command to the new file to write.

e To write a line-numbered version of file ‘report’ to file ‘report.lines’, type:
S cat -n report > report.lines

13.6 Reversing Text

The tac command is similar to cat, but it outputs text in reverse order. There is another difference—
tac works on records, sections of text with separator strings, instead of lines of text. Its default separator
string is the linebreak character, so by default tac outputs files in line-for-line reverse order.

e To output the file *‘prizes’ in line-for-line reverse order, type:
$ tac prizes
Specify a different separator with the “- s’ option. This is often useful when specifying non-printing

characters such as formfeeds. To specify such a character, use the ANSI-C method of quoting (see
Section 3.1.1 [Passing Special Characters to Commands], page 34).

e Tooutput ‘prizes’ in page-for-page reverse order, type:
$ tac -s $’'\f’ prizes
The preceding example uses the formfeed, or page break, character as the delimiter, and so it outputs
the file ‘prizes’ in page-for-page reverse order, with the last page output first.

Use the “-x’ option to use a regular expression for the separator string (see Section 14.2 [Regular
Expressions—Matching Text Patterns], page 148). You can build regular expressions to output text in
word-for-word and character-for-character reverse order:

e Tooutput ‘prizes’ in word-for-word reverse order, type:
$ tac -r -s ‘[Ta-zA-z0-9\-]’ prizes

e Tooutput ‘prizes’ in character-for-character reverse order, type:
$ tac -r -s ’.\]|
’ prizes

To reverse the characters on each line, use rev.

e To output ‘prizes’ with the characters on each line reversed, type:

S rev prizes

14 Searching Text

It’s quite common to search through text for a given sequence of characters (such as a word or phrase),
called a string, or even for a pattern describing a set of such strings; this chapter contains recipes for
doing these kind of things.

14.1 Searching for a Word or Phrase

The primary command used for searching through text is the rather froglike-sounding tool called grep
(the origin of its name is explained in Section 14.2 [Regular Expressions—Matching Text Patterns],
page 148, where its advanced usage is discussed). It outputs lines of its input that contain a given string
or pattern.

To search for a word, give that word as the first argument. By default, grep searches standard input;
give the name of a file to search as the second argument.

e To output lines in the file ‘catalog’ containing the word ‘CD’, type:
S grep CD catalog

To search for a phrase, specify it in quotes.
e To output lines in the file ‘catalog’ containing the word ‘Compact Disc’, type:
S grep ’Compact Disc’ catalog
The preceding example outputs all lines in the file ‘catalog’ that contain the exact string
‘Compact Disc’; it will not match, however, lines containing ‘compact disc’ or any other vari-

ation on the case of letters in the search pattern. Use the “-1i’ option to specify that matches are to be
made regardless of case.

e Tooutput lines in the file ‘catalog’ containing the string ‘compact disc’ regardless of the case
of its letters, type:

S grep -1 ‘compact disc’ catalog
This command outputs lines in the file ‘catalog’ containing any variation of the pattern ‘compact
disc’, including ‘Compact Disc’, ‘COMPACT DISC’, and ‘comPact dIsC’.

One thing to keep in mind is that grep only matches patterns that appear on a single line, so in the
preceding example, if one line in ‘catalog’ ends with the word ‘compact’ and the next begins with
‘disc’, grep will not match either line. There is a way around this with grep (see Section 14.2.8
[Finding Phrases Regardless of Spacing], page 151), or you can search the text in Emacs (see Sec-
tion 14.6.2 [Searching for a Phrase in Emacs], page 154).

You can specify more than one file to search. When you specify multiple files, each match that grep
outputs is preceded by the name of the file it’s in (and you can suppress this with the ‘-h’ option.)

e To output lines in all of the files in the current directory containing the word ‘CD’, type:

$ grep CD *

e To output lines in all of the . txt’ files in the *~/doc’ directory containing the word ‘CD’, sup-
pressing the listing of file names in the output, type:

$ grep -h CD ~/doc/*.txt
Use the “-r’ option to search a given directory recursively, searching all subdirectories it contains.

e To output lines containing the word ‘CD’ in all of the “. txt’ files in the *~/doc’ directory and in
all of its subdirectories, type:

$ grep -r CD ~/doc/*.txt

NOTE: There are more complex things you can search for than simple strings, as will be explained in
the next section.

The Linux Cookbook: Tips and Techniques for Everyday Use

14.2 Regular Expressions—Matching Text Patterns

In addition to word and phrase searches, you can use grep to search for complex text patterns called reg-
ular expressions. A regular expression—or “regexp”—is a text string of special characters that specifies
a set of patterns to match.

Technically speaking, the word or phrase patterns described in the previous section are regular
expressions—just very simple ones. In a regular expression, most characters—including letters and
numbers—represent themselves. For example, the regexp pattern 1 matches the string “1’, and the pat-
tern bee matches the string ‘bee’.

There are a number of reserved characters called metacharacters that don’t represent themselves in a
regular expression, but have a special meaning that is used to build complex patterns. These metachar-
acters are as follows: ., *, [,], ", $,and \.

To specify one of these literal characters in a regular expression, precede the character with a “\’.
e To output lines in the file ‘catalog’ that contain a *$’ character, type:

$ grep '\$’ catalog
e To output lines in the file ‘catalog’ that contain the string ‘$1.99’, type:

$ grep "\$1\.99’ catalog
e To output lines in the file ‘catalog’ that contain a *\’ character, type:

$ grep "\\’ catalog

The following table describes the special meanings of the metacharacters and gives examples of their
usage.

METACHARACTER MEANING
Matches any one character, with the exception of the newline character.
For example, . matches ‘a’, ‘1’, *?’, *.” (a literal period character),
and so forth.

* Matches the preceding regexp zero or more times. For example, - *
matches ‘-7, *--7, f---7 o mmmm oo - ’, and so forth. Now imag-
ine a line of text Wlth a m|II|on £ characters somewhere in it, all
marching off across the horizon, up into the blue sky, and through the
clouds. A million ‘-’ characters in a row. This pattern would match
it. Now think of the same long parade, but it’s a million and one ‘-’
characters—it matches that, too.

[] Encloses a character set, and matches any member of the set—for ex-
ample, [abc] matches either ‘a’, ‘b’, or ‘c’. In addition, the hyphen
(“-’) and caret (“~) characters have special meanings when used in-
side brackets:

- The hyphen specifies a range of characters, ordered according to their
ASCII value (see Section 9.4 [Viewing a Character Chart], page 104).
Forexample, [0-9] issynonymous with [0123456789]; [A-Za-
z] matches one uppercase or lowercase letter. To include a literal “-’
in a list, specify it as the last character in a list: so [0-9-] matches
either a single digit character or a *-’.x

- As the first character of a list, the caret means that any character ex-
cept those in the list should be matched. For example, [~a] matches
any character except ‘a’, and [~ 0-9] matches any character except a
numeric digit.

” Matches the beginning of the line. So ~a matches ‘a’ only when it is
the first character on a line.

$ Matches the end of the line. So a$ matches ‘a’ only when it is the last
character on a line.

\ Use \ before a metacharacter when you want to specify that literal
character. So \$ matches a dollar sign character (‘$”), and \ \ matches
a single backslash character (*\’).

In addition, use \ to build new metacharacters, by using it before a
number of other characters:

\ Called the ‘alternation operator’; it matches either regexp it
is between—use it to join two separate regexps to match either of them.
For example, a\ | b matches either ‘a’ or ‘b’.

\+ Matches the preceding regexp as many times as possible, but at least
once. So a\+ matches one or more ‘a’ adjacent characters, such as

aaa’, ‘aa’,and ‘a’.

\? Matches the regexp preceding it either zero or one times. So a\?
matches ‘a’ or an empty string—which matches every line.

\ {number\'} Matches the previous regexp (one specified to the left of this con-
struction) that number of times—so a\ {4\} matches ‘aaaa’. Use
\ {number, \'} to match the preceding regexp number or more times,
\{, number\ } to match the preceding regexp zero to number times,
and \ {numberl, number2\} to match the preceding regexp from
numberl to number2 times.

\ (regexp\) Group regexp together for an alternative; useful for combination
regexps. For example, while moo\? matches ‘mo’ or ‘moo’,
\ (moo\) \ ? matches ‘moo’ or the empty set.

NOTE: The name ‘grep’ derives from a command in the now-obsolete Unix ed line editor tool—the
ed command for searching globally through a file for a regular expression and then printing those lines
was g/re/p, where re was the regular expression you’d use. Eventually, the grep command was
written to do this search on a file when not using ed

The following sections describe some regexp recipes for commonly searched-for patterns.

14.2.1 Matching Lines Beginning with Certain Text

Use ‘"’ in a regexp to denote the beginning of a line.
e Tooutput all lines in */usr/dict/words’ beginning with ‘pre’, type:

$ grep ’'“pre’ /usr/dict/words

e To output all lines in the file ‘book’ that begin with the text ‘in the beginning’, regardless of
case, type:

S grep -i ’"in the beginning’ book

NOTE: These regexps were quoted with / characters; this is because some shells otherwise treat the
*~” character as a special “metacharacter” (see Section 3.1.1 [Passing Special Characters to Commands],
page 34).2

L' The ed command is still available on virtually all unices, Linux inclusive, and the old ‘g/re/p’ still works.
2 The default shell on most Linux systems, bash, doesn’t—but it’s still probably good practice to quote a regexp with a caret
init.

The Linux Cookbook: Tips and Techniques for Everyday Use

14.2.2 Matching Lines Ending with Certain Text

Use *s’ as the last character of quoted text to match that text only at the end of a line.
e To output lines in the file ‘sayings’ ending with an exclamation point, type:
$ grep ’!$’ sayings

NOTE: To use ‘$’ in a regexp to find words that rhyme with a given word, see Section 11.2.1 [Listing
Words that Match a Pattern], page 126.

14.2.3 Matching Lines of a Certain Length

To match lines of a particular length, use that number of “.” characters between *~” and “$’—for ex-
ample, to match all lines that are two characters (or columns) wide, use *~. . $” as the regexp to search
for.

e Tooutput all lines in */usr/dict/words’ that are exactly two characters wide, type:

$ grep ’"..$’ /usr/dict/words
For longer lines, it is more useful to use a different construct: .\ { number\ } $’, where number is
the number of lines to match. Use “, ’ to specify a range of numbers.

e Tooutput all linesin */usr/dict /words’ that are exactly seventeen characters wide, type:
$ grep '~ .\{17\}$’ /usr/dict/words

e Tooutput all lines in */usr/dict/words’ that are twenty-five or more characters wide, type:
$ grep '".\{25,\}$’ /usr/dict/words

14.2.4 Matching Lines That Contain Any of Some Regexps

To match lines that contain any of a number of regexps, specify each of the regexps to search for between
alternation operators (“\ |’) as the regexp to search for. Lines containing any of the given regexps will
be output.

e Tooutput all lines in ‘playlist’ that contain either the patterns ‘the sea’ or ‘cake’, type:
$ grep ‘the sea\|cake’ playlist

This command outputs any lines in ‘playlist’ that match the patterns ‘the sea’ or ‘cake’,
including lines matching both patterns.

14.2.5 Matching Lines That Contain All of Some Regexps

To output lines that match all of a number of regexps, use grep to output lines containing the first regexp
you want to match, and pipe the output to a grep with the second regexp as an argument. Continue
adding pipes to grep searches for all the regexps you want to search for.

e Tooutput all lines in ‘playlist’ that contain both patterns ‘the sea’ and ‘cake’, regardless of
case, type:

$ grep -i ‘the sea’ playlist | grep -i cake

NOTE: To match lines containing some regexps in a particular order, see Section 14.2.11 [Regexps for
Common Situations], page 152.

14.2.6 Matching Lines That Don’t Contain a Regexp

To output all lines in a text that don’t contain a given pattern, use grep with the *-v’ option—this option
reverts the sense of matching, selecting all non-matching lines.

e Tooutput all lines in */usr/dict/words’ that are not three characters wide, type:
$ grep -v /"...$’

e Tooutput all lines in ‘access log’ that do not contain the string *http’, type:
$ grep -v http access log

14.2.7 Matching Lines That Only Contain Certain Characters

To match lines that only contain certain characters, use the regexp ‘~ [characters] *$’, where characters
are the ones to match.

e Tooutput linesin */usr/dict/words’ that only contain vowels, type:
$ grep -i ‘" [aeiou] *$’ /usr/dict/words

The “-1’ option matches characters regardless of case; so, in this example, all vowel characters are
matched regardless of case.

14.2.8 Finding Phrases Regardless of Spacing

One way to search for a phrase that might occur with extra spaces between words, or across a line or
page break, is to remove all linefeeds and extra spaces from the input, and then grep that.

To do this, pipe the input® to tr with “* \r\n:\ >\ | -’ *as an argument to the ‘- d’ option (removing
all linebreaks from the input); pipe that to the £mt filter with the “-u’ option (outputting the text with
uniform spacing); and pipe that to grep with the pattern to search for.

e To search across line breaks for the string ‘at the same time as’ in the file ‘notes’, type:
$ cat notes | tr -d ‘\r\n:\>\|-’ | fmt -u | grep ‘at the same timée]

as’

NOTE: The Emacs editor has its own special search for doing this—see Section 14.6.