
.NET Performance Testing
and Optimization
Part 1: Building your test environment

Paul Glavich with Chris Farrell

.NET Handbooks

ISBN: 978-1-906434-41-0

.NET Performance
Testing and
Optimization

Part 1: Building your test environment

By Paul Glavich

With Chris Farrell

First published by Simple Talk Publishing 2010

Copyright Paul Glavich and Chris Farrell 2010

ISBN 978-1-906434-41-0
The right of Paul Glavich and Chris Farrell to be identified as the authors of this work has been asserted by

them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act

in relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than that in

which it is published and without a similar condition including this condition being imposed on the

subsequent publisher.

Technical Review by Alex Davies, Jeff McWherter, and Corneliu Tusnea

Cover Image by Paul Vlaar

Edited by Chris Massey

Typeset & Designed by Matthew Tye & Gower Associates

Table of Contents

About the Authors ... ix

Chapter 1: Introduction – The What and the Why ...12

Performance testing .. 12

Load testing .. 13

Stress testing .. 13

Profiling...14

Cost benefits of performance and load testing ...14

Example scenarios .. 15

Sometimes, what seems right can be wrong. ... 18

Conclusion ... 18

Chapter 2: Understanding Performance Targets ...20

Identifying performance targets .. 20

Structuring test breakdowns ... 21

Determining what load to target ..22

Contingency in your estimations ...24

Estimate the mix of browsers for your web application .. 26

What data do we measure? ... 26

Time to First Byte ...27

Total page response time ...28

What about average response time? ... 29

Sweet spots and operational ceilings ...30

Conclusion ... 32

Chapter 3: Performance and Load Test Metrics ..33

What metrics do we need? ... 33

Basic metrics .. 33

Web application basic metrics ..36

What to look for ... 40

CPU utilization .. 40

Memory utilization ...41

Response time ...43

Creating a baseline ... 44

Using Visual Studio to analyze the results ... 44

Using the Test Results management window ..45

Using the Open and Manage Test Results dialog ..45

Filtering performance test result selection .. 46

Sweet spots and operational ceilings ...50

Detailed performance metrics ...52

Performance metrics .. 53

What do I do with all this information? ... 60

Conclusion .. 62

Chapter 4: Implementing Your Test Rig ...64

Creating the performance test rig ... 64

Architecture and structure of a performance test rig .. 64

Role breakdown...65

Setting up and configuration.. 67

Port setup and firewall considerations ... 67

Network segmentation/isolation .. 69

Controller setup ..73

Creating the load test database ..75

Guest policy on Windows XP in workgroup mode .. 76

Agent setup ... 76

Workstation setup ..77

Troubleshooting the controller and agents ..78

Setting up performance counter collection ..82

Conclusion ...87

Chapter 5: Creating Performance Tests ...88

Basic solution structure ... 88

Recording the web tests ...91

Test replay .. 99

Data Binding Web Tests ...106

Creating a data source for data binding ..106

Test deployment considerations ...113

Web test code generation ...115

Extensibility through plug-ins ...117

Alternative ways of recording web tests ..120

Considerations for load balancing / load balanced hardware .. 123

Test automation .. 125

Creating a performance test scenario .. 125

Putting automation in place .. 136

Executing the load test ... 136

Collecting performance monitor data ... 137

Collecting SQL Server usage statistics ..140

Clean up tasks ... 143

Conclusion ...144

Chapter 6: Application Profiling ...145

Types of profiling .. 145

Performance profiling .. 147

Memory profiling ..149

When to start profiling ..151

Reactive debugging ... 152

Proactive analysis ...153

Technique validation ...153

Tools used for profiling... 154

CLR profiler ... 154

Red Gate's ANTS Memory and Performance Profilers ..155

Microfocus DevPartner Studio Professional 9.1... 159

Microsoft Visual Studio 2008 profiling tools ... 163

What to look for ..167

Performance analysis ..167

Memory analysis ...169

Production / load test clues ..171

General performance counters ..171

Managing profiling results ... 172

Comparing analysis runs ... 172

Pre-check-in requirements .. 172

Continuous integrated testing ... 172

Summary ... 173

ix

About the Authors

Paul Glavich

Paul has been an ASP.NET MVP for the last six years, and works as a solution architect
for Datacom. Past roles have included technical architect for EDS Australia, and senior
consultant for Readify. He has accumulated 20 years of industry experience ranging all the
way from from PICK, C, C++, Delphi, and Visual Basic 3/4/5/6 to his current speciality in .NET
with ASP.NET.

Paul has been developing in .NET technologies since .NET was first in Beta. He was technical
architect for one of the world's first Internet Banking solutions using .NET technology.

He can be found on various .NET-related newsgroups, and has presented at the Sydney
.NET user group (www.sdnug.org) and TechEd Australia on numerous occasions. He is also
a member of ASPInsiders (www.aspinsiders.com) with direct lines of communication to
the ASP.NET team. He has co-authored two books on ASP.NET Ajax, has written technical
articles which can be seen on community sites such as ASPAlliance.com (www.aspalliance.
com), and also has his own blog at http://weblogs.asp.net/pglavich. On top of all this, he
also runs the Sydney Architecture User group (http://thesaug.com).

Paul's current interests in technology revolve around anything in ASP.NET, but he also has a
strong interest in Windows Communication Foundation, on which he is a Microsoft Certified
Technical Specialist. Naturally, performance testing and optimisation have both been a major
focus throughout this entire period.

On a more personal note, he is married, with three children and two grandkids, and he holds
a 5th Degree black belt in a form of martial arts known as Budo-Jitsu, a free-style eclectic
method of close quarter combat.

Acknowledgements

We are living in an age where information has never been so accessible, nor the available
content so huge in scope. Much of what we do and say is the result of influences from a
wide variety of factors, be they technical, social, or emotional, and this book is no exception.
One cannot go through life without the help and assistance of others, and it is such a small
thing to acknowledge these factors, though they exert such a huge influence on a person's
ability to succeed. To that end, it would have been impossible to write this book without the
support and love of my family. My wife Michele shows never-ending tolerance to my late

http://www.sdnug.org
http://www.aspinsiders.com
http://www.aspalliance.com
http://www.aspalliance.com
http://weblogs.asp.net/pglavich
http://thesaug.com

About the Authors

x

nights writing, researching, and technical tinkering (and sometimes gaming). My children
Kristy, Marc, and Elizabeth are a constant blessing to me, and also put up with many late
nights, and with me just being a geek. My two lovely grandchildren infuse me with some
of their boundless energy, which I desperately need sometimes. My parents bought me my
first computer, a Vic 20, so long ago, and watched as I spent hours in front of a seemingly
uninteresting screen, and it all began from there. Without all this, I would not have even
started down the technical path, and I am constantly amazed at how lucky I am.

Having been in the computing industry for approximately 20 years tends to bring about a
real appreciation for where the industry is at today. Developing complex applications was
exponentially harder even 5 to 10 years ago, let alone 20 years ago. Distributed, transactional,
high-performing applications are easier than ever to develop. To make this process even
easier, abstractions on complex technologies are developed, and Services, Frameworks,
components, libraries, and runtimes are all mingled together to create the applications of
today. Measuring the performance of these applications is still somewhat of a "black art." It is,
without question, easier than ever, but if you have ever tried writing your own performance
test tools, or using early versions of performance test tools, you will understand how tedious
and time consuming it can be. Even with a wealth of information available to us, it is still
quite difficult and complex to research the proper steps to setting up a performance rig, what
metrics to analyse, how to record, execute, and analyse performance tests, and what to do
when problems arise.

During my career I have performed a number of performance testing engagements. Without
exception, this involved bringing together substantial amounts of information from various
sources such as blogs, articles, books, product documentation, fellow colleagues, and
anything else I could find. There was no single cohesive source for the information I needed,
and that is how the idea to create this single gospel of performance testing and optimisation
information was born. As a result, if you're doing .NET performance testing, you can save
yourself countless hours of effort by using this book

A good friend of mine, Wallace B. McClure (also a book author), started me on the path to
book writing, and I am indebted to him for providing me with that initial opportunity. It was
from that experience that I was able to form a plan for this book and present it to Red Gate.
Red Gate has been a great company in terms of technology, and produces an excellent set of
both SQL and profiling tools. They wasted no time in moving the idea forward, for which I
am deeply thankful. It would be remiss of me not to mention my editor, Chris Massey who
has been extremely helpful and responsive throughout the entire book's progress. In addition,
my co-author, Chris Farrell, has made this book what it is by not only contributing quality
content, but by taking on additional content above and beyond any initial agreements, and
allowing this book to be delivered in a timely manner.

Finally, my thanks go out to you, the reader, for taking the time to read this book. I believe
it will prove extremely valuable to you, and I look forward to using more high performing
applications in the years to come.

About the Authors

xi

Chris Farrell

Chris Farrell has over 18 years of development experience, and has spent the last seven as
a .NET consultant and trainer. For the last three years, his focus has shifted to application
performance assurance and the use of tools to identify performance problems in complex
.NET applications. Working with many of the world's largest corporations, he has helped
development teams find and fix performance, stability and scalability problems with an
emphasis on training developers to find problems independently in the future.

In 2009, after working at Compuware as a consultant for two years, Chris joined the
independent consultancy CodeAssure UK (www.codeassure.co.uk) as their lead
performance consultant.

When not analyzing underperforming websites, Chris loves to spend time with his wife and
young son swimming, bike riding, and playing tennis. His dream is to encourage his son to
play tennis to a standard good enough to reach a Wimbledon final, although a semi would
also be fine.

Acknowledgements

I would like to thank Paul Glavich for his brilliant focus, and editor, Chris Massey, for his help
and support. Thanks also to my wife and son, Gail and Daniel, the sources of my happiness
and inspiration.

http://www.codeassure.co.uk

12

Chapter 1: Introduction – The
What and the Why

Performance in web applications is clearly very important. The web potentially allows
millions of users to access your application simultaneously. How is your application going to
cope with such a load? How much hardware do you need to ensure it can handle the required
number of users? What happens to your application when its peak capacity is exceeded?
These are questions that really need to be answered.

As a business, I want to know that the applications supporting my commercial endeavors
can cope with the size and usage patterns of my customer base. I also want to make
accurate estimations around the amount of infrastructure required to support my current
customer base, and what infrastructure is going to be required to support my future
customers, based on a projected growth factor. All this can apply to both intranet and broader
Internet applications.

As solution developers, we try to write software that is fast, responsive and scalable; but until
we can measure and quantify these factors, we can really only make guesses based on the
technology and techniques used, and the environment that the application must operate in.

Effective performance, load, and stress testing can be used to answer all these questions. It
removes the vague assumptions around an application's performance, and provides a level
of confidence about what the application can do in a given scenario. But what do we mean
by performance testing, load testing, and stress testing? Often these terms will be used
interchangeably, but they actually refer to slightly different aspects of an overall process.

Performance testing

This involves testing the application at increasing levels of concurrent users, and measuring
how the system reacts under the increasing load (not to be confused with load testing, which
I'll come to in a moment). The concept of "concurrent usage levels" is one which gets thrown
around a lot in testing and profiling, and it refers to the number of users that are accessing
your web application at the same time.

Typically, a performance test may start out by simulating a low level of concurrent users, say
ten, and then increase the number of concurrent users on the system at defined intervals, and
measure the effects.

Chapter 1: Introduction – The What and the Why

13

This type of testing is used to examine response times and system usage patterns such as
CPU usage, memory usage, request execution time, and a host of other factors which will be
discussed in detail later in this book. These attributes are used to characterize the system at
various points, and to define patterns in the application's behavior when operating at various
levels of concurrent users.

Performance testing is used, not only to determine patterns or characteristics of an
application at various levels of concurrent users, but also to determine bottlenecks and
operational capacity. This all contributes to the overall capability of an application.

Load testing

Load testing involves executing tests against the system at a consistently high load level or,
typically, a high number of concurrent users. The number of concurrent users is naturally
relative to each application, but is high enough to present a large load to the system being
tested. While load testing is technically a separate, but related, aspect of performance, it can
be combined with general performance testing. The primary reason to keep them separate
is that you don't really know what a high load is for your application until you begin actually
testing it and analyzing the metrics.

This type of testing is often referred to as "volume testing," as the application is tested against
high volumes of load for extended periods of time to determine its reliability, robustness, and
availability characteristics. In other words, how does your application perform when it needs
to handle nearly its maximum capacity for hours, or even days, at a time?

Stress testing

Stress testing is very similar to load testing, except that the focus is on continuous stress
being applied to the system being tested. The goal is to examine the system as it is being
overwhelmed with applied load. As you can imagine, this can cause the tested system to
operate at levels beyond what it's capable of, and the net result is usually some form of failure,
ranging from requests being rejected to complete system failure. The primary question
behind stress testing is "What is the recoverability of the application being tested?" which also
contributes towards the overall availability of the application.

This may seem somewhat unrealistic, but you are trying to determine how the application
functions when placed under extreme conditions. Does the application refuse requests and
then recover gracefully after a short period, or does the application never recover at all?

Chapter 1: Introduction – The What and the Why

14

This information can be used to confidently answer questions of the "What if…" variety. To
take an obvious example, a project stakeholder may ask "What happens if the system gets
overloaded with requests? Will it stop functioning?" Stress testing allows you to answer these
kinds of questions with confidence and a good degree of accuracy.

Profiling

Performance, load, and stress testing all represent a broad, general approach to determining
the performance characteristics of your application. In order to improve application
performance, you need to determine what specific aspects of the application need improving.
You also need to be able to quantify the performance of isolated parts of the application, so
that you can accurately determine when you have improved them.

This is what profiling is all about – getting a performance profile of your application or, more
specifically, quantifying the performance characteristics of a "slice" of it.

Whereas the broad-based performance testing will identify slow pages or how the application
copes with a high load, profiling will highlight, at a granular level, what methods take a long
time to execute, what objects are utilizing excessive amounts of memory, and so on.

With that in mind, there are generally two types of profiling when it comes to .NET
applications: performance-based and memory-based. Performance profiling measures how
long a method or function may take to run, and memory profiling measures how much
memory certain aspects of the application (or even individual objects) use.

Profiling is a crucial part of the overall performance testing process. Performance testing can
provide the broad metrics and characteristics required to determine where changes need to
be made, and profiling can pinpoint the exact areas that need those changes.

Cost benefits of performance
and load testing

Performance testing is a comprehensive and expensive operation. It takes a lot of time to
design tests, execute them, and then gather, manage, and analyze the data. Once you have the
results and have drawn some conclusions, you often need to make some changes to improve
the overall performance of your application. This typically involves changing and refactoring
it to improve upon the areas that are performing badly.

Chapter 1: Introduction – The What and the Why

15

In addition, the hardware and infrastructure costs can also be prohibitive, depending on
how hard you would like to push your performance tests. If you want to simulate a large
number of users, you are going to need an isolated network and enough machines to simulate
that load.

This whole process can take a significant amount of time, and means that resources are
diverted away from enhancing the functional aspects of the application. It's easy to see
why many organizations shy away from performance testing, or only partially address
the situation.

This is exactly why it is so important to do it properly. Making sure that your tests
are effective and require minimal effort to execute is important to the success of your
performance-testing regime. Automation of tests is crucial in this regard, and the collection
of results should be as painless as possible. You want to be able to get the results of your tests
easily, analyze them quickly, know exactly where to make changes, and demonstrate the
benefits to the business.

There are really two major beneficiaries of performance testing. The first is the business. The
business, which is typically sponsoring your application, not only has a vested interest in
having it perform well; it also needs the metrics you provide through performance testing to
ensure infrastructure, budgets, and projected growth requirements are all taken into account.

The second set of beneficiaries of performance testing are the application developers
themselves. The metrics can be used to ensure that the development process is not itself
generating performance issues. You can ensure that developers are not writing inefficient
code, and that the architecture of the application is not an impediment to performance.
Regular or periodic testing can ensure that development always stays on track from a
performance perspective which, in turn, will cause less stress all round.

So far we have discussed the individual aspects of performance testing and what they mean.
This does not mean that we should necessarily execute them in isolation. Given the related
nature of performance, load and stress testing, you can run all these types of tests together,
provided you carefully manage their execution and the subsequent collection of metric data.

The following chapters in this book will demonstrate how to do exactly that: to provide the
most value, for as little effort as possible.

Example scenarios

What value does performance testing really offer to the business? I can most easily describe
this by providing two comparative scenarios. One where performance testing was not done,
and one where it was. Consider the following two scenes.

Chapter 1: Introduction – The What and the Why

16

Scenario 1

Business Stakeholder
"We currently have a user base of approximately 15,000 users. We expect about 5,000 of these
users on the system at any one time. Can the system handle that?"

Solution Architect
"Well, I cannot be exactly sure, but we have used best practices for the system architecture
and coding techniques, so it should be handle a reasonable number of users."

Business Stakeholder
"What exactly does this mean? I have a budget for three web servers, maybe four, but I am
unsure how much we need. How many users can a single web server sustain?"

Solution Architect
"Again, I cannot give you an accurate estimate, but I think three web servers should be
enough. I think that one web server may be able to handle around 2,000 concurrent users, so
three should be sufficient. If you have the budget for four servers, then that's probably a wise
decision to go with, just in case."

Business Stakeholder
"What about our usage peaks, as well as our projected growth? During certain peak usage
times, we could experience up to 10,000 concurrent users. We also expect to grow our
customer base by approximately 1,000 users per year. At what point should we be purchasing
extra infrastructure?"

Solution Architect
"Hmm, I'm not really sure right now. I'll need to perform some investigations and get back
to you."

Scenario 2

Business Stakeholder
"We currently have a user base of approximately 15,000 users. We expect about 5,000 of these
users on the system at any one time. Can the system handle that?"

Solution Architect
"We have measured the application on a single web server of a slightly lower specification
than what is in production. On this machine, we could achieve approximately 2,000
concurrent users with a response time less than five seconds. A system of three web servers
could handle this required load with good response times."

Chapter 1: Introduction – The What and the Why

17

Business Stakeholder
"What exactly does this mean? I have a budget for three web servers, maybe four, but I am
unsure how much we need. How many users can a single web server sustain?"

Solution Architect
"As I mentioned, one web server, of lower specification than production, can handle
approximately 2,000 concurrent users at any one time. A higher specification machine, such
as the one in production could handle a little more, perhaps up to 2,100. Three web servers in
a load-balanced scenario will easily cope with the desired load. I would recommend that the
fourth web server be utilized to ensure adequate breathing space and allow for some growth."

Business Stakeholder
"What about our usage peaks, as well as our projected growth? During certain peak usage
times, we could experience up to 10,000 concurrent users. We also expect to grow our
customer base by approximately 1,000 users per year. At what point should we be purchasing
extra infrastructure?"

Solution Architect
"Our current test metrics show that, while the system could sustain that load, response times
may degrade to approximately 10–15 seconds per page. If this is acceptable by the business,
then the four web servers you've mentioned will be sufficient. If you want to maintain the
'five seconds or less' response time, I would recommend having two extra web servers on
hand to share the load at expected peak times or, if budget permits, online constantly. At
your projected growth rate, the system will easily cope for approximately two years, so I
would suggest you look at provisioning a new server every eighteen months. You would be
wise to assess the customer growth every year to ensure that it has not massively exceeded
expectation. If that occurs, the system may become unacceptably slow, and cause the load to
exceed acceptable operational capacity."

In these two scenes, it is obvious that the second is the situation that a business stakeholder
wants to be in – provided with the answers to all their questions, and armed with enough
information to be able to make accurate estimations for budget and infrastructure.
Ultimately, being able to properly service the current and future customer base is a very
attractive end result for any business. Performance testing provides known quantities for
characteristics of your application that, without performance testing, are unknown and, at
best, rough guesswork.

Chapter 1: Introduction – The What and the Why

18

Sometimes, what seems right
can be wrong.

As solution architects, we are presented with numerous theories on best practices, a
constantly changing technology landscape, and widely varying opinions from highly rated
industry experts. This, on top of a host of other variables, makes definitive statements about
the performance capability of our applications very difficult.

There are many good practices to utilize when it comes to flexible, easy-to-test solutions
including inversion of control (IoC), design patterns, and tiered architecture, not to mention
using the latest and greatest technology. Yet, quite often, the most flexible and loosely
coupled architecture comes at the expense of performance, and the allure of utilizing the
latest technology can actually be a big performance risk.

Many development-related technologies are aimed at making developers' lives easier and
more productive, meaning that a runtime or technology stack does a lot of the work for the
developers. But how is this implemented in the runtime? It might be easy to implement and
have taken an incredibly short time to develop, but has it cost the application a lot in terms
of performance?

Without testing, we can never really be sure. Technologies such as LINQ (.NET Language
Integrated Query) enable fantastic productivity gains, but the danger is that they can make
complex things too easy. Later in this book, we will have a look at some of these technologies
that make developers' lives easier, but which can come at the cost of performance if not used
with caution.

Conclusion

As the title implied, this chapter has just been an introduction to what performance
testing really means, and what the different aspects of performance testing are. Performance
testing, stress testing, load testing and profiling are all singular measures of an application's
performance, which contribute to the overall understanding of its usability experience.
Quite often, these measures are intangible until your application is deployed and being used
by thousands of users, by which time it's really too late to be worrying about how it's going
to cope.

The wonderful functionality or fantastic user interface features of your applications will all
count for nothing if the application takes over 20 seconds to load a single page.

Chapter 1: Introduction – The What and the Why

19

Clearly, it is extremely important to be able to quantify the performance aspects of your
application, not just for the business (although this is one of the most crucial reasons) but also
to validate the architectural and technological decisions made about the application itself.

Currently, there is a vast amount of vague, high-level information describing how someone
might go about achieving the goals I've mentioned. In the chapters that follow, you will find
detailed instructions on how you can achieve these goals, and effectively demonstrate the
performance characteristics of your applications.

No longer will performance testing be a mystical "black art," dominated by the all-knowing
few, but rather a regular part of your application life cycle, integrated into the development
and deployment plan, and producing tangible value.

20

Chapter 2: Understanding
Performance Targets

Identifying performance targets

Naturally, in order to achieve a goal, you first need to understand what that goal is. So, before
you can determine whether your application performs well, you need to understand what
that means in terms of the metrics your application needs to produce.

Whether or not your application performs well is a relative target; not all applications are
the same, so it stands to reason that the measure by which an application's performance
is tracked changes, based on its requirements. This is where the business side of things
comes in.

It is easy to say that a given business has a customer base of 5,000 concurrent users, but what
does that really mean? It means you need to ask yourself questions like those below.

• If your application is being used by the entire customer base, what is the typical
usage pattern?

• What percentage of users are performing searches?

• What percentage of the users are buying goods?

• What percentage of users are simply browsing around?

Having an accurate determination of user behavior is absolutely critical to determining
whether your application can meet the performance needs of your customer base, and this is
what the business needs to decide. This task is made a lot easier if there is existing behavior
that can be used as an example. If there is no existing data on "typical" user behavior, then
an educated guess obviously needs to be made. Also, given that technical staff usually have
a biased view of the application usage, it is probably best if the business can provide some
metrics around what users are doing on the site (by that, I mean what percentages of users
are performing what actions on the site).

Chapter 2: Understanding Performance Targets

21

Structuring test breakdowns

An application can have many functional paths, and the amount that a functional path is
exercised is based upon typical business scenarios and user behaviors. These assessments
are made far more accurate if based on statistical evidence, such as evidence based on past
activity or, perhaps, analytical statistics gathered from companies specifically engaged to
measure usage patterns of the site. This kind of data will provide a perfect template from
which to draw test breakdowns. If no such analytical evidence is available, then the business
must provide as accurate an estimation as possible around usage patterns and functional
paths to the site.

Quite often, a site map will be produced as part of the functional or technical specification
of a web application, and this can be used as the basis from which to ascribe weighted
percentages to customer use (although they can often contain too much detail). An example
of a usage diagram might look something like Figure 2.1.

Home Page

Search Page

Product Selection Page

Promotions Page

Login Page Checkout Page

Purchase Successful Page

Home Page

Profile Page View Preferred Products Prices Logout

30%

20%

10%

Figure 2.1: Example Usage Patterns.

While this example is somewhat simplistic, it is indicative of the type of diagram or
"breakdown" required when structuring your performance tests. It is important to ensure
that you exercise any aspects of the application which are deemed "heavy" in terms of
performance (i.e. performing a lot of work) to gain metrics on just how much of an impact
they are having. However, it is also important to note that performance tests are not like unit
or integration tests, as it is not vitally important to cover every functional path and achieve
high code coverage when running performance tests.

For example, consider the fact that different functional paths and usage scenarios quite often
exercise similar code paths. In the same way, from a performance perspective, the same or

Chapter 2: Understanding Performance Targets

22

very similar performance can also be achieved from different usage patterns. Obviously, it is
necessary to model the different usage patterns that the business has identified, but trying
to exercise every single aspect in fine detail will often end up causing a lot more work than is
necessary, while achieving comparatively little extra value from a performance-measurement
perspective. Generally speaking, performance testing is a broader approach than unit,
integration, and functional testing.

Determining what load to target

By this point, we have a good understanding of what tests we need to run, and how these
tests are going to be distributed across a performance run to accurately simulate the target
application's performance requirements.

What we still need to determine is how many concurrent users the application needs to
be able to handle at various times. This is not a simple static number, though, as a typical
application needs to be able to deal with concurrent user load in a number of ways.
Specifically, it needs to be able to:

• remain responsive during a normal day's use, with a "typical" amount of customer or
client concurrent usage

• remain responsive during the high peak times, where almost the entire user base might
be using the application concurrently

• be resilient enough to sustain extreme loads without complete failure, and return to
normal operation when stress or load levels return to normal.

There are a few points here which are open to interpretation. For example, when the
application needs to "remain responsive," exactly what does this mean? Unfortunately, this
is something that can only be answered by the business in consultation with technical staff.
Quite often, if you ask the business how responsive each page in the application should
be, they respond with "sub-second" as a default answer for all pages. While this might be
achievable, there may often be some aspects of the web application that require serious
computation, and are thus very hard to deliver in sub-second time-frames.

It is also important to allow for some variance in these response figures at different load
levels. The response times during normal daily use may differ quite significantly compared
with times when the server is under extreme loads. In an ideal world it would be preferable
to have a consistent response time across all load levels, but this can be costly and sometimes
extremely difficult to achieve. If it is achievable (as with the ideal sub-second response time),
it might require significant additional computational power, and this cost will need to be
quantified and justified to the business. Indeed, the business needs to be involved more or

Chapter 2: Understanding Performance Targets

23

less throughout this entire stage of the profiling process, as you will need to be able to make
several informed judgments before you can proceed with the actual testing.

Note

It is important to specify a frame of reference regarding what are acceptable response
times for your pages. This is also why it is important to involve technical staff in your
consultations, so that the mechanics behind each page and function can be given due
consideration when determining how they should perform.

So, what are the metrics we actually need to identify in terms of concurrent users? There are
no hard-and-fast rules here, as this is often dictated by the application and what is important
to the business. Generally speaking, you will almost certainly be looking at:

• the number of typical concurrent users that represents average usage

• This might be expressed by number of page views per hour, or number of total users
visiting the site per day (assuming an even number of page views per user). As long
as a metric-over-time is provided by the business, the average typical concurrent
user rate can be calculated from this.

• the number of concurrent users during peak times

• This figure represents the peak usage times of the application, and is an estimation
of what the absolute peak number of concurrent users is. It is obviously important
that the application can handle these peaks as well as handle the normal day's usage.

• the project growth of the user-base over time.

• This is important for the application to accommodate future growth and not need
sudden provisioning of extra resources soon after implementation.

In addition to specifying the accepted response times during these various concurrent use
cases, it is also worth considering differences in these times across the different pages on
the site. In most applications, there is a small subset of pages which have exceptionally high
traffic (such as login pages, home pages, etc.) and these pages should often be considered
individually for testing purposes. In any case, different pages will frequently have a different
computational cost, so it may be acceptable to have longer response times on some pages.

This may not be the case for most of the pages so, where certain pages involve more resources
or computational cost, special consideration must be given to achieving the desired response
times. At the very least, the cost of achieving the response time target should be known, so
the business can properly make a value decision.

Chapter 2: Understanding Performance Targets

24

There does not need to be a formal document listing these considerations, but some common
location for reference and comparison purposes is a good idea. This might be a wiki page,
a Word or Excel document, or some other listing of the agreed and expected targets and
response times. A simple example of this is shown in Table 2.1.

 Projected growth in
concurrent users

Scenario Concurrent
users

Accepted
response
times

Pages applicable
to

Next year Next 2 years

Typical
usage

1,000
< 5
seconds

Reporting.aspx 1,500 2,500

Typical
usage

1,000
1–3
seconds

All (Except
reporting.aspx)

1,500 2,500

Peak 2,500–3,000
< 8
seconds

Reporting.aspx 1,500 2,500

Peak 2,500–3,000
3–5
seconds

All (Except
reporting.aspx)

3,500–4,000 4,000–5,000

Table 2.1: Example of response time expectations.

This table show a very simplistic example of what may be produced by discussions between
the business and technical staff around expected response times and concurrent user load.
The goal of this is to produce explicit guidelines of what is acceptable by the business at
various points of the application's usage, within the context of the current user base. Without
explicit guidelines in these areas, all the relevant test conclusions are subjective and open to
interpretation. Bearing that in mind, it is once again up to the business, in conjunction with
consultation from appropriate technical staff, to come up with realistic and achievable goals
that meet business needs.

Now that we have clear expectations around application performance, you would think we
have set our targets to achieve when doing performance testing, right? Not quite.

Contingency in your estimations

As part of a general rule, when the table of estimations has been produced around
concurrency expectations and response times, it is important to emphasize that these
are just estimations. They have plenty of potential to be incorrect. In fact they probably
are incorrect but, because we have used whatever metric data we can, as well as knowledge
of usage patterns and systems, they should be reasonably close to reality. As a result of all

Chapter 2: Understanding Performance Targets

25

this, even using these estimations as our limits for performance testing is not going to be
accurate, either. I generally recommend that you double the concurrent load targets for any
given scenario.

Why should you double your estimates, you ask? This can be thought of as our contingency
component. In many estimation processes, such as when you judge the time and effort
taken to complete a project, some level of contingency is usually introduced to cater for
errors or unknowns in the estimation process itself. If we double our performance targets,
it is reasonable to assume that, if we can hit them, then even if our initial estimations were
incorrect by a small margin, those errors are accounted for. We can then be confident, not
only that the application does meet the required business goals, but also that it can handle
more load than anticipated, and performs well within our set bounds.

The performance targets in Table 2.1 may seem excessive once doubled, but remember
that part of the purpose of performance testing is to give the business a relatively accurate
determination of hardware and infrastructure requirements for current and future use of
the application. Using doubled performance targets clearly ensures that we cover current
requirements, future requirements, and also any contingency that either the business or
technical estimations may have failed to address. It provides a safeguard in the sometimes
tenuous game of estimation.

As a bonus,this will obviously also guarantee responsiveness under normal circumstances; if
the system maintains acceptable responsiveness under double the expected load, then it will
be even more responsive under the originally estimated load.

The previously shown table, and its double, are by no means the only way to express
estimated loads, current needs, projected growth, and performance targets. These are
provided simply as examples, and you can use them as they are, or find different ways, that
suit your individual needs, to express your targets. The main point here is that it is absolutely
essential to ascertain these targets before any testing is performed. If you don't, then there
will only be a vague understanding of what needs to be achieved in the performance testing
process. As I said, performance testing is an expensive process, and the need to gain valuable
results, as opposed to ambiguous results which do not allow proper conclusions, is of
paramount importance.

One final thing to consider is the percentage of new users accessing the site, compared to
returning users. This will have implications in terms of browser caching efficiency, and will
affect how many requests are issued against the server. The more returning users visit the
site, the more data will be cached by the clients' browsers, and so fewer requests are likely to
be issued against the server for resources within a particular page.

This will also be dependent on the type of application; this metric is quite important for
public-facing web applications, but intranet-based applications may place less significance
on it. Often, to present a worst case scenario, the amount of new users will be assumed to
be 100%.

Chapter 2: Understanding Performance Targets

26

This means that each test will consistently request all resources for a page whereas all
common web browsers do cache resources.

Estimate the mix of browsers for your
web application

Finally, in a web application, it is also important to be able to estimate the percentage of
different browsers that will be used to access the website. Different browsers from different
vendors naturally all have different performance characteristics, and therefore impose
different performance factors on the site.

If the website is public-facing, generally the percentage of different browsers can be gleaned
by the respective market share of each browser. Quite often, the business will dictate which
browsers should be used, and even which version will be supported.

If the website is intranet-based or has its visibility limited to within certain units of the
organization, then the organization in question will often have set standards about what
browsers are permitted as part of the standard operating environment.

The final outcome of all these estimations is that you will be able to record tests that exercise
accurate, or at least realistic, usage patterns of the site. Once these are recorded, you can then
weight the results by applying percentages according to how often each test is executed as
part of the entire load test, which will be essential in establishing which result-sets are the
most relevant for your purposes. In addition, you can also specify how much each browser is
simulated within the overall load test. Within Visual Studio Team Test, you can end up with a
load test, specifying a test and browser mix, looking something like Figure 2.2.

We will discuss in detail how to set up the test percentage and browser mix in a later chapter.

What data do we measure?

We have now identified our performance targets across a number of scenarios, and we have
also identified the response times required across them by the business. Now we need to
establish what metrics we use to compare against our targets.

A huge variety of metrics are measured and analyzed as part of performance and load testing.
For comparative purposes against the targets that were identified earlier, we are primarily
concerned with a few key metrics which will give us an immediate idea of the application's
performance. These are Time to First Byte and total page response time.

Chapter 2: Understanding Performance Targets

27

Figure 2.2: Sample test and browser distribution.

Time to First Byte

Time to First Byte (TTFB) represents the time it takes a server to issue the first byte of
information, typically in response to a request from a web browser. This time covers the
socket connection time, the time taken to send the HTTP request, and the time taken to get
the first byte of the page. It is a good indicator of the responsiveness of the web application,
as the server must receive the request, interpret it, execute the ASP.NET pipeline to process
the request, and produce a response.

This is one of the primary metrics to use when determining how responsive a site or web
application is. A large TTFB value means that a typical user will see no activity in their
browser (apart from whatever "waiting" indicator the browser uses) for a long time, until that
first byte of information is received from the server and the browser can start parsing.

This is also typically a good indicator of how fast the web application can process the requests
made against it, as no response will be issued until the web server/ASP.NET has finished
processing a given request. There are caveats to this, but I'll cover them alongside analysis in
later chapters.

Chapter 2: Understanding Performance Targets

28

Total page response time

The total page response time is often referred to as simply "response time." This metric
includes, not only the TTFB time described previously, but also all the dependent requests
required to completely load and display all aspects of a web page. This can include items such
as images, JavaScript files, and Cascading Style Sheet (CSS) files.

In contrast to the TTFB measurement, the total page response time measures the time it
takes for a page to completely finish loading all resources required to present the page to
the user. This may include non-functional aspects as well, such as tracking images hosted
on external sites. It is important to quantify the effect that external tracking mechanisms
can impose upon the site. Once this is done, it is valuable to remove this component during
performance testing, to get a more accurate view of the site's performance. External tracking
mechanisms are normally beyond the control of the application and cannot, therefore, be
modified or improved.

To further illustrate these points, the following diagrams show some TTFB and total page
response time breakdowns. The first diagram represents a personal, hobby site,
http://www.theglavs.com and the second site represents the Microsoft main site at
http://www.microsoft.com.

Figure 2.3: www.theglavs.com response times.

http://www.theglavs.com
http://www.microsoft.com

Chapter 2: Understanding Performance Targets

29

Figure 2.4: www.microsoft.com response times.

From the previous two diagrams, it is evident that the Time to First Byte and the total page
response times can vary quite considerably. This will be dependent upon the number of
other resources and artifacts that are present on the particular page being measured. It is
important to be able to quantify these differences, as your web application may respond very
fast on its own, but the dependent requests and resources in the page may be degrading the
performance considerably.

What about average response time?

The average response time for a web application is often a misleading metric, as there is
ambiguity around what the average time actually means.

• Does it refer to the average TTFB?

• Does it refer to the average total page response time?

• Does it include static resources such as CSS and image files?

• Does it include the low end figures at low levels of load or at other different times?

Chapter 2: Understanding Performance Targets

30

It is worth bearing in mind that serving static files will be much faster than processing a
request through the full request execution pipeline so, if static files are included in this
metric, then average response times will appear faster than they really are. The result
is obviously more ambiguity, and the metric will provide no real correlation to page
responsiveness and overall application performance.

There is also the question of the point at which the metric samples are taken to determine the
average. A common practice is to use percentile brackets to determine the average response
time. For example, if a 90th percentile was used to determine the average response time, this
would mean that, out of 100 requests, ordered from best to worst times, the requests in the
last 10% of requests (that is, the 10 worst-performing requests) are used to find the average.

Because of this ambiguity, the average response time is generally best used to compare against
previous averages for the same time period, but only for the purposes of determining if the
latest performance run has shown improvement or degradation compared to the last run (in
other words, it's used as a relative measure).

This can be a useful metric, though I always recommend that this percentile bracket should
be used in conjunction with examining the more specific TTFB and total page response times
discussed previously. Equally, you don't necessarily have to use the 90th percentile – the 85th
percentile could just as easily be chosen to determine averages. That being said, I recommend
that you use the 85th, 90th and 95th percentile brackets, as these provide a valuable insight into
the worst case scenario of response times for whatever is being tested, in terms of both Time
to First Byte and total page response time.

Sweet spots and operational ceilings

We've seen that the performance targets which have been identified by the business represent
acceptable response times under various load conditions. Irrespective of the current system
load, these response times are often referred to as the "sweet spot," and are the response times
and usable states that best serve the users of the application.

The sweet spot may initially be nowhere near what the business requires from the
application. The response times expected of the application may initially be at concurrent
user levels far below what is deemed necessary to serve the customer base. It is crucial to
identify the sweet spot, and how far from that target the application currently is, as you'll
need to make those two states match before business requirements can be met.

However, the sweet spot is just one aspect of the application. It is also important to know
what the limit of the application is, and whether it is resilient enough to cope with extremely
large user loads.

Chapter 2: Understanding Performance Targets

31

This is the stress-testing aspect of performance testing and analysis, and requires you to ask
the questions below.

• How long can the application cope with relatively high concurrent user loads before it
becomes totally unresponsive?

• In addition, what characteristics does the application exhibit at these high concurrent
user loads?

These are important questions in determining the operational characteristics of the
application. The number of concurrent users (or "load") that the application can withstand
before becoming totally unresponsive is referred to as its "operational ceiling." That is, the
ceiling or limit at which the application can operate before failure. This limit will typically
involve excessive response times that make the website practically unusable, but this metric
still serves as a good comparative indicator against previous performance tests. It also
provides valuable evidence as to what will happen when the application experiences a larger
load than it can handle.

Figure 2.5: Example performance run graph.

Figure 2.5 shows an example performance run. The red line represents concurrent user load,
the blue line represents response time, the purple line represents errors per second, and the
X-axis represents the time component of the performance test. It is clearly apparent where
the operational ceiling is, as errors-per-second and response time make a sharp change at
approximately one hour and twenty minutes into the run.

In addition, we can discern that the sweet spot for this application (in this case, a Time to
First Byte response time of less than five seconds) is between the start of the performance run
and approximately forty minutes into the test.

Chapter 2: Understanding Performance Targets

32

Using Visual Studio Team Test we can drill into these results to determine the concurrent
user load at the sweet spot as well as the operational ceiling. This process will be described
later in the book.

Conclusion

The objective of this chapter is to provide a understanding and a framework around
determining what targets need to be identified for a web application to be classified as a
well-performing application. This is a relative term that needs to factor in the user base
and the business which the application serves. There are no "right" answers, but the more
experience a developer gains, the more honed their instincts will become.

Having these targets identified means that the relatively expensive exercise of performance
testing has a well-defined set of goals which can be measured and tested against. In addition,
the business has a clear set of measurements from which to determine whether the
application meets its requirements. These measurements provide a degree of confidence in a
technical procedure that is typically unfamiliar territory for businesses.

The sweet spot and the operational ceiling aspects of the application provide valuable
evidence into how the application performs at various load levels. With this evidence, as
solution architects, we can provide informed conclusions around the application capabilities
and also how estimate much time and effort is needed to achieve the goals of the business.

The following chapters will take you through the technical steps required to ensure that the
business and technical staff alike can ensure that the application performs as required.

33

Chapter 3: Performance and Load
Test Metrics

What metrics do we need?

The purpose of running performance, load, and stress testing is to gather metrics about a
system so that you can determine which parts of it are performing well, and which are not.

This sounds simple enough, but the myriad combination of data-types to record can make
choosing which to use difficult. For example, if the wrong set of metrics were recorded for a
performance test run, the system might appear to be able to cope with a given load relatively
easily. However, in reality the system may have been experiencing severe problems in areas
that simply weren't measured.

Equally, one of the most frustrating things is to have just enough data to show that a problem
exists, and vaguely where it is, but not enough to provide accurate information as to why.

The short answer as to what metrics to record would be that recording everything possible
is ideal. Indeed, if at all possible, then this is a fail-safe approach to ensuring you have all the
data necessary for analysis. However, as you can imagine, this is often just not practical for
any one of a variety of reasons. When discussing performance and load test metrics, the data
gathered is quite different from data gathered during application profiling. This chapter will
deal primarily with the former. I'll discuss profiling data in the context of profiling itself (and
the associated toolset) in Chapter 6.

To start with, we'll deal with the most basic metrics that will provide the quickest indications
of application performance in most typical scenarios, before moving on to more specialized
metrics for given scenarios.

Basic metrics

So what is required to meet the most diverse set of needs? There are some basic metrics
which are important at all levels of testing, regardless of whether data is being collected from
a database server, application server, web server or even a workstation running a web browser
to access a web application. Most of the data is gathered via the performance counters that
will be discussed in Chapter 5.

Chapter 3: Performance and Load Test Metrics

34

These are typically accessed using the PerfMon tool (perfmon.exe) or via Visual Studio Team
Test. Visual Studio Team Test also collects additional metric data specific to web applications.

The most common (and mandatory) counters required at any level of testing are CPU
utilization and memory usage. Both are early indicators of problems in an application.

High CPU utilization can indicate that an application is performing tasks very inefficiently,
or is perhaps running computationally intensive tasks in unexpected ways; as a benchmark,
an application that constantly maintains more than 90% processor utilization would
be considered to have high CPU utilization. Although today's high-level languages and
frameworks provide constructs that are easy to implement, it is often not apparent what
processing is required to achieve the desired functionality.

High memory utilization can indicate that an application is not using memory efficiently, or
is perhaps not releasing resources appropriately. There are obviously instances where using
a lot of memory is required, but not releasing that memory as soon as possible is a serious
issue, and this is how memory leaks can manifest. As an application is used over time, a
memory leak causes memory usage to increase steadily until the available resources are
exhausted, and since running low on memory obviously has a big impact on system
performance, it is imperative that memory be managed correctly. It is a common
misconception that because of the .NET garbage collector silently operating in the
background, cleaning up memory, memory leaks cannot occur. This is far from the truth.
Items such as static objects, event handlers referencing shared data and many other things
are ways in which the .NET garbage collector can interpret an object as in use, when in fact it
is not. This can build up over time and cause memory issues. Later in this book, we will look
at the common mistakes with respect to memory and performance issues, what to watch out
for and how to overcome them.

CPU and memory usage are also applicable at all levels of an application, regardless of
physical topology. Even a user's system, accessing an application via a web browser, is a good
candidate to record CPU and memory usage. High indicators in this situation could indicate
inefficient JavaScript being executed in the browser on that machine, for example.

CPU utilization and memory usage are basic indicators that should form part of every
metric set recorded, regardless of system role. System performance problems will almost
always manifest via one of these broad metric counters, indicating the need to investigate
further. PerfMon can be used to gather this data and, in fact, defaults to capturing processor
utilization (amongst other counters).

Chapter 3: Performance and Load Test Metrics

35

Figure 3.1: Default PerfMon Counters – Windows 7 / Server 2008.

For the basic performance counters, % Processor Time in the processor category and %
Committed bytes in use (for a high-level view), Committed bytes, or Available Mbytes in
the memory category are sufficient for initial analysis.

Figure 3.2: PerfMon memory performance counters.

Chapter 3: Performance and Load Test Metrics

36

Much like PerfMon, Visual Studio Team Test will capture CPU utilization and memory usage
in every performance test run by default. However, remember that this relies on remote WMI
(Windows Management Instrumentation) communication, and sometimes this cannot work.
Also, performance metrics may need to be analyzed by teams or individuals who do not have
Visual Studio Team Test or access to the results of the performance tests; hence the need for
separate PerfMon-recorded data.

Web application basic metrics

In addition to the basic CPU and memory counters, web applications are often broadly
measured by two other characteristics, response time and requests per second. Response
time refers to how quickly the server can provide a response to the browser, and requests per
second indicates the throughput of the server, and shows how many requests it can handle
every second. Both metrics provide an indication of how efficient an application and server
are at processing requests and providing responses. Low CPU utilization and low memory
usage will not mean much if a web page takes a long time to load.

Quite often when designing web applications, a business will specify that a particular page is
considered to be performing well if the response time is less than a certain amount, usually
measured in seconds. For example, the business can specify that the home page of the web
application must load in less than five seconds.

At this point, it is important to note that "response time" is a broad term that can be
interpreted in a few ways. Since part of the purpose of performance testing is to remove
ambiguity about an application's performance and the business's expectations, it is necessary
to clarify exactly what response time means.

A web page is typically made of many assets, including such things as the HTML itself,
images, Cascading Style Sheets (CSS), JavaScript, and many others. A web browser will not
load all these assets as one sequential block and subsequently display them on screen, but will
rather load the page in parts. The HTML is downloaded first, and then any referenced assets
are requested. These secondary assets are often referred to as "dependent requests," and are
usually accessing static resources such as CSS files, image files, and so on.

Static resources are typically delivered much faster than the HTML markup itself, since no
real processing is required to serve them to the browser; they are simply loaded from disk as
requested. In addition, Internet Information Server has extensive support for caching these
requests, making accessing them even quicker.

By contrast, the application is typically required to perform some processing before sending
the resulting HTML to the browser. In ASP.NET webforms applications, the application will
go through the full page event life cycle (in simplified terms, consisting of 18 individual steps)
before finally rendering some content. Just as an example of just how much is involved in this,

Chapter 3: Performance and Load Test Metrics

37

when an ASP.NET webforms page is requested, the following (albeit simplified) page life cycle
is executed:

• ProcessRequest

• DeterminePostBackMode

• PerformPreInit and OnPreInit

• InitialiseThemes and ApplyMasterPage

• ApplyControlSkin

• OnInit

• TrackViewState

• LoadControlState and LoadViewState

• OnPreLoad

• OnLoad

• RaiseChangedEvents and RaisePostbackEvent

• OnLoadComplete

• EnsureChildControls and CreateChildControls

• OnPreRender

• SaveControlState and SaveViewState

• RenderControl

• BeginRender and Render

• EndRender

Clearly, a lot of processing occurs before the actual rendering of any content to the browser,
so the efficiency of the application code executing during this life cycle is what will determine
the overall response time of the page.

While the life cycle of an ASP.NET MVC request is not as substantial as a webforms request,
there are still significant processing steps required to generate the HTML response.

Once the browser receives the first byte of HTML, the client can be assured that the server
processing is complete and the results of processing are being sent to the browser. This time
is referred to as Time to First Byte (TTFB) and is one of the primary measures of response
time in web applications.

Chapter 3: Performance and Load Test Metrics

38

Given the amount of processing required for ASP.NET to send a response to the browser, it is
easy to see how static resource requests can be much quicker than any page. This is important
to note as, when response times are averaged across a performance run, only page response
times should be factored into the calculation. Including static resource requests will cause the
average figures to look much better than they really are!

Static resources will be addressed later in this book when dealing with Content Delivery
Networks (CDN) and other mechanisms to help static resource load times.

To illustrate the point, this effect is highlighted in the following graph of a website response
time report, issued by a service called "Gomez," a paid-for service for measuring response
times, provided by Telstra. Many companies provide similar services and associated reports
for monitoring websites.

Figure 3.3: Response time report.

The end of the purple bars indicate the TTFB response time, and you can see that the initial
request to http://www.theglavs.com takes considerably longer than the dependent requests
that comprise the rest of the page.

This is why it is important to only factor in the main request TTFB time. The dependent
request response times should not be ignored, as they contribute to overall page load time.
Some dependent requests may actually be the cause of long overall page load times but, to
improve the performance of the application, only the page itself should be considered. Later
chapters in this book will deal with the issue of dependent requests and how to improve load
times for these artifacts.

Visual Studio Team Test provides a convenient way to analyze these key metrics. When a
performance run is executed and the test run data loaded into Visual Studio, the results are
displayed in a series of graphs for easy analysis, as you can see below.

Chapter 3: Performance and Load Test Metrics

39

Figure 3.4: Performance run initial result display.

The areas of concern for this example are the Key Indicators and Page Response Time
graphs, which can be easily focused on using the 2 Horizontal Panels option from the View
Graph button.

Figure 3.5: Dual graph result view.

Chapter 3: Performance and Load Test Metrics

40

The available data summaries will automatically adjust to only display results from whichever
graphs you happen to be focusing on at any given time.

What to look for

The basic metrics that have been discussed can provide a good indicator of an application's
performance at a quick glance. There are other metrics to factor in, which will be discussed
later in this chapter, but these key metrics are a good start for determining if an application
will meet its performance criteria. In combination, they are the best way to quickly assess
if an application performs acceptably, without going through the time consuming task of
analyzing all the possible metric data in detail.

CPU utilization

Naturally, the CPU utilization should ideally be as low as possible. If the CPU is being
measured on a database server, then the usage should remain low at all times; an average of
20–30% is generally acceptable. Anything over this could indicate that the database server will
begin to be overloaded and exhibit slower than usual performance.

An average CPU utilization of 20–30% on a web or application server is excellent, and
50–70% is a well utilized system. An average CPU utilization above 75% indicates that a
system is reaching its computational capacity; however there's usually no need to panic if
you have an average of 90–95%, as you may be able to horizontally scale out by adding an
additional server.

Obviously, in this last scenario, adding extra load may mean the system consistently achieves
100% CPU utilization. For a web or application server, this is actually not that uncommon,
and the ideal is to have a stateless system which can be horizontally scaled as required. As
a matter of fact, if a web server is averaging 100% CPU utilization, but the database server's
load is only 30% CPU utilization, this is actually a good scenario to be in. This means that the
database server has capacity to serve more load, and that the web server is being well-utilized.
Simply adding an extra web server into the farm at this point would be an easy, relatively
predictable way to address the web tier's capacity to handle extra load.

Some tasks, such as cryptographic functions, are computationally intensive and will cause
CPU "spikes" even at a relatively low load. In these instances, it is important to design the
system in such a way that it can be easily scaled out appropriately, and not be tied to a single
server (which is known as having Server Affinity.)

Chapter 3: Performance and Load Test Metrics

41

Memory utilization

A system with no available memory will not be able to cope with any more work to do, and
will potentially be unstable, so it's important to ensure available memory is monitored, and
remains at acceptable levels.

As I mentioned in passing earlier, it is important to ensure that memory consumption does
not steadily increase over long periods of time until there is none available, as this usually
indicates a memory leak.

Memory utilization is obviously relative to the amount of memory on the system in question,
and as long as the available memory remains above approximately 25%, then the system
should have enough "head room" to operate efficiently. Again, this is not an exact figure
and a system can operate with less than that, but this can indicate that memory thresholds
are being reached and any spike in activity or load could cause unexpected (and often
undesirable) results. At best, paging will occur, wherein memory will be read and written
from disk, causing the system to operate very slowly. At worst, further load or requests will
be unable to be serviced, connections will be refused, memory exceptions will occur, and the
system's reliability will be compromised.

In .NET, memory usage should ideally follow a predictable "saw-tooth" pattern. This is
because memory is allocated during normal program execution and then, at certain points
determined by the .NET garbage collector, the memory is reclaimed. When objects are
no longer in use, or are out of scope, they are removed from memory, and the memory is
returned to the system for use. The following screen shot shows a typical graph of memory
usage for an application, made using a tool called CLRProfiler, a memory profiling tool freely
available from Microsoft at http://tinyurl.com/CLRProfiler, which will be discussed in
Chapter 6.

Figure 3.6: "Saw-tooth" memory usage pattern.

http://tinyurl.com/CLRProfiler

Chapter 3: Performance and Load Test Metrics

42

The saw-tooth pattern represents memory being allocated, peaking, and then being
reclaimed by the Garbage Collector. Memory usage then climbs again as objects are allocated,
the garbage collector initiates another collection, and the cycle continues.

What we don't want to see is a saw-tooth pattern that is ever increasing:

Figure 3.7: "Saw-tooth" memory usage pattern – potential memory leak.

Figure 3.7 shows a classic indication of a memory leak in an application, but this can occur in
both web applications and desktop or service applications.

Both of the previous graphs present a low-level, detailed view of memory usage. If memory
usage was viewed at a higher level using a tools such as PerfMon or even Visual Studio Team
Test, the saw-tooth pattern would not be as evident, but the general pattern would remain
the same – a relatively flat horizontal line for good and predictable memory usage by an
application, and a line trending upwards for a memory leak-type situation.

A database server should typically remain at a relatively constant level of memory usage
without too much variation. Again, this is dependent on other system activities such as
scheduled tasks, but memory usage should, in general, remain even. The average amount
of memory used will naturally depend on how much work the database has to do, and the
nature of the queries themselves. Memory will occasionally dip and spike but should always
return to the normal operating level.

Chapter 3: Performance and Load Test Metrics

43

Figure 3.8: PerfMon – Even memory usage on a database server.

Response time

Response time (as measured in TTFB) is relatively easy to assess. Generally, any response time
over 3–4 seconds is perceived as slow, although this obviously varies for each individual case.

When developing business applications, it is best to let the business decide what is an
appropriate response time, although this metric must be determined in conjunction with
the development team. It would be potentially unrealistic if a business were to stipulate
that every page must respond in less than one second (although this is possible, and some
businesses manage it!). Latency and the operations a page performs play a huge part in
these decisions. If a page needed to produce a complex and computationally heavy report,
then this response goal would be very hard to achieve without some high-end servers and
computational equipment. Business value and realistic response times in these types of
scenario are clearly matters for negotiation.

Chapter 3: Performance and Load Test Metrics

44

Creating a baseline

Before performance tests can be properly analyzed, it is essential to establish a good way of
comparing performance data to determine if improvements have been made from one test
run to another.

The first step is to establish a "baseline" performance run against the application. A baseline
performance run is a performance test run executed against the application for the very first
time, without specific performance modifications (aside from normal development). In short,
the application as it currently stands.

Always keep track of your baseline run data, as this will allow future performance runs to
be compared to it to determine if performance has altered anywhere. The performance run
can be named as a baseline within Visual Studio Team Test; alternatively, a separate list or
spreadsheet can be used to catalog performance runs against their purpose or context.

Utilizing a spreadsheet, with each run, its date/time, and any details such as performance
modifications made, is an extremely valuable way to collate and manage performance test run
data. It then becomes easy to quickly glance over the list and view what changes were made to
achieve the performance aspects of a particular test run.

However, without a baseline run, each subsequent performance test has nothing to compare
against. Modifications made at some point in the development process could have seriously
hampered performance, rather than increasing it, and this would not be apparent without a
baseline run.

Using Visual Studio to analyze
the results

Visual Studio Team Test provides excellent tools to interactively analyze performance test
results and investigate the large amount of metric data in tabular or visual form.

Firstly, we need to load in the results of a performance test run. If a test run has just been
executed, then the results will be loaded immediately afterwards. However, if we need to load
in a previous set of results we can do so using the following two main methods.

Chapter 3: Performance and Load Test Metrics

45

Using the Test Results management window

• Select the Test > Windows > Test Results menu option to activate the
Test Runs window.

• Open the Connect drop-down and select a controller.

• Completed performance runs will be listed and can be selected to load in the
performance test results.

Using the Open and Manage Test Results dialog

To use this option, a performance test solution needs to be open, and a load test must be
loaded into the Visual Studio Editor.

• Click on the Open and Manage Test Results button to open the dialog window.

• Select a Controller to use, and then select a load test whose results you wish to load. A
list of performance test results will be shown. Select a performance test result and click
the Open button.

Note

Occasionally, for whatever reason, Visual Studio may fail to list the results in the Test
Runs window. This rarely happens, but it can sometimes be caused by the correlating
result metadata files not being present or being corrupt. This means you cannot load the
performance test results via the Test Runs window as they will not be shown. Using the
Open and Manage Test Results dialog will allow you to get around this issue.

Now that we have some performance test results to analyze, let's start off by looking at
response times. Initially, Visual Studio presents four graphs of key results. Key Indicators
is one of these graphs, and has an average response time metric listed in the table of results
shown below the graph in Figure 3.9.

Chapter 3: Performance and Load Test Metrics

46

Figure 3.9: Key Indicators graph.

The average response time metric is only a general indication. Dependent requests can factor
into this figure, in addition to the response time for low concurrent users, which skews the
result to look more favorable than it should.

Filtering performance test result selection

In order to get a better average response time figure for a particular number of concurrent
users (or, in fact, any metric data) we can use the dynamic filtering and selection feature of
Visual Studio Team Test.

By using the timeline grab handles, it is possible to constrain the result set to a specified time
window. For example, we may wish to see the average response time when the concurrent
user count is between 50 and 80 concurrent users, To do this, drag the start and end timeline
grab handles until the Min User Load column equals 50, and the Max User Load column
equals 80. The grab handles are shown in red circles in Figure 3.10.

Chapter 3: Performance and Load Test Metrics

47

Figure 3.10: Timeline grab handles.

Note that the timeline grab handles can also be moved using the keyboard for finer
adjustment, although the handle must be selected with the mouse first. There are also grab
handles on the vertical axis to change the scale upon which the graph is shown, and these
operate in exactly the same way as the timeline grab handles.

An alternative way of selecting a portion of the results is by selecting an area on the graph
itself, although this is a little less accurate, and fine-grained control is not as easy. Click and
drag the mouse to select an area. Once the area is selected, only that set of metrics will be
displayed on the graph and in the tabular results below the graph.

Chapter 3: Performance and Load Test Metrics

48

Figure 3.11: Selecting or filtering results via mouse selection on the graph.

This concept can be taken a little further. One of the first items to analyze in a performance
test run is the response time at a certain concurrent user level. For example, let's say we
would like to look at the response times when there are between 80 and 100 concurrent
users. We need to ensure that the test run's user load is set to Step Up at periodic levels of
the performance test run, which can be set in the properties for the load test scenario. The
pattern must be set to either Step Up or Goal Based with user load increment values and
time periods for the increments set to your desired values.

With a graph selection on and the key indicators graph selected, adjust the timeline grab
handles so that the User Load has a minimum value of 80 and a maximum value of 100. Now
select the drop-down box where Key Indicators is shown and select Page Response Time as
shown in Figure 3.12.

The page response times will be shown, but will be constrained to the same time period
and concurrent load that was selected while the Key Indicators graph was selected (see
Figure 3.13).

Chapter 3: Performance and Load Test Metrics

49

Figure 3.12: Selecting the Page Response Time graph.

Figure 3.13: Page Response Times filtered by 80–100 concurrent users.

Chapter 3: Performance and Load Test Metrics

50

This is an extremely easy way to visualize each page's response time at a particular concurrent
user level. If we take a step back and examine part of the business objectives of performance
testing that were mentioned earlier, we can see that the goal was to validate that particular
pages can respond in a set time (TTFB) at a particular concurrent user load.

Using this technique, it is easy to examine any page response time at any particular point
in time or concurrent user level. If the response time for a page exceeds the agreed business
requirements, then some performance modifications need to be made. However, even if the
pages meet the required response times, it is still important to gauge what happens beyond
the required concurrent user load.

Sweet spots and operational ceilings

Using the techniques discussed previously, it is easy to plot the response time characteristic
of the application as concurrent user load is increased. In web applications, there is a typical
pattern of response time progression as the concurrent user load is increased. This means
that during the low concurrent user load stages of the performance test run, response time
is excellent.

There comes a point where response time is still good and within acceptable bounds, but
beyond this point response times start to increase sharply and keep increasing until timeouts
begin to occur. The period before the sharp increase is what is referred to as the "optimal
operating period" or "sweet spot." These terms refer to the time where the application can
service the largest possible number of users without incurring a large or unacceptable
response time. This is best shown in an example (see Figure 3.14).

Figure 3.14 shows a typical performance run. The optimal operating period, or sweet spot, was
achieved relatively early in the run. The concurrent user load was relatively low at 200–300
concurrent users, with page response times of 3 seconds or less. This is the time when the
application is performing at its most efficient and maintaining good response times. After
this, the application still services requests, but sharp spikes in response time start to appear
(represented by the blue line in the graph). Beyond this period, the response time continues
to increase until erratic measurements occur. This is the operational ceiling, where the
application begins to refuse requests and return Service Unavailable-type errors.

It is important to note that, while the business objectives have been exceeded before the
application hits its operational ceiling, the behavior of the application can still be observed.
This is important as it shows the resilience of the application and what could potentially
happen if a sharp spike in load occurs that exceeds estimates.

Chapter 3: Performance and Load Test Metrics

51

Figure 3.14: Sweet spot and operational ceiling.

In addition, during times of high stress, the functional aspects of the application will
be exercised at maximum capacity and it will be easier to see what components of the
application are performing more work than others. This will be relatively easy to see through
the use of detailed performance metrics which are discussed in the next section.

While performance graphs and PerfMon metrics are extremely valuable in determining the
sweet spot of an application, there is nothing quite like practical usage. In order to truly verify
that the application is responsive and functional at the estimated sweet spot, it is best to
actually perform a performance test run and simulate the number of concurrent users that
is being applied at the estimated sweet spot. During this time, enlist the business users or
stakeholders to use the application and report on its responsiveness. It will become quickly
apparent whether the application is indeed responsive during the given load, and thus
whether the optimal operating period is the one that has been estimated.

Chapter 3: Performance and Load Test Metrics

52

Detailed performance metrics

With an indication of system performance in hand (using the key metric values), as well as the
ability to filter and isolate portions of a performance test run, it is now important to examine
performance metrics in detail.

In particular, it is important to understand what the various metrics that are available mean
in the context of a performance run. Whilst the key metrics discussed previously usually show
whether there is a potential performance issue or not, they do not provide much insight into
what the problem is.

This is where a detailed investigation and analysis needs to be performed on all available
performance metric data to ascertain the nature of the performance issue. It is also important
to understand what areas of the application can be generally improved. The immediate
performance issue is an obvious choice, but many other areas may exist that could also be
improved and contribute to an overall performance gain.

We'll start by first looking at the general performance metrics which can be relevant to almost
all applications, whether on a server or desktop machine, and then the web application
specific metrics will be discussed. It is important to note that not every single performance
counter will be listed here as there are a huge number of them, details of which can be
found in the Microsoft reference documentation. Here, we will be concentrating on the
performance counters that aid in the detailed analysis of a test run – in other words, the
counters that deliver real value in analyzing performance test run data.

Almost all metrics and counters are normally available within the PerfMon tool. The web
specific metrics, such as response time, are only available via the Visual Studio Team Test tool
and will be listed as such. It may seem obvious, but note that ASP.NET performance counters
are typically only available on machines with the .NET runtime installed, such as web or
application servers. Database servers would not typically have the runtime installed. Finally,
rather than simply provide the detailed set of counters and their definitions, I'll also provide
a discussion on typical analysis paths using these counters. Having the counters and their
definition is not usually enough, as it is equally important to determine what counters are
worth examining in certain situations, and what indicators to look for. This is where many
people can become confused as, after determining that there is a problem, it is hard to choose
what metrics and indicators use in the various categories of further investigation.

Chapter 3: Performance and Load Test Metrics

53

Performance metrics

For the following counter sets, it is generally recommended to monitor only the specific
process in question. For web applications, this is typically the worker process (aspnet_wp
in Windows XP and W3WP in Windows Server) that IIS uses to host them. For desktop and
other applications, such as services, it will be necessary to monitor the specific application
or host process. This is to minimize the performance counter variance that other, unrelated
processes may introduce into the measurements.

General

Category: Processor

• % Processor Time
The main counter is the % Processor Time, which shows the total percentage of
processor utilization across all processes. This provides a good general indication of
system utilization and is the best starting point when looking at system performance.
Visual Studio Team Test has predefined threshold levels for CPU utilization and will
provide visual warnings when this counter goes beyond them.

Category: Process

• % Processor Time
The % Processor Time counter is exactly the same as the previously discussed
processor category counter, but the processor utilization can be measured specific to
a single process. For example, the W3WP.exe process (the web server host process) can
be specifically measured for processor utilization in order to exclude any other process
activity. This allows a good segregation of data and makes it possible to potentially
pinpoint CPU intensive processes outside of the application itself.

• Working Set
The Working Set counter shows the amount of memory pages in use by all threads
within the process, and is listed in bytes. This is a good way to examine the memory
usage of a specific process.

Chapter 3: Performance and Load Test Metrics

54

Category: Memory

• Available Mbytes
This represents the amount of available physical memory in the system. Ongoing
monitoring of this counter can show if an application has a memory leak. This
condition can actually be mitigated somewhat in a web application using IIS health
monitoring. This is where IIS will recycle or restart an application pool (and thus the
processes running within it) when a memory limit has been reached. While this can
alleviate the consumption of all available memory by the process, it is a defensive
measure only, and the root cause of the memory leak should be investigated.

• Pages/Sec
This counter effectively represents the number of hard faults per second. A hard fault
is when pages of memory are read from, or written to, disk; since disk operations are
relatively slow compared to memory operations, hard faults are quite expensive in terms
of system performance. The larger this counter, the worse the overall system
performance will be. This counter should ideally be zero or at least very low. If it's high,
this can indicate serious memory issues and that physical memory is either near limits or
not used effectively.

• Page Faults/Sec
This counter should be used in conjunction with the previously mentioned Pages/Sec
counter, and represents the number of hard and soft faults per second. A soft fault is
where a page of memory was elsewhere in physical memory, and needed to be swapped
into the process address space. Since memory operations are very fast, having a high
number of soft faults is generally OK, as most systems can cope with this. Monitoring
this counter can help provide the tipping point where hard faults begin to occur and
where soft faults become excessive.

Category: .NET CLR Memory

• Gen 0 heap size, Gen 1 heap size, Gen 2 heap size

• #Gen 0 Collections, #Gen 1 Collections, #Gen 2 Collections
Both the heap size set of counters and the collection counters should show similar
patterns of behavior. The .NET CLR garbage collector is a "mark and sweep" collection
mechanism that partitions objects into different generations, Generation 0 (Gen0) being
the shortest lived, most often collected and least expensive to collect. Generation 2
contains the longest-living objects, is collected the least often, and is the most expensive
in terms of performance to collect. The #Gen 0, #Gen 1, and #Gen 2 collection counters
represent the number of times each generation had a garbage collection performed,
whereas the Gen 0 heap size, Gen 1 heap size, and Gen 2 heap size represent the memory
heap size of each respective generation. While not an unbreakable rule, both sets of

Chapter 3: Performance and Load Test Metrics

55

counters should show approximately a 1:10 ratio between each generation. That is, the
#Gen 0, #Gen 1, and #Gen 2 collections should follow a 100:10:1 pattern, and the heap
size counters should show approximately a 1:10:100 pattern. This ratio of garbage
collection statistics shows a healthy and normal memory usage by the application.
Metrics that are largely different from this ratio can indicate erratic and inefficient
memory usage or use of the garbage collector itself. Note that, for web applications,
measuring only the W3WP process is preferable to looking at the total memory pattern
and, for a desktop application, monitoring the application itself is preferable. For those
of you uncomfortable with firm assertions, these ratios are supported by Microsoft
performance documentation, mentioned by Rico Mariani (a Microsoft performance
specialist), and are something I've often encountered myself. Whilst deviation from these
ratios does not prove that there is an issue, it can often provide a strong indication.

Category: .NET CLR Exceptions

• # of Exceps Thrown / sec
This counter represents the number of exceptions being thrown per second by the
application, and should be very low. Throwing exceptions is a relatively expensive
operation and should be performed only in exceptional circumstances (i.e. actual,
legitimate exceptions) not for control flow. Again, in web applications it is best to
monitor only the W3WP process specific to IIS web hosting process. The exception to
this rule is if a web application utilizes a lot of Response.Redirect calls because
they generate a thread aborted exception. If this figure is high and there are a lot of
Response.Redirect calls in the web application, then the figure may be representative
of this, and it may be worthwhile trying to replace the calls with ones to the overload of
Response.Redirect, which also takes a bool as the second parameter, and set that bool
to false. This causes the request to not immediately terminate processing of the current
page, (which is what causes the thread aborted exception).

Category: .NET CLR Jit

• % Time in Jit
This counter shows the percentage of elapsed time the CLR spent in a Just in Time (JIT)
compilation phase. This figure should be relatively low, ideally below 20%. Figures
above this level can indicate that perhaps some code is being emitted and dynamically
compiled by the application. Once a code path is JIT compiled, it should not need to be
compiled again. Using the NGEN command-line tool against your application assemblies
to create a native, pre-JIT compiled image for the target platform can reduce this figure.
Too much time spent in JIT compilation can cause CPU spikes and seriously hamper the
overall system performance. Visual Studio Team Test provides a threshold warning when
this counter has gone beyond a predefined acceptance level, which is 20% by default.

Chapter 3: Performance and Load Test Metrics

56

Category: .NET CLR Security

• % Time in RT Checks
This counter represents the percentage of time spent performing Code Access Security
(CAS) checks. CAS checks are expensive from a performance perspective and cause the
runtime to traverse the current stack to compare security context and code identity for
evaluation purposes. Ideally, this should be very low, preferably zero. An excessive figure
here, and by that I mean a figure exceeding 20%, can hamper system performance and
cause excessive CPU utilization. This can often be caused by accessing resources across a
network share or SAN where network credentials and security contexts need to be
evaluated to gain access to the resource.

Category: .NET CLR Locks and Threads

• Total # of Contentions

• Contention Rate / Sec
These counters represent the number of unsuccessful managed-lock acquisitions,
the Total # of Contentions being the total amount of unsuccessful lock acquisition
attempts by threads managed by the CLR. The Contention Rate / Sec represents the
same metric but expressed as a rate per second. Locks can be acquired in the CLR by
using such constructs as the lock statement, System.Monitor.Enter statement, and
the MethodImplOptions.Synchronized attribute. When a lock acquisition is
attempted, this causes contention between the threads attempting to acquire the same
lock, and blocks the thread until the lock is released. Unsuccessful locks can cause
serious performance issues when the rate is high, as the threads are not only
synchronized but ultimately unsuccessful, potentially throwing exceptions and
waiting excessively. This rate should be very low, ideally zero.

Web / ASP.NET specific

Category: ASP.NET

• Application Restarts
This counter represents the number of times that the ASP.NET worker process has
been restarted. Ideally, this should be zero. IIS has features to detect problems and
restart worker processes, but this is a defensive measure for problem applications.
Enabling these features for performance testing will detract from the value of collecting
ongoing performance metrics for a test run. Ideally, the application should coexist with
the infrastructure well enough to not require restarts.

Chapter 3: Performance and Load Test Metrics

57

The restarts of the worker process usually indicate that IIS has detected a memory
condition, CPU condition, or unresponsive worker process, and forced the process to
restart. The memory and CPU thresholds before IIS restarts a worker process can be
configured within the IIS management tool. In addition, the amount of time to wait
before a health check request is returned from the worker process can also be defined
in the IIS management tool, although this is usually performed within the specific
application pool that the application belongs to within IIS. The options for application
pool health monitoring are shown in Figure 3.15.

Figure 3.15: Options for application pool health monitoring.

Chapter 3: Performance and Load Test Metrics

58

Category: ASP.NET Applications

• Pipeline Instance Count
This counter represents the number of concurrent or active requests currently in the
ASP.NET pipeline. Ideally (in case of very fast requests) there should be a very low
number of concurrent requests, but this is not always possible. After reaching ASP.NET
concurrency limits, requests begin to be queued. If requests are not executed quickly
enough, more and more requests will be added to the queue until it becomes full and no
more requests can be serviced. While this counter in itself does not indicate poorly
performing requests in the pipeline, it can show a pattern in behavior at various load
levels. In conjunction with the Requests in Application Queue counter (discussed
next) this can indicate at what point the system experiences too much load to efficiently
handle all requests.

• Requests in Application Queue
This counter represents the number of requests waiting to be added to the pipeline
for processing. This counter should remain at 0 most of the time, otherwise the web
server is not capable of processing requests as fast as possible. Occasional spikes are
acceptable, but ongoing system usage with requests being added to the queue will
eventually exhaust the web server's ability to process request in a timely fashion.
Long response times will result, eventually resulting in timeouts or Service
Unavailable type errors.

• Request Execution Time
This represents the number of milliseconds it took to execute the most recent request.
The lower this figure, the faster ASP.NET is processing requests. This figure should be
compared against a baseline figure when attempting to improve the performance of
the application.

• Requests/Second
This is the number of requests executing concurrently per second, and is effectively the
throughput of the application. This counter is closely tied with the Request Execution
Time and Pipeline Instance Count counters. The higher this figure, the better, as it
indicates that more requests can be serviced by the application. Visual Studio Team Test
provides the requests-per-second figure in the metrics in the Key Indicators graph.

Database

It should be noted that, in a very general sense, if CPU utilization and memory utilization are
within acceptable bounds, then a database server is able to perform optimally.

Chapter 3: Performance and Load Test Metrics

59

CPU utilization should ideally be as low as possible and not exceed 50–60%. An average of
15–20% is a good optimum operating value.

Memory utilization should also remain as low as possible, ideally averaging below 50%. An
average of 30% is a good figure. Memory is key for a database server's fast performance, since
a database engine will generally use as much memory as possible for caching execution plans
and similar items to achieve high throughput.

While the above figures are gross generalizations, many performance issues will manifest
on the database server as high CPU or Memory utilization. Obviously, this does not include
more subtle problems such as deadlocks, transactions and disk I/O, which are covered later.

Remember, these counters are just good indicators. Further analysis using tracing and
profiling tools may be required, and is covered in later chapters in this book along with typical
scenarios in which performance issues can arise.

Category: Physical Disk

• Avg. Disk Queue Length
The physical disk subsystem on a database server is extremely important due to the
I/O intensive operations that a database server performs. This counter represents the
average number of read and write requests that have been queued and are yet to be
fulfilled. As the number of simultaneous requests for data from the disk increases,
the disk subsystem can become overloaded and unable to fulfill the requests as fast as
required. The requests then become queued until the system can service the request. If
the queue continues to grow, then the database server may be experiencing performance
issues. Fewer requests, more efficient requests, and a faster disk subsystem can alleviate
this issue.

Category: SQL Server: SQL Statistics

• Batch Requests/Sec
This is the amount of effective work the database server must perform, and can roughly
equate to CPU utilization. This figure is dependent on the hardware specifications of the
database server. However, 1,000+ requests per second can indicate potential issues and
that the server may soon begin to experience stress.

Chapter 3: Performance and Load Test Metrics

60

Category: SQL Server: Databases

• Transactions/Sec
This counter simply represents the number of transactions the server is processing
per second, and can be thought of as a submeasurement of the previously discussed
Batch Requests/Sec. While not an accurate measure of the total work the server has to
perform, this counter can provide an indication of how much relative transactional work
is being performed when compared to the Batch Requests/Sec counter. Transactions are
expensive from a performance perspective, and a high relative value may indicate a need
to re-evaluate the isolation level and transaction policy of the application.

What do I do with all this information?

Performance testing is a very complex process, with the analysis and investigation of metric
data extremely dependent on your application's specifics and the surrounding environment.

The large variances that can occur are the reason why specific guidelines around what
to do in a given situation are very difficult to provide. In addition, it could be regarded as
irresponsible or misleading to provide specific guidance and problem resolution to a general
performance issue. This is not the goal here; my goal is to help you know where to start the
process, which can sometimes be the catalyst to finding answers. This section will therefore
attempt to provide some general guidance or clues to kick-start the analysis of performance
issues when dealing with common problems. Once experience is gained in this process,
individuals develop a general feel for the analysis process, and can begin the investigative
process with great efficiency.

• Slow response times (TTFB) for a web application

• Examine the request execution time. If the request execution time is long, with
high CPU utilization, then look at optimizing the code itself. Profiling can provide
insight here, and is discussed in the next few chapters.

• If request execution time is long but CPU utilization is low, look at external
systems such as database servers and/or web service calls. The system can be
executing a database request or a web service and spending its time waiting for
a response.

• Examine the HTTP modules and handlers loaded for each request. Sometimes
unnecessary handlers and/or modules can be configured for all requests, and will
perform unnecessary processing as part of their default pipeline.

Chapter 3: Performance and Load Test Metrics

61

• High CPU utilization

• This can occur for a large number of reasons and sometimes at very low load on the
system. Areas to begin looking at can be:

• CLR exceptions thrown/sec: lots of exceptions thrown can seriously hamper
system performance and place extra load on the CPU.

• % time in Jit: the Jit compilation phase can be computationally expensive. If
the application is emitting any code or utilizing XML serialization assemblies,
then this may be an issue. Optionally, test the code with all possible
assemblies having native images generated via NGEN. Note that this counter
may simply be a byproduct of the application and environment, and as such
cannot be alleviated. If attempts at alleviating this figure prove unsuccessful
early in the process, then it is generally best to concentrate on other aspects.

• Consider utilizing caching where possible, regardless of the issue. Caching is
one of the single most important performance optimizations for all applications.
The most efficient database query is the one that doesn't occur or use the
database at all. Techniques such as Output Caching for web applications, and
caching within the application itself can help CPU utilization, response time,
and database performance.

Granted, there are situations where it may not be able to be used (such as highly
dynamic data) but that does not detract from its positive performance effects. Here
caching refers to either browser based, proxy caching, output caching, application
level caching, or even SQL caching. This is the reason that Microsoft can support
millions of users through ASP.NET site with relatively little hardware, and also the
reason communities like Facebook can accommodate 350 million users. It is also the
reason why systems such as memcached and Project Velocity by MSFT are so high
on the priority list. (More or less as an aside, Rico Mariani and Microsoft's official
best practices also support this kind of behavior.)

• Aborted Requests

• In a web application this can manifest as HTTP 500 errors, and as exceptions in a
desktop or service application. This can be for any number of reasons but things to
look at can be:

• SQL Transactions and deadlocks: a deadlock can cause the victim query to be
rejected and the request which instigated it to throw an error.

• Downstream systems unable to handle the load: it is essential to have a good
exception management policy in the application that will record external sys-
tem activity and log all errors. Looking at request execution time and pipeline
instance count metrics for web applications, and thread counts for service or
desktop applications, can provide clues here. High values here can point to
problems in this area.

Chapter 3: Performance and Load Test Metrics

62

• CLR Locks / Contention Rate/sec: this can indicate excessive locking in
application code as threads of execution fight for resources, and often threads
may abort after not acquiring those locks. At the very least, performance and
throughput will be reduced.

• Exceptions in general: these should be caught and reported by the
application; however, the exceptions/sec counter can provide clues if the
figure is very high.

While this section has provided some clues as to what to begin investigating when
performance issues are identified, there is simply nothing like deep knowledge of the
application and infrastructure.

Often, developers or application architects will have a reasonable idea as to what might be
causing the performance issues. Backing this up with metrics from various performance tests
will enable quick and efficient identification of potential issues, and ultimately resolution.

Conclusion

This chapter has looked at a wide range of counter and metric data related to application
performance and performance tests. Initially, a set of basic metrics and indicators were
examined to provide quick and immediate insight into the performance of an application,
These were:

• CPU utilization

• Memory utilization

• Response time / Time to First Byte (for web applications)

Web application and database specific counters were also addressed to cover more detailed,
but also indicative, counters that will provide relatively quick insights into performance
issues on both web and database servers.

While far from comprehensive, these counters can provide the "at-a-glance" view of your
application's performance. Once a general idea of application performance is established, the
process of investigation and analyzing performance results can occur, as shown using the
excellent tools available within Visual Studio.

Using Visual Studio, it is possible to discern how an application performs over time, at various
load levels, utilizing a broad set of performance metrics.

Chapter 3: Performance and Load Test Metrics

63

The detailed look at performance counters and metrics does not cover every performance
counter and metric available, and yet shows the vast possibilities and variances that can affect
an application's performance. This huge number of variables is what can take an enormous
amount of time in the investigation and analysis of performance issues. The detailed view,
trigger points, and potential courses of action that have been discussed in this chapter should
significantly reduce that investigative time.

Now that we know what we're looking for, we can get a detailed view of performance testing
and metric collection. After that (Chapter 6 onwards), we'll look at more isolated forms of
performance testing, such as profiling.

Following from that will be practical advice on typical performance traps in applications, and
how to overcome them. Integrating this process into the development process of software
will complete the entire performance testing and analysis picture.

64

Chapter 4: Implementing Your
Test Rig

Creating the performance test rig

So far, we have discussed the "why" and the "what" of performance testing. That is, why we
do performance testing, and what metrics we can use to determine the performance of an
application. This chapter will focus on the "how." Specifically, how is a performance test
environment constructed so that we can record and perform performance tests?

Here, the architecture and construction of the performance rig will be discussed in detail,
ranging from the test controller and test agents to the ideal network configuration to
best support high volume performance testing. We will also cover performance metrics
setup, collection and automation to ensure that the metric data will be collected reliably
and automatically, with the minimum of effort. This data is the most valuable output of
performance testing as, without it, we cannot make any assertions and must instead resort
to guesswork. Finally, we will discuss ideal environments for application profiling, and the
implications that must be considered when using load balancing, i.e. whether to test first in a
load-balanced environment, or to begin performance testing in a single server scenario.

It is important to note that while profiling is an important part of determining the
performance capability of an application, it is typically executed on a single workstation –
more often than not, the developer's. Profiling will be discussed in greater detail later in this
book but, for the most part, setting up for profiling is as simple as installing the necessary
profiling tools on the workstation itself. However, the majority of this chapter will discuss the
specifics of setting up a performance test rig.

Architecture and structure of a performance test rig

Being able to run high volume, effective performance tests requires more than a single
workstation connected to a web server, simply executing multiple requests concurrently.
When dealing with high loads, one workstation exercising a server is pretty soon going to run
out of resources, whether memory, processor power, or network throughput. In addition,
how are the user loads defined, what distribution of tests are run, how do we achieve
high concurrent user loads for a sustained time, and how do we ensure that the network
connection itself does not limit the amount of load generated against the server?

Chapter 4: Implementing Your Test Rig

65

To help achieve these goals, a distributed performance test rig architecture is required. To
that end, Visual Studio Team Test enables a remote workstation to connect to a dedicated
controller machine. The controller manages test runs and coordinates the activities of one
or more agents. The agents are actually responsible for running the tests and generating load
against the desired server or servers, and they also collect data and communicate the test
results back to the controller for storage and management.

Figure 4.1: Performance test rig architecture.

Role breakdown

For now, I'll just give you a brief description of the role that each component plays in this
architecture. A detailed discussion of installing, configuration, and management of each role
within the system will follow later in this chapter.

Chapter 4: Implementing Your Test Rig

66

Workstation

The workstation machine can be any machine with Visual Studio Team Test installed on it.
Using Visual Studio Team Test, you can access a local or remote controller via the Test menu
option, as shown in Figure 4.2.

Figure 4.2: VSTS Test menu option.

Controller

The controller's role in the test rig is to coordinate the execution of the tests across multiple
test agent machines, and manage the collection of results from all the test agents.

For larger scale systems, a workstation with Visual Studio Team Test can be used to connect
to a separate machine which acts as the controller; however, the workstation can also act as
the controller itself. Setting up the controller involves a simple software install which will be
discussed later in this chapter.

Whichever machine acts as the controller, it must have access to a SQL database. By default,
SQL Express is used to store and manage test results, but a traditional SQL Server database
can also be used. SQL Express has a size limit of only 4 GB, so if you anticipate going over this
limit, it is obviously best to use a full-sized SQL Server.

The physical specifications of the controller machine should include a minimum of a 1.4 GHz
processor and 1 GB of memory. A 2 GHz or greater processor and 2 GB or greater of memory
is relatively standard for today's workstations and is a recommended specification.

Chapter 4: Implementing Your Test Rig

67

Test agent

Each test agent machine is responsible for executing the performance tests against the
server, collecting the metric data for those tests, and then reporting those results back to the
controller for storage and management.

When tests are scheduled for execution, the controller compiles them into assemblies and
distributes these to the agents for execution. The controller manages the executing tests,
ensuring that the appropriate number of concurrent users are simulated, as well as other
factors and distribution details. Each agent, like the controller, requires a simple software
installation, and the physical specifications of an agent machine should include a minimum
of a 2 GHz processor and 1 GB of memory. Much like the controller, a 2 GHz or greater
processor and 2 GB or greater of memory is relatively standard for today's workstations and
is a recommended specification, although it's worth bearing in mind that memory is used
heavily in agent machines, so the more the better.

Profiling system

As already mentioned, profiling an application is also an important part of assessing an
application's performance and involves investigating said application at a finer-grained
level than the broad approach of load testing Because of this, profiling is the logical next
step to load testing. However, it can be an intrusive operation, significantly affecting
the performance of the application while it is being profiled. It can also, amongst other
things, restart Internet Information Services in order to attach to profiling events to gain
measurement data at a very low level.

Profiling can also be very memory- and processor-intensive, so the more memory and the
better the processor, the better the profiling experience. Specific minimum requirements
will depend on the profiling tool being used. For these various reasons, profiling is typically
performed on a developer's workstation, as these are generally high-specification machines.

Setting up and configuration

Port setup and firewall considerations

In order to correctly install the controller and agent software on machines, certain criteria
should be observed. It is important to remember that the controller and the agent are not
normal user machines, and so should not contain all the security restrictions that regular

Chapter 4: Implementing Your Test Rig

68

organizational workstations may have. Imposing such restrictions typically restricts the
type of operations that can be performed, as well as such things as what ports are open for
communication. This can seriously impact the ability of the controller and agent software to
install or operate correctly.

This is not to say that the coexistence of the test rig and any security restrictions cannot
be achieved, but rather that it simply requires more work. That being said, sometimes
diagnosing errors in this coexisting system is not trivial and impedes the ability to even start
running tests, let alone reliably execute them and receive results.

For these reasons, I recommend disabling firewall software on the controller and agent
machines to ease setup and operational issues. Having no firewall restrictions means no
possible port blockages at all, but it does also mean that these machines have no protection.
This may not be an issue if they are on a separate network that is well-isolated from any
public networks, public access or other potential security risks, but this is not always possible.
Should you decide to keep a firewall active on these machines, and selectively enable the
ports required to allow communication between workstations, controllers and agents, the
following list shows the default ports and protocols that need to be allowed to ensure correct
setup and operation.

• Workstation used to connect to Controller

• File and printer sharing protocol

• Port: 6901 (for test coordination)

• Controller

• Port: 6901 (for test result collection)

• Test Agent

• Port: 6910 (for test distribution)

• Ports: 137, 138, 139 (for performance counter collection).

Note

In case you're wondering, these details come from digging deep into blog posts by
Ed Glass (a VSTS team member who has great, detailed content) and then verifying
them experimentally.

Chapter 4: Implementing Your Test Rig

69

Network segmentation/isolation

To get meaningful results from performance tests, it is important to make the metrics that
you record as clear and unambiguous as possible. In order to ensure metrics are valid and
unskewed, all unknown quantities and variables need to be removed from the tests.

It is often hard to determine what traffic is traversing a network, and this can affect test
results. While a network may seem responsive enough to perform load testing on, when
someone decides to download gigabytes-worth of data across this network, congestion can
occur. Because of this, an important factor when setting up a performance rig is ensuring a
clean and direct path between the agents (which execute the tests) and the server (or servers)
which are the target of the performance tests.

In order to conserve hardware costs, it's often tempting to provide a single machine with a lot
of memory as a controller-cum-agent machine, and to connect to the server (or servers) being
tested through the regular public network, or even the corporate intranet. The problems with
this approach are outlined below.

• Network throughput of a single machine could be a limiting factor when generating
extremely large loads. The amount of users being simulated might be 1,000 (for
example), but the network interface may be saturated at the 500-user point, meaning
that a true load is not being applied to the server.

• Latency, other traffic, and multiple network hops on the network path from the agent to
the server may impede the speed at which data can be delivered to the server. Again, this
may mean that the intended simulated load is not what is actually being delivered to the
server. This may also mean that errors are generated in the tests which are not a direct
effect of the load, and thus the results are colored. Latency and general traffic are a major
impediment to the accurate application of load when you're attempting to generate it
over a public Internet.

Note

Some organizations do offer performance testing services utilizing the general Internet
and simulated browsers. They offer high load with attempts to mitigate the latency effect
of the public Internet. The effectiveness of the tests themselves can only really be measured
at a server level, and although the required load may simulated, this kind of testing is not
as easily controlled, and a sustained high load cannot be easily guaranteed as the amount
of "interference" on the Internet may vary. This does not mean that this type of testing is
ineffective, but just that repeatable and sustained testing can be difficult. Whatever your
decision, the recording and analyzing of metric data recorded during these kinds of tests
is the same, whichever method is employed.

Chapter 4: Implementing Your Test Rig

70

The ideal scenario in which to execute tests is to have a completely separate and isolated
network, as this means that there is no network interference from the corporate
infrastructure or the general Internet. The amount of traffic can be strictly controlled, and
the load simulated by the agents has a direct route to the servers, and, thus, a direct effect. In
short, no factors outside your control can affect the simulated load and skew the results.

Figure 4.3: Isolated network test rig setup.

Chapter 4: Implementing Your Test Rig

71

As shown in Figure 4.3, the workstation that exists in the corporate network has a direct
connection to the controller machine, and so the controller is the only machine that has
 a path between the intranet/Internet/other network and the test network. The best way
to achieve this by using dual network interface cards (NIC); one with a direct route to
the test network, and the other with a route to the intranet/Internet on which your
workstation exists.

However, completely isolating a segment of your organization's network solely for
performance testing is not always feasible, possible due to lack of time, money, or other
resources. Remember that the goal is ultimately just to ensure a clean path from the
test agents to your server or servers which are going to be tested, so that there can be no
unknown elements introduced in load generation. Often, all the machines to be utilized as
test agents are on the same network. Test agent machines are sometimes simply other users'
workstations! To fit with this kind of infrastructure, it is common practice to install dual
NICs in the machines that will act as test agents. Additionally, a simple network switch that
supports the required number of ports for the test agents and server(s) can be used to create a
separate network on which to run the performance tests. Figure 4.4 illustrates this:

In a dual NIC configuration as has been described, the default configuration of agents may
not work. I'll discuss this issue in detail in the Agent Setup section later in this chapter.

Test agents and controllers can be installed on almost any machine. Some of those machines
can be fellow co-workers' workstations, rarely-used machines acting as file servers, etc.,
although these will most probably not be on an isolated network. Generating extremely
high loads can require many agents, so any spare machines may be enlisted to assist. If this is
your situation, then you simply need to work with what you have. The effects of a mixed test
environment can be mitigated by recording results directly on the server and ensuring that
the requisite load is being applied, or at least measuring the difference between simulated
load at the agents and actual load at the server. I touched upon this towards the end of
Chapter 3 – it simply requires a little more analysis work.

Chapter 4: Implementing Your Test Rig

72

Figure 4.4: Typical isolated test segment, dual NIC setup for agents.

Chapter 4: Implementing Your Test Rig

73

Controller setup

Both the controller and agent software are relatively easy to set up. It is important to install
the controller software first, as the load agent software needs to be able to connect to the
controller as part of the installation process.

Note

 A trial version of the controller and load agent can be downloaded from Microsoft's
website. The trial version can be used for 90 days from the installation date or 25 test
executions for the Load Agent.

Starting the controller installation process is a matter of executing the setup.exe application
located on the install media. As is normal for Microsoft installations, you'll need to click Next
through a series of screens, including a User Experience Improvement Program opt-in, the
license agreement and specifying the destination folder for installation.

Figure 4.5: Controller installation – controller service user.

http://www.microsoft.com/downloads/details.aspx?FamilyID=572e1e71-ae6b-4f92-960d-544cabe62162&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=572e1e71-ae6b-4f92-960d-544cabe62162&displaylang=en

Chapter 4: Implementing Your Test Rig

74

The final step prior to actually beginning the installation requires the specification of a user
account which will be used to run the controller service. This can be a local user account
or a domain account. It is best to ensure that this account does not have regular password
expiration periods. While this is not best practice with respect to security, and most domain
accounts would have this enabled, it does prevent having to re-enter the user's credentials
each time the password expires.

This user must also have sufficient access privileges to be able to read performance counters
from the computers under test – typically the server(s) being load tested – as that is the entire
purpose of the controller.

A controller can also be running in workgroup mode, meaning that a non-domain-user is
used for the controller and subsequent agents. If running in workgroup mode, there must
be a local computer account on the controller which also exists on all the agents. When
the agents are set up, this common user is specified as the agent service account, and so
can connect to the controller successfully. However, for the security negotiation to occur
successfully, the accounts must have the same username and password.

Once you've moved past all these dialogs, the actual installation should only take five
to ten minutes.

Further notes on controller installation

In most typical client engagements I have been involved in, the workstation and the
controller have been the same machine. This is generally due to the cost of an extra
controller-specific machine and, most importantly, the extra effort it takes to connect to
the controller from a workstation machine. The tangle of issues surrounding user access
privileges, or matching up users on the controller and agents, means that making the
controller and workstation the same machine is a common scenario. This setup is made more
attractive by the fact that the controller only coordinates tests and does not need excessive
resources to run.

Once the controller setup is complete, there are three new groups created on the controller
machine. These are:

• TeamTestControllerAdmins

• TeamTestControllerUsers

• TeamTestAgentService.

Chapter 4: Implementing Your Test Rig

75

If a workstation machine needs to connect to the controller, the user context being used
must be a member of the TeamTestControllerUsers group.

Note

Any workstation, controller or agents that are participating in the test rig must all be on
the same version of Visual Studio, right down to the Service Packs.

After the controller is installed, access to it is limited to members of the
TeamTestControllerUsers and TeamTestControllerAdmins groups that were created during
setup, and to the Administrators group. Add appropriate users and/or groups to one of these
groups to allow them to access the controller. Members of the TeamTestControllerAdmins
group or the Administrators group can administer the controller by clicking the Test menu
in Visual Studio, and then choosing Administer Test Controller. Bear in mind that members
of the TeamTestControllerAdmins group must also be power users or administrators on the
controller computer.

In order for agents to connect to the controller, they must be a member of the
TeamTestControllerUsers group at the very least. Normally the user is added to this group
during the agent installation process. However, there may be instances where you change
users on the agent manually, thus you need to ensure this alternate user is also in the
appropriate group on the controller.

Creating the load test database

When the controller is installed, a database is created to hold all the performance metrics
and recorded results. Wherever this database is located, be it on another database server,
or on some other instance other than the default, it must have the correct schema. To that
end, when the controller software is installed, a SQL script file is also installed which can
recreate the load test database with the correct schema and everything required to hold
the performance test results. By default, this script is located at: C:\Program Files (x86)\
Microsoft Visual Studio 9.0 Team Test Load Agent\LoadTest\loadtestresultsrepository.sql

By executing this file against a database, typically using a tool such as SQL Management
Studio, a new database called LoadTest is created and is ready to be used as the repository for
performance test results.

Chapter 4: Implementing Your Test Rig

76

Guest policy on Windows XP in workgroup mode

Finally, if the controller software has been installed on a Windows XP machine in a
workgroup environment, then Windows XP will have the ForceGuest policy setting enabled
by default. This means that any time a remote user wishes to connect to this machine, it
will only be allowed to connect as the Guest user. So, no matter which user the agent is
configured to use when connecting to this controller, it will be forced to connect as the Guest
user, which has very minimal security privileges.

The fix for this is not entirely straightforward, but not very difficult either. To disable the
ForceGuest policy in Windows XP:

• Run the Registry Editor (open the Run dialog, type RegEdit and press Enter).

• Navigate to the key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
Lsa.

• Double-click on the ForceGuest item and change the value in the presented dialog from
1 to 0.

• Click OK, and you're done.

Note

This process should be performed on the controller as well as all agents, otherwise you
may find your agents listed in the controller agent list, but they remain disconnected or
offline. Any error mentioning that the server rejected the client's credentials is indicative
of this problem.

Agent setup

Starting the agent installation process is also just a matter of executing the setup.exe
application located on the install media. You will be presented with the same screen as shown
in the controller setup, albeit with some different text. As with the controller setup, you will
just need to move through the various screens until you reach the point at which you need to
specify a user account under which to run the Test Agent Service process.

This is where it is important to have defined an appropriate test agent user on the controller
machine so that, when the installation process executes, the test agent machine can connect
successfully with the controller.

Chapter 4: Implementing Your Test Rig

77

The next step in the installation is different from the controller setup, in that the user
is asked which controller to connect to. Completing this process adds the user to the
appropriate groups on the controller (if required) as well as setting up the user on the local
agent machine.

Once the controller is specified, the installation process proceeds in exactly the same fashion
as the controller setup.

Workstation setup

The workstation that is used to connect to the controller can, in fact, be the controller
machine itself. Having separate machines for the controller and the connecting workstation
is preferable so that when the controller is busy coordinating tests and collecting data, the
responsiveness and performance of the workstation remains unaffected.

Whether the controller is on the same machine or a separate machine, to connect to it from
within Visual Studio, simply select the Test menu option, and then select the + menu option.

This will present the dialog in Figure 4.6.

Figure 4.6: Administer Test Controller dialog.

Chapter 4: Implementing Your Test Rig

78

As you can see in Figure 4.6, the default controller is listed as <local – No controller>. The
local machine is the default controller, but the controller software has not been installed.
Entering the correct machine name or IP address in this text field will connect to the
controller and list any test agents registered with that controller. The dialog should then
update to list the number of agents installed and connected to the controller, and their
current status.

Figure 4.7: Administer Test Controller showing multiple agents connected.

Note that if you have installed the controller software on your workstation, then invoking the
dialog shown in Figure 4.7 will automatically connect to the local controller and display any
agents already connected.

Troubleshooting the controller and agents

Getting all the components in a test rig to talk to each other nicely is often not an easy task,
and things will sometimes not work for seemingly non-existent reasons.

When both the controller and agents are installed, there are certain settings within each
configuration that can help in diagnosing issues. Since the issues can be numerous and very
environment-specific it would be impossible to list them all; However, I can provide some
knowledge on the techniques to find out what the issues are.

Both the controller and agents utilize settings from their respective configuration files, which
reside in the same directory as the controller and load agent respectively.

Chapter 4: Implementing Your Test Rig

79

By default, the Load Test Agent configuration file is located in a directory such as:

For VSTS 2005: <Program Files>\Microsoft Visual Studio 2005 Team Test Load Agent\
LoadTest\QTAgentService.exe.config

For VSTS 2008: <Program Files>\Microsoft Visual Studio 9.0 Team Test Load Agent\
LoadTest\QTAgentService.exe.config

The QTAgentService.exe.config file contains the configuration of the agent.

Similarly, for the controller, the default location of the configuration file is:

For VSTS 2005: <Program Files>\Microsoft Visual Studio 2005 Team Test Load Agent\
LoadTest\QTController.exe.config

For VSTS 2008: <Program Files>\Microsoft Visual Studio 9.0 Team Test Load Agent\
LoadTest\QTController.exe.config

And the QTController.exe.config file contains the configuration of the controller.

The controller and agent configuration files are almost identical in their settings. Both
contain appSettings and system.diagnostics sections that define the specific settings,
and on default installation look similar to this:

 <system.diagnostics>
 <switches>
 <!-- You must use integral values for "value".
 Use 0 for off, 1 for error, 2 for warn, 3 for info,
and 4 for verbose. -->
 <add name="EqtTraceLevel" value="3" />
 </switches>
 </system.diagnostics> <appSettings>
 <add key="LogSizeLimitInMegs" value="20"/>
 <add key="AgentConnectionTimeoutInSeconds" value="120"/>
 <add key="AgentSyncTimeoutInSeconds" value="300"/>
 <add key="ControllerServicePort" value="6901"/>
 <add key="ControllerUsersGroup" value="TeamTestControllerUse
rs"/>
 <add key="ControllerAdminsGroup" value="TeamTestControllerAdm
ins"/>
 <add key="CreateTraceListener" value="no"/>
 </appSettings>

In order to enable trace logging for either the controller or the agent, change the following
settings in the configuration file:

Chapter 4: Implementing Your Test Rig

80

• In the appSettings section, set the CreateTraceListener value to yes.

• In the system.diagnostics section, set the EqtTraceLevel to 4.

The respective services will need to be restarted before any changes will take effect. A log
file will then be produced in the same directory as the configuration file, and will be named
VSTTAgent.log for the test agent and VSTTController.log for the controller.

With logging enabled, exhaustive detail will be written to the log file, providing very fine-
grained insight into what is happening and why a problem may be occurring. By default, the
LogSizeLimitInMegs setting limits the log file size to 20 megabytes, which is sufficient for
most purposes. If this limit is reached, a new log file will created and named in numerical
sequence. Setting the LogSizeLimitInMegs value to 0 allows unbounded log file size, limited
only by the available disk space.

Note

A tool called DebugView can be used to show logged data without actually writing to
a file, or having to monitor and refresh the log file's content. The tool is a free download
from http://tinyurl.com/MSDebugView. By simply setting the EqtTraceLevel to 4
in the appSettings section in the configuration file, log information will be captured by
DebugView and displayed immediately in a separate window.

As already discussed earlier, often either controllers or test agents will be set up in a dual NIC
configuration (dual Network Interface cards). In this instance, the controller/agent needs to
know which network card to use to communicate with the rest of the test rig. In order to
specify this, you can add the BindTo configuration value to the configuration file, and specify
the IP address of the network card to use. For example, adding the following line to the
appSettings section of a configuration file will tell the controller/agent to communicate on
the network interface card with the IP address, 192.168.1.10:

<add key="BindTo" value="192.168.1.10" />

If this value is omitted, then this could quickly result in problems with the agent connecting
to the controller or vice versa.

When dealing with issues specific to the test agents, you can also use the provided
command-line tool to configure various aspects of the agents. The command-line tool is
named AgentConfigUtil.exe, and exists in the same directory as the agent executable and
configuration file mentioned earlier. To use this tool, open a command prompt and navigate
to the load agent installation directory (by default this is C:\Program Files\Microsoft Visual
Studio 9.0 Team Test Load Agent\LoadTest) Type AgentConfigUtil and press Enter, and
you will see a display of available commands.

http://tinyurl.com/MSDebugView

Chapter 4: Implementing Your Test Rig

81

C:\Program Files\Microsoft Visual Studio 9.0 Team Test Load
Agent\LoadTest>AgentConfigUtil.exe

Microsoft (R) Visual Studio Test Rig Command Line Tool Version
9.0.21022.8
Copyright (c) Microsoft Corporation. All rights reserved.

Usage: AgentConfigUtil [options]
Description: Used to perform test rig

configuration operations.
Options:
/help Displays this usage

message
 (short form: /? or /h).

/nologo Do not display the startup
banner and copyright
message.

/nolog Do not create setup log.

/unregister Removes the agent's
registration from the
specified controller.

/controller:controllername[:port] Displays the test
controller name and port
number [optional].

/controllerusername:[domain\]username Domain and user name
for connecting to the
controller.

/controlleruserpassword:password Password for connecting to
the controller.

/agentserviceusername:[domain\]username Domain and user name
for the AgentServiceUser
account.

/agentserviceuserpassword:password Password for the
AgentServiceUser account.

Chapter 4: Implementing Your Test Rig

82

For example, using this tool, you can instruct the agent to re-register with the controller,
specifying the controller machine name, port number, username and password to use.
Alternatively, you can unregister an agent from the controller. For example, to remove an
agent from a controller called TestController, you would enter this command:

AgentConfigUtil /controller:TestController /unregister

Alternatively, to add an agent to a controller named TestController using port 6901, the
command would be:

AgentConfigUtil /controller:TestController:6901

Setting up performance counter
collection

When Visual Studio Team Test executes a load test, there are a number of metrics that
are collected by default from test agents and the server(s) being tested. These are usually
sufficient for most general purposes. What counters to record and their respective meaning
was covered in Chapter 3. For now, we know that we can collect performance data from the
agents and servers, and have those metrics recorded within the database that the controller is
configured to use as a repository.

However, this only provides one location where data can be recorded. It is also important to
record performance data directly onto the servers being tested where possible.

Before we discuss how to do this, let's discuss why we should. There are a few important
reasons why you would also want to record performance metrics on each server being tested,
even though this may seem somewhat redundant. The reasons include those below.

• In a few rare circumstances, performance data is not recorded to the controller's
data store, possibly because of system problems on the controller, disk space, etc.
While in some circumstances, the data is recoverable (this will be shown later), often
it is not. Not being able to get the recorded data is the same as not running the test at
all. As previously mentioned, performance testing is a relatively expensive operation,
and having data recorded on each server ensures you have an alternate copy of this
pricy data.

• If there are multiple servers being used in the load test, you can determine if certain
servers are experiencing more stress than others. This could be for a variety of reasons,
including load balancing configuration, and system specification. Either way, ensuring
that load is evenly distributed is important. If one server has to handle substantially
more load than others, then the ability of the entire system to handle the load will be
determined by this particular server. Additionally, being able to measure the

Chapter 4: Implementing Your Test Rig

83

performance on individual servers means that tuning the configuration of a load
balancer and observing the effects becomes a lot easier.

• Occasionally, a test agent may not send performance data to the controller for
recording. When a test agent is under stress (due to lack of memory or processor
capacity for example), its data may not be able to be collected by the controller. This
may appear as gaps in the visual graph that Visual Studio presents for visualizing the
performance data. To be able to verify that load was still being generated during this
period, or to validate other metrics not apparent in the Visual Studio visualization, the
secondary performance data recorded on the servers can be used.

• Many individuals or teams may wish to analyze the performance data. This data may
need to be sent to external parties for analysis. Other interested parties may not have
access to the visualizations and analytical facilities provided by Visual Studio Team Test.
Recording data at the server level, using commonly available tools ensures that
performance data can be viewed and analyzed by anyone who requires it.

It is not strictly necessary to record performance data at the server in addition to using Visual
Studio Team Test, but the cost of doing so is quite low. Given that performance testing is an
expensive process, it is a worthwhile investment to be able to record the performance metrics
on the server(s) as an alternate location for data storage.

One important component that needs to be looked at more closely in load testing is the
database. Using Perfmon to record performance data on the database is extremely important,
as the database plays such a crucial role in the majority of applications today. Having a set
of recorded performance data on the database machine itself will allow individuals such as
dedicated database administrators to examine said data and provide valuable insights into
the performance of the database. Even if no other data is recorded via Perfmon on the web or
application servers, then it is recommended that the database have Perfmon recording SQL-
specific performance metrics (along with standard counters such as CPU utilization).

You can set up recording performance metrics on the server(s) themselves using a tool called
Performance Monitor which is available on all versions of Windows from XP to Server 2008.
Performance Monitor will allow you to specify and record WMI counters, either to a file or to
the database.

Note

Visual Studio uses a mechanism called WMI – Windows Management Instrumentation
Counters to query and collect data.

Chapter 4: Implementing Your Test Rig

84

To use this tool, select the Start menu, go to Administrative Tools, and select Performance
Monitor. Alternatively, open the Run dialog and type PerfMon. The user interface looks
a little different on Vista / Windows 7 / Server 2008 from how it does on older operating
systems, but the functionality is very similar. You will be presented with a screen similar to
that shown in Figure 4.8.

Figure 4.8: Performance Monitor on Vista / Windows 7 / Server 2008.

This initial view presents a real-time view of the currently selected performance metrics.
By default, these metrics are % of processor time, available memory and average disk
queue length. There are a huge number of performance counters that are available to
monitor, and many products add extra counters (specific to their respective technology) to
the list when they are installed. SQL Server or Windows Communication Foundation are
examples of such products.

Adding counters to the monitoring instance is a simple process. Clicking the Add icon
will display a dialog of counter categories and their associated counters that can be added
from there.

Chapter 4: Implementing Your Test Rig

85

Figure 4.9: Add Counters dialog on Vista / Windows 7 / Server 2008.

Selecting a counter category will show the individual counters that can be selected and added.
Multiple individual counters can be selected and added and, if you like, an entire category can
be selected and added, with all the counters in that category added to the display.

You can obtain a brief description about each counter before adding the counter by selecting
the Show Description option (Explain in Windows XP/2000/2003). The dialog should look
similar to the one in Figure 4.10.

Chapter 4: Implementing Your Test Rig

86

Figure 4.10: Add Counter dialog – "Show Description" check box is selected in the lower
left of the window.

The initial display of the performance monitor shows a real-time view of the system with
the counters being measured shown in the display. Data can be recorded to either disk or a
database, and recorded performance data can be reloaded, viewed, and analyzed using this
tool. This process, in addition to the range of counters and their meaning, was detailed in
Chapter 3.

Chapter 4: Implementing Your Test Rig

87

Conclusion

In this chapter, we looked at how to set up a performance testing rig. It is essential that this
fundamental piece of infrastructure be set up correctly, otherwise we risk invalidating test
results, and wasting considerable time and money in the process.

With a fully functional test rig, we are now able to record, execute, and analyze our
performance tests. The test rig, once set up, can form an important facet of an organization's
overall infrastructure. Setting up the rig is typically a one-time process that can be utilized for
multiple projects, and which provides ongoing benefits.

The next chapter will focus on the recording, creation and automation of performance tests,
as well as defining the load tests themselves. Later chapters will deal with the execution and
analysis of the tests.

Now that we have built our new toy, it's time to play with it.

88

Chapter 5: Creating Performance
Tests

Having a performance test rig is not very useful if you don't have any tests to execute with
it. Creating tests is a relatively easy task, but it is important to have the functional path
breakdown that was mentioned in Chapter 2. This way, there is a defined path to execute
when recording the tests.

Basic solution structure

To start with, we need to create a separate project to house the performance tests. This can be
added to the same solution that houses the main project and source code of your application,
but it is best to place the performance test project in a project outside the main source code
branch. This will prevent the main source code tree from being affected by the extra build
time it takes to compile the performance test project, and will also keep the test outside
the view of the main development team. It is a completely independent project that has no
dependencies on the main project or solution being tested.

With this in mind, create a new Test project in Visual Studio by opening the File menu,
selecting the New Project menu option, then the Test project type, then selecting Test
Project in the project template window. Name the project PerfTests, select a directory
location and click OK.

Chapter 5: Creating Performance Tests

89

Figure 5.1: Creating a new performance test project.

Once you have performed this step, you should end up with a solution looking similar to
Figure 5.2.

Figure 5.2: New performance test project – Solution Explorer view.

Chapter 5: Creating Performance Tests

90

Note the presence of the AuthoringTests.txt and ManualTest1.mht files. The former
provides general information around testing, and the latter provides a template for manual
tests to be written. For the purposes of performance testing, these files can be safely deleted
from the project. We can also remove the UnitTest1.cs file, as it does not apply to load tests.

In the solution items folder, the LocalTestRun.testrunconfig file holds general settings
for the test run, such as which controller to use, test run naming schemes, deployment
requirements and so on. These items can be edited by opening the Test menu, selecting the
Edit Test Run Configurations option, and then selecting the test run configuration file.

There is currently only one configuration, but you can have several. Selecting this option
displays a configuration dialog.

Figure 5.3: Test run configuration dialog.

For basic tests, these options can be left at defaults; but I'll cover these in more detail a
little later.

Chapter 5: Creating Performance Tests

91

Recording the web tests

The functional test breakdown and how it should be structured were discussed in previous
chapters. When recording tests, the functional breakdown is used to determine what tests to
record and what functions to exercise when recording them.

In order to be able to record a test, the machine used to do the recording must clearly be
able to access the web application being tested. When a test is recorded, an instance of
Internet Explorer is automatically launched by Visual Studio. While browsing using the newly
launched instance of Internet Explorer, all web activity is recorded. This includes all browsing
activity, not just those requests targeted at your application. This is why it is important to
have a clear functional path, and only exercise singular aspects of the application at any
given time. This way, the individual tests can be executed, recorded, and later attributed to
the appropriate aspects of the application. When the tests are replayed, they are applied to
the overall run according to what percentage of activity is set up within the test run (this
will be detailed in later in this chapter. If you record too much activity in a single test, it
becomes very hard to accurately allocate functional activity within the run. It then becomes
very difficult to simulate the desired user behavior (and therefore the expected load) when
spreading tests across a load test run.

To start recording a test, right-click the test project and select either the Add > New Test or
the Test > New Test menu option (see Figure 5.4).

Chapter 5: Creating Performance Tests

92

Figure 5.4: Add New Test option.

Bear in mind that Visual Studio Team Test is the minimum requirement installation
in order for the Web Test option to be available. Once the New Test option is selected, a
dialog allowing the user to select what type of test to add is presented. Selecting Web
Test (Figure 5.5) will launch an instance of Internet Explorer and invite the user to begin
navigating the site.

Chapter 5: Creating Performance Tests

93

Figure 5.5: Selecting a Web Test dialog.

Once the test name is entered and you've clicked OK, the Internet Explorer instance is
opened, and all actions are recorded as part of the web test. It is important to note that, if a
particular home page is set, then accessing this home page will also be recorded, even if it has
nothing to do with testing the application itself. It is best to set the Internet Explorer home
page to a blank page so that no requests are recorded that do not pertain to the application
being tested.

Once Internet Explorer is launched, start navigating the site in line with the functional area
being tested. A web test of my own sample application can be seen in Figure 5.6.

Chapter 5: Creating Performance Tests

94

Figure 5.6: Recording a web test.

On the left side of the Internet Explorer window is a pane showing the currently recorded
web test actions. As you navigate the site, each request or post will be listed in this pane.

Continue using the site according to the functional aspect being exercised and, once you
have completed recording the necessary series of actions, close down the instance of Internet
Explorer. Visual Studio will add the recorded get and post actions as part of the web test as
shown in Figure 5.7.

Note

Be sure to name your tests appropriately. Good organization will make it easy to set up
the appropriate weighting for the tests once recorded. Having tests named Web test1,
Web test2, etc., means you'll need to actually go into the test, and perhaps run it, to find
out what aspect of functionality the test exercises. Instead, name your tests verbosely,
such as LoginAndViewAllProducts, or LoginViewCartThenLogout.

Chapter 5: Creating Performance Tests

95

Figure 5.7: Recorded web test.

The web test actions are listed sequentially according to the URL accessed for that particular
request. If a request has other elements to it, such as query string parameters, post
parameters, or hidden fields, then these are associated with that request, and can be seen
by expanding the request tree view. Clicking or selecting on the requests will display their
properties in Visual Studio's properties windows.

Chapter 5: Creating Performance Tests

96

Figure 5.8: Expanded web test request.

Figure 5.8 shows various form post parameters such as an ASP.NET viewstate and
other parameter values forming part of the POST payload of the request, all of which
are easily visible

Chapter 5: Creating Performance Tests

97

Figure 5.9: Web Test Request properties.

Figure 5.9 shows some common properties of all web test requests, together with values
specific to this example request. Each request can have these properties modified to achieve
different effects within the overall test, and potentially pass or fail a particular test.

• Cache-Control and Encoding are relatively self-explanatory. Cache-Control determines
whether the request can be cached, and Encoding refers to the character encoding used
for the request itself.

• Method and Version refer to the specific HTTP properties of the request.

On the other hand, the properties that affect the pass or fail status of a single request are:

• Expected HTTP Status Code
Determines what the expected status code of a result of issuing this request should be.
This is a standard HTTP status code, such as 404 for "Not Found." Leaving this value as 0
means default browsing behavior will be used which, in turn, means that any 200 or 300
level code indicates a successful request, but any 400 or 500 level code indicates a failure.

Chapter 5: Creating Performance Tests

98

• Expected Response URL
Indicates what the response or returned URL is after issuing this request. A blank value
will not expect any particular URL but, if one is entered and a different URL is returned,
this indicates a test failure.

• Response Time Goal
Indicates the maximum time (in seconds) that this request should take to execute. If the
request exceeds this time, then the test is deemed failed. No value for this indicates no
expected or maximum response time.

• Timeout (seconds)
Indicates the maximum amount of time (in seconds) that this request can take
to execute.

Note

Test failures do not stop performance tests from running, but simply add to the metric or
total data for failed tests.

The Parse Dependent Requests property is interesting, because it determines whether any
further requests which would be typically required to satisfy this request in a real world
scenario are made as a result of issuing the web test request. For example, stylesheets, images
and script files are often requested by a browser after an initial request to the resource is
made and the HTML has been parsed. Web Tests will simulate this behavior by default as
these are considered dependent requests.

However, in some cases you may want to disable the parsing of dependent requests to enable
you to test only the processing efficiency of the web application, and not rely on possible
latent connections for resources not directly affecting this performance. For example, if a
page makes requests to external parties, such as Google, to request JavaScript files, or to a
marketing company providing analytics for the site, then you may want to remove these
requests from performance testing and only concentrate on your application. Obviously,
these requests still affect the overall perceived performance of the request itself, but you may
have little control over them, and not want to skew the measurements of your application's
performance with these figures. If you're feeling really fine-grained, it may useful to isolate
each aspect of the request to further analyze what are the limiting factors.

Record Results indicates whether results for this request are recorded in the database. If this
request is of no interest to you, then perhaps you may not wish to record any data about it,
thus minimizing noise within the results.

Overall, the default settings for web test requests attempt to mimic the default browser
behavior. Initially at least, it is best to leave these settings as is, though during the course of

Chapter 5: Creating Performance Tests

99

performance test analysis, further investigation may require experimentation with them.
This will be discussed later in the book when we look at performance load test metrics and
iterative testing approaches.

Test replay

So now we have some tests. We can easily replay these by double-clicking them in the
solution explorer to display them in the main window, and then selecting a Run option from
the Run menu. The Run/Play menu is located in the top left of the main display window.

Figure 5.10: Run/Play test menu.

The menu shown in Figure 5.10, shows both the Run and Debug execution modes for
replaying a test. Debug mode provides the ability to step through each request, examining
the value of variables just as you would a normal .NET application. The options with
(Pause Before Starting) against them will prepare to run the test, but will pause just before
beginning execution, allowing you to step through each request using the Step menu option
located to the right of the Run button. Also to the right, in order, are the Pause and Stop
test options.

Chapter 5: Creating Performance Tests

100

Once a test has been run, the status will be displayed in the Test Results window, as well as in
the top left window of the test results main window.

Figure 5.11: Successful test run.

Whether the test has run successfully or not, you can now examine each request in detail.
Selecting a request will display its particular results in the Web Browser tab shown just below
the test results in Figure 5.11. In addition, you can expand the main request to show any
dependent requests, and selecting a dependent request also shows its results.

Chapter 5: Creating Performance Tests

101

Figure 5.12: Selecting a dependent request.

In the example in Figure 5.12, we can see that the dependent request was a CSS file. To the
right of the Web Browser tab are the Request and Response tabs.

Chapter 5: Creating Performance Tests

102

Figure 5.13: Web Test Request tab.

The Request tab (Figure 5.13) allows you to examine individual header elements in a
formatted, table-like display, or you can view the raw request by selecting the Show raw data
check box in the bottom left-hand corner.

Figure 5.14: Web Test Response tab.

The Response tab (Figure 5.14) shows the response to the selected request, with the
information segregated to display the Headers and Body responses in separate fields.

Chapter 5: Creating Performance Tests

103

Figure 5.15: Web Test Context tab.

The Context tab shows any contextual information related to the current request. This
typically involves hidden fields in the request, test agent id, environment variables such as test
directory, deployment directory, and other elements depending on the request itself.

The Details tab lists any validation or extraction rules that have been applied to the test.
Extraction rules are custom actions designed to extract data from a test response and assign it
to a variable. Many of these are added by default to requests by the Visual Studio test engine
when the test is recorded.

Figure 5.16: Web Test Validation rule.

Chapter 5: Creating Performance Tests

104

Validation rules will cause a test to pass or fail based on an expected value within the test. By
default, a Response URL validation rule is added to the last request of each test as shown in
Figure 5.16.

Selecting the last request and then selecting the Context tab shows the result of the
validation rule.

When a test is recorded, the explicit URL is recorded along with it. Sometimes, you may be
recording the test against a development server, but wish to replay the test against a different
server, perhaps a UAT (User Acceptance Test) server. It would be very time consuming to have
to alter the URL of each request to reflect this. It would be nice to have a way of assigning a
variable to the URL and have Visual Studio use this when replaying tests.

Fortunately, there is direct support for this via the Parameterize Web Servers option, which
is found in the web test toolbar.

Figure 5.17: Parameterize Web Servers option.

Clicking this button will display a dialog allowing you to specify the variable name assigned to
the web server address. By default, this is WebServer1.

Clicking the Change button will allow you to alter the name of the variable. If there were
more than one server detected as part of the whole test, for example, if an HTTPS address
were also used, and any other addresses as part of the test, they would be listed here.

Enter a name for the server you are targeting. This will then replace all the explicit URLs with
a dynamic variable name according to what you have entered.

Once the explicit server address has been substituted with a context variable, changing
the server address for all requests is then just a matter of altering the value of that context
variable. Clicking on the same Parameterize Web Servers button will allow you to specify a
different server.

Chapter 5: Creating Performance Tests

105

Figure 5.18: Assigning a web server a variable name in a web test.

Once you have assigned a name to the server address, all explicit references to that address
will be replaced by a context variable with the name you have specified. The test will be
altered accordingly.

Figure 5.19: Web Test after server parameterization.

Chapter 5: Creating Performance Tests

106

Data Binding Web Tests

Now that we have recorded our web tests, we would like to make them resilient enough to
be played over and over again. In addition, we would like to introduce a random factor that
ensures a different element is introduced for each web tests, just like in real life.

A good example of this is a user login. We don't want one single user acting as the basis for all
of the web tests. Ideally, a wide range of users is required to better simulate the expected user
activity on a real site.

In order to do this, we first need a data source to be used as the source for our users within
the test. Visual Studio supports a database, CSV file, or XML file as the basis for a data source.
It expects a simplistic structure for the data source and simply extracts the data within either
the database table, CSV file, or XML file as it is presented. This means that all columns in the
table and CSV file are used, and all elements within the XML file are used.

When creating the data source, it is best to keep things relatively simple. For our username
and password data source, we will utilize a CSV file, which can be created with Microsoft
Excel or any text editor.

Creating a data source for data binding

Let's start by creating a simple CSV file to provide a number of usernames and passwords to
log in to our site. In Visual Studio, open the File menu, click on the New File menu option,
select Text File from the dialog displayed, and select Open.

Enter the column headings Username and Password, separated by a comma. Next, enter a
separate username and password, separated by a comma, on each line of the file. The file
should look similar to this:

Username,Password

admin,password

test,password

viewer,password

Save this file within the same directory as your performance test project.

Chapter 5: Creating Performance Tests

107

Note

To better organize your performance test project, it is good practice to create a data
sources folder if using CSV or XML files for your data sources, and place the files in that
directory. This is entirely down to personal preference, though, and you can organize the
data source files as you see fit. Having them in a separate folder reduces clutter in the
general project and keeps tests, code, and data source files separate.

You will probably want the file to be included as part of your test project so that it is included
with source control and forms a component of the project as a whole. This is not strictly
necessary, but makes sense and allows better organization of your test projects.

In your test project, ensure the web test that you would like to add a data source to is opened
in the main window, and click the Add Data Source toolbox button.

Figure 5.20: Add Data Source button.

A dialog is presented where you can specify the data source type and name. For our
example, we will select the CSV file option and name the data source, appropriately enough,
UsernamesDataSource.

Next, we choose the file that will actually be used as our data source. Either by browsing or by
specifying the file path, select the data-source file you have created.

Visual Studio will parse the file, determine what data is present, and display it in the dialog
window. Click the Finish button to add the data source to your web test. You should now see
a Data Sources node within your web test, listing the data source you have just added, as in
Figure 5.21.

Chapter 5: Creating Performance Tests

108

Figure 5.21: Web test with a data source added.

This data source can now be utilized within the test itself. In this case, we will use the
usernames and passwords contained in the file to feed into the web test. First, expand the test
action that requests the login.aspx page.

Chapter 5: Creating Performance Tests

109

Figure 5.22: Expanded login test action showing form parameters.

This request will contain some form post parameters which the page will post to the server
to log in. Currently, the values are assigned to exactly what was typed when the web test was
recorded. Select the Username parameter and switch to the Properties window.

Figure 5.23: Properties window displayed for Username parameter.

The Value property contains the value of the form parameter. Clicking in the Value property
field will present a drop-down box, which you should expand to show the values which are
options for this parameter. One of the options is the data source that was previously added.

Chapter 5: Creating Performance Tests

110

Expand this node, and also expand the data source that we added. This should display the
fields within that data source, which we can use to data bind to the form parameter .

Figure 5.24: Select a field from the data source to bind to.

Select the appropriate field to data bind to the form parameter; in this example, the
Username field. This binding will be reflected in the Properties window as well as in the web
test action parameter.

Figure 5.25: Data bound form parameter Properties window.

Chapter 5: Creating Performance Tests

111

Now, each time this test is executed, the Username form parameter will be populated from
the data source. By default, Visual Studio will start at the beginning and sequentially iterate
through the data source each time the test is run.

Figure 5.26: Data bound form parameter request action parameter window.

If you like, this behavior can be changed by expanding the Data Sources node in the main
window, selecting the relevant data source sub-node, and viewing its properties in the
properties window. Expand the drop-down in the Access Method property, and as the
property values suggest, the method of access for a data source can be changed from the
default sequential access to random order, or ensuring that each selected value is unique and
no duplicates occur (see Figure 5.27).

Figure 5.27: Access Method selection for a data source.

Since the data source has already been defined, the same technique can be used to assign a
value to the password form element from the data source. Using a database is almost identical
to using a CSV file, except that the connection to the database is specified, instead of the path
to a CSV file.

Chapter 5: Creating Performance Tests

112

Once the connection to the database is selected, a check box dialog is presented, allowing the
user to select all the tables to be used as a data source. Any number of tables can be selected
and added to the web test.

You may prefer to manage your performance test input data by having a single, separate
database containing all the necessary tables for use as a data source. If you use this system,
or indeed any databases as a data source, you much obviously ensure that all test agents can
easily access the database during test runs.

Finally, XML data sources are something of a mix between CSVs and databases. Like a CSV
file, the XML will contain the performance data input in text format, but it can also contain
multiple tables. Take the following XML file as an example:

<?xml version="1.0" encoding="utf-8" ?>
<SampleData>
 <Users>
 <UserName>admin</UserName>
 <Password>password</Password>
 </Users>
 <Users>
 <UserName>test</UserName>
 <Password>password</Password>
 </Users>
 <Users>
 <UserName>viewer</UserName>
 <Password>password</Password>
 </Users>
 <Products>
 <Product>Widget</Product>
 <Quantity>3</Quantity>
 </Products>
 <Products>
 <Product>MegaWidget</Product>
 <Quantity>1</Quantity>
 </Products>
 <Products>
 <Product>Recombobulator</Product>
 <Quantity>16</Quantity>
 </Products>
</SampleData>

The XML file contains an arbitrary root node of <SampleData> and then subsequent child
root nodes of <Users> and <Products> respectively. These nodes represent the tabular
structure. The child elements of <Users> and <Products> represent the columns, extracted
and used as the data source field. When adding the XML data source, the user specifies the
location of the XML file and then selects a table to use from that data.

Chapter 5: Creating Performance Tests

113

Figure 5.28: Selecting an XML data source and associated table.

While an XML file is more verbose, it does provide the advantage of being able to host
multiple tables in one file.

Test deployment considerations

When a data source is used within a web test, that data source must obviously be made
available to the test agents, so that the data can be extracted and used as context items during
the test execution.

For a database, this means ensuring that the agents can connect to the database machine, and
have the appropriate access to do so.

CSV and XML files must be deployed along with the tests in the compiled assemblies,
otherwise the tests will not be able to locate the files. Indicating that the files need to be

Chapter 5: Creating Performance Tests

114

deployed as part of the test execution requires the test run configuration file to be edited. To
do this, open the Test menu, then select the Edit Test Run Configuration option, and then
the Local Test Run (localtestrun.testrunconfig) option.

Note

The name of your test run configuration may differ, or you may have multiple
configurations. Ensure you apply the changes to the configuration that you will be using.

A dialog is displayed listing all the configuration categories. Select the Deployment option
from the left pane. In the right pane, multiple files or entire directories can be added, and
these items will all be included when tests are deployed to each agent during a performance
test run.

Figure 5.29: Specifying files or directories for deployment.

Having a single directory containing all the data sources means that the directory only needs
to be defined once in the deployment configuration, and all files within that directory will
be included in the deployment. If the director has been defined in this configuration, then
any new data source files added to it later on will automatically be deployed. This is a really
convenient deployment method.

Chapter 5: Creating Performance Tests

115

Specifying singular files is certainly acceptable, as long as you ensure that each new data
source file is added to the deployment configuration for all test run configurations that
require it.

Web test code generation

Web tests provide a great deal of flexibility and a wide range of possibilities for customization
and generating effective load. However, there may be instances where the supported
customization methods are simply not enough, and more specific customization is required
to create a valid test against the target system.

It is possible to generate code from web tests, and then simply treat that code like any other
.NET development library component. You can then write whatever customization code is
required. When code is generated for a web test, you will then have a separate copy of the
web test, but in pure code. This will include any references to data sources, or other specific
customization made to the test while it was still a web test.

Note

While relatively minor changes are often added to the generated code to achieve any
desired effects, specifying data sources and modifying request properties is usually easier
in web tests. For this reason, it's best to retain the original web test from which the coded
test was generated.

To generate the code from a web test, select the Generate Code button from the web test
toolbar in the main window.

Figure 5.30: Generate Code button for a web test.

A dialog will be presented, allowing you to specify a name for the generated coded test; once
you've supplied that information, selecting OK will generate the code and add the file to the
test project.

Chapter 5: Creating Performance Tests

116

The code will contain the required attributes to define a data source (if one is used) and any
other contextual items. The GetRequestEnumerator method will be overridden and will
contain the execution path of the tests, as shown in the following code snippet:

public class MyTest_CodeGenerated : Web test
{

 public MyTest_CodeGenerated()
 {
 this.Context.Add("MainServer", "http://glavtop");
 this.PreAuthenticate = true;
 }

 public override IEnumerator<Web testRequest>
GetRequestEnumerator()
 {
 Web testRequest request1 = new Web testRequest((this.
Context["MainServer"].ToString() + "/PerfTestSampleSite/"));
 request1.ThinkTime = 8;
 request1.Timeout = 60;
 yield return request1;
 request1 = null;

 Web testRequest request2 = new Web testRequest((this.
Context["MainServer"].ToString() + "/PerfTestSampleSite/Pages/
SearchProducts.aspx"));
 request2.ThinkTime = 2;
 request2.Timeout = 60;
 yield return request2;
 request2 = null;

This effectively shows one big method that yields requests for each web test action that
was recorded. The Web testRequest object represents the request being executed,
and contains properties as you would see in the Visual Studio user interface through the
Properties window.

It quickly becomes apparent that, with a large web test recording, the generated source file
can become quite large. Performing modifications and maintenance to just one source file
can be quite time consuming, as there is a tendency to refactor and clean up the code.

In general, the best practice is to leave the generated code as untouched as possible. Any
customized actions should be factored out into separate classes and assemblies, with the
generated code simply calling into the customized methods or classes. This way, the originally
recorded web test can be retained, and code regenerated if required, with only minor changes
being needed to call into the customized code.

Chapter 5: Creating Performance Tests

117

Extensibility through plug-ins

Previously, we discussed the ability to modify the properties of a request within a web test.
An example property was the ParseDependentRequests property, which determined if items
such as style sheets and images could also be requested by the original test action. It would
obviously be time consuming and inconvenient to have to do this for each request in a web
test if you wanted to disable all dependent requests.

Extensibility is made possible in Visual Studio Team Test through plug-ins. A custom plug-in
can be created quite easily and applied to the web test. In order to create a custom plug-in,
the required steps are listed below.

• Create a new class in the test project, or in a referenced project.

• Ensure the class inherits from the Microsoft.VisualStudio.TestTools.Web
testing.Web testPlugin class.

• Override the appropriate method for your needs.

By way of example, let's create a plug-in to disable dependent requests for all requests in a
web test.

• In your test project, add a new class to the project.

• Ensure the class is public, and that it inherits from the Microsoft.VisualStudio.
TestTools.Web testing.Web testPlugin class.

The class should look similar to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.VisualStudio.TestTools.Web testing;

namespace TestProjectCrap
{
 public class TestPlugin : Web testPlugin
 {
 }
}

Chapter 5: Creating Performance Tests

118

• Override the PreRequest method.

• The PreRequestEventArgs parameter contains references to context elements such as
the current request. In the implementation of the method, have the following code:
e.Request.ParseDependentRequests = false;

• Compile the code.

The completed plug-in code should look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.VisualStudio.TestTools.Web testing;

namespace TestProjectCrap
{
 public class TestPlugin : Web testPlugin
 {
 public override void PreRequest(object sender,
PreRequestEventArgs e)
 {
 e.Request.ParseDependentRequests = false;
 base.PreRequest(sender, e);
 }
 }
}

This class is now a web test plug-in that can be added into any web test. To do this, click the
Add Web Test Plug-in button, located in the web test toolbar above the test display window.

Figure 5.31: The Add Web Test Plug-in button.

A dialog will be presented showing a selection of available plug-ins to choose from.

Select the plug-in that was just created and click OK. The plug-in will now appear in the web
test in a Web Test Plug-ins node as shown in Figure 5.32.

Chapter 5: Creating Performance Tests

119

Figure 5.32: Web test plug-in added into the web test.

Now, each time the test is run, the plug-in will also take effect and set the parsing of
dependent requests to "false" for every request. The changes are easy to see in these two
screenshots showing a web test being run: Figure 5.33 without the plug-in added, and Figure
5.34 with the plug-in added.

Figure 5.33: Web test run without the plug-in.

Chapter 5: Creating Performance Tests

120

Figure 5.34: Web test run with the plug-in.

As you can see, the web test with the plug-in added does not make any dependent requests
for CSS resources.

There are numerous other methods in the Web testPlugin class that can be overridden, and
each participates in a different part of the request life cycle. All life cycle events that can be
overridden follow the same pre- and post-condition pattern. Below is a list of those methods.

PostPage(object sender, PostPageEventArgs e)
PostRequest(object sender, PostRequestEventArgs e)
PostTransaction(object sender, PostTransactionEventArgs e)
PostWeb test(object sender, PostWeb testEventArgs e)
PrePage(object sender, PrePageEventArgs e)
PreTransaction(object sender, PreTransactionEventArgs e)
PreWeb test(object sender, PreWeb testEventArgs e)
PreRequest(object sender, PreRequestEventArgs e)

The naming of the methods makes it easy to understand at what point of the request life
cycle they each take part, and this will factor in to how to implement the required plug-in to
perform any desired custom actions. As you run more web tests, you will develop your own
library of custom plug-ins to suit your personal needs or those of your organization.

Alternative ways of recording web
tests

You don't necessarily have to use Visual Studio to record web tests. Having to install Visual
Studio Team Test just for someone to record a web test may seem quite a high cost.

Chapter 5: Creating Performance Tests

121

Luckily there is an alternative; you can also use a tool called Fiddler to record web tests.
Fiddler is an HTTP proxy which allows you to capture all incoming and outgoing HTTP
traffic for analysis. It was written by Eric Lawrence, of Microsoft, and it is a very powerful tool
indeed. What is even better is that it's freely downloadable from:
http://www.fiddler2.com/Fiddler2/version.asp

After downloading and installing Fiddler, recording a web test is very simple. Start the
Fiddler application, load Internet Explorer and perform the usual navigational steps to
simulate the test you are recording. So far, this is no different from using Visual Studio to
record test actions.

Once you have completed your actions, switch back to the Fiddler application, and you
should have a screen with some recorded requests looking something like the screen in
Figure 5.35.

Figure 5.35: Fiddler showing captured requests.

Note

Once you have finished capturing requests for your test, it is best to either shut down
Internet Explorer or stop Fiddler from capturing requests by deselecting the Capture
Traffic option from the File menu, or alternatively by pressing F12. This is advisable
because sometimes toolbars and plug-ins in the web browser can make requests which
have nothing at all to do with the site or the test.

http://www.fiddler2.com/Fiddler2/version.asp

Chapter 5: Creating Performance Tests

122

You will notice that selecting a request in the left pane of Fiddler shows the request details in
the right pane. This is similar to Visual Studio, although the latter can show the request in a
lot more detail.

To save the captured requests as a Visual Studio web test, select them all by clicking the
Edit > Select All menu option, and then open the File menu, and select the Save > Selected
Sessions > as Visual Studio Web Test... menu option.

Figure 5.36: Fiddler – saving requests as a Visual Studio Web Test.

A dialog is then presented allowing the user to specify a name and location for the saved test.
Before the test is saved, yet another dialog is presented, this time asking the user to specify
the plug-ins used to execute against the recorded requests when saving. Simply accept the
defaults and click OK to save the test.

Figure 5.37: Fiddler plug-in selection when saving recorded requests.

Chapter 5: Creating Performance Tests

123

The test is now saved as a normal Visual Studio Web Test that can be included in any Visual
Studio Test project. To do this, simply use Windows Explorer to copy the saved web test file
and paste it into the test project within Visual Studio.

These tests are exactly the same as those recorded within Visual Studio. Using Fiddler just
provides a convenient and low cost (in terms of both price and installation effort) way of
recording web tests to use for performance testing.

Considerations for load balancing /
load balanced hardware

Production systems will often employ a technique called load balancing or load distribution.
This is typically where more than one server is used to handle the load, or concurrent users,
being applied to an application. This set of servers is often called web farm, or a farm of
servers. In order to achieve this, load balancing software or hardware is employed to take the
incoming requests, and send them to one of the servers in the farm – typically the server that
is experiencing the least amount of load, or doing the least amount of work at the time.

So the question is: When setting up the performance test rig, should the production scenario
be replicated exactly, with load balancing in place while performing tests?

The answer to this question is "yes and no." It is important to test this scenario, but it is
important to first test against a single server without load balancing in place. The reason for
this is that a single server will produce a set of results which can be considered, if you like,
as the "single measure of performance." That is to say, a single server is easier to identify as a
known quantity because you are isolating results to within the specifications of that machine
only, and that is useful information to have. Adding more machines via load balancing will
typically produce better overall performance, but that performance is still essentially based
on this single measure of performance, as well as the load balancing solution itself. Having
this measurement based on a single server also provides an easy set of metrics for subsequent
analysis when changes are made. Having load balancing in place introduces another variable
into the environment in which changes are applied, and thus increases the "surface area" of
change and effect – which is a rather grand-sounding way of saying that you'll have more
things to account for when quantifying effects if you try and factor in load balancing.

Having said that, when a good idea of performance capability is ascertained from a single
server, introducing a load balanced scenario is also important to gauge the effect of horizontal
scalability. This will determine how much of an effect an extra server provides. An often
incorrect assumption is that, if one server can easily handle, say, 1,000 concurrent users, then
two servers will be able to easily handle 2,000 users. Unfortunately, load balancing doesn't
usually provide a direct linear increase in the capability of a system to bear load.

Chapter 5: Creating Performance Tests

124

The amount of extra capacity that load balancing will provide depends, for starters, upon
the load balancing solution itself. Software-based mechanisms, such as Windows load
balancing software (WLBS) are usually not as effective as hardware-based ones, although
they are often a lot cheaper. Software-based mechanisms are often suitable for smaller-scale
web farms, though.

Also bear in mind that the method of load balancing is important. How does the load
balancer distribute requests and load to other servers? Various methods are employed to do
this, such as:

• Round robin style
This involves simply alternating between the available servers for each subsequent
request coming in.

• Connection based
An incoming request is forwarded to the server that has the least number of open
connections servicing requests.

• Load based
The server experiencing the least load will receive the next request. This brings up other
questions of how the load balancer determines this information, and there are multiple
ways to achieve that, as well.

Various load balancers will support at least one or more of the methods described above,
some more efficiently than others. These variables make sure that the effects of load
balancing are not as straightforward as expected.

Finally, the ability of the application to exist on multiple servers, with no affinity to any one
server is also an important factor. This is referred to as being "stateless." Some load balancers
can accommodate an application that requires "stateful" behavior, although I'll talk about this
in greater detail in later chapters specifically covering optimization and load balancing.

This is why it's important to measure the effect of introducing load balancing. It will
provide a more accurate gauge of expected performance, and allow better quantification of
infrastructure requirements and system capability.

It is important to factor this consideration into your performance testing plan early on,
so that the appropriate infrastructure tasks can be put into place to ensure testing can be
performed against load balanced servers.

If you want to know more about load balancing, I'll cover it in the context of performance
testing and application considerations later in the book.

Chapter 5: Creating Performance Tests

125

Test automation

As the final part of creating a performance test rig, automation of test execution and
collection of performance test results should be considered.

However, in order to automate a performance test, we first need a performance test to
automate and, up until now, we have only discussed how to create and customize web tests.
Web tests are the singular test items that will ultimately comprise a performance test using
the functional scenario breakdowns mentioned earlier.

Now we need to create a performance test scenario and assign some web tests to it. For our
purposes, we will create a basic performance test scenario to execute a series of web tests, and
then automate their execution as well as the collection of the resulting performance data.

Creating a performance test scenario

Ensure you have a test project open in Visual Studio, containing some web tests that have
already been recorded. Select the Add Load Test option from the Project menu, and you will
be taken through the New Load Test Wizard.

Figure 5.38: New Load Test Wizard – Welcome.

Chapter 5: Creating Performance Tests

126

You will then be presented with a dialog around scenario settings. Enter a name for this load
test scenario that will be simulated.

Figure 5.39: New Load Test Wizard – Scenario.

Leave the other settings at their defaults. The Think times settings determine whether the
test will replay the idle periods where a user is thinking about what action to perform next;
the default is to utilize an average distribution of think times based on the think times as they
were recorded. Choosing the Do not use think times option incurs extra stress on the server
and is useful for pure stress testing, but is not indicative of real world usage.

Next, you have the option to specify the initial settings for the concurrent user load to be
simulated (see Figure 5.40).

Chapter 5: Creating Performance Tests

127

Figure 5.40: New Load Test Wizard – Load Pattern.

If you are unsure of the concurrent user load to specify at this point, simply accept the default
setting of a constant 25 concurrent users, as this can always be edited later on.

The Step load option allows for a steadily increasing load to be applied, starting at a set user
level (Start user count), then progressively adding a number of users (Step user count). You
can also control the length of time for which to execute each progressive step (Step duration),
as well as the maximum number of users to simulate (Maximum user count).

Moving to the next screen (Figure 5.41) shows the Test Mix Model dialog, which
(unsurprisingly) allows you to specify what kind of test mix is required. For most
requirements, sticking to the default of Based on the total number of tests is best suited to
most organizations, and will allow you to best model the needs of the business and assign
percentage weightings of test based on functional paths and use cases.

If you want to investigate other available test mixes then, as each method is selected, an
information box to the right will describe the option in detail.

Chapter 5: Creating Performance Tests

128

Figure 5.41: New Load Test Wizard – Test Mix Model.

On the next screen (Figure 5.42) you can select the tests that the load test will execute (known
as the Test Mix), and assign percentage weightings to those tests to determine the ratio of
their execution.

Basically, this means that a test with a weighting of 50% will execute twice as many times as
a test with a weighting of 25%. Selecting the Add button will display a dialog where tests can
be selected (or deselected) to participate in this load test using the arrow buttons between the
two panes of the dialog.

Chapter 5: Creating Performance Tests

129

Figure 5.42: New Load Test Wizard – tests added.

Obviously, in order to run a performance or load test, there will need to be at least some tests
selected to execute.

Once the tests are selected, clicking OK will show the tests added to the load test scenario
with a default distribution (Figure 5.43). The distribution of the tests can be set to the
required ratio required by the functional paths and use cases decided by the business, and
they can also be easily modified later.

Chapter 5: Creating Performance Tests

130

Figure 5.43: New Load Test Wizard – Test Mix defined.

At this point, you can click the Finish button to add the load test to the project with defaults
attributed to the rest of the options. However, it's best to at least go through and confirm the
default settings are appropriate for your needs.

The next step (Figure 5.44) involves adding browsers to simulate during the load test. If this is
not a concern, then simply skip to the next step. Otherwise, the dialog will allow you to add a
simulated browser by selecting the Add button and then distribute the weighting of browsers
in the same way as was done for test weightings.

Chapter 5: Creating Performance Tests

131

Figure 5.44: New Load Test Wizard – Browser Mix.

The next step (shown in Figure 5.45) involves adding simulated networks to the mix, with the
now familiar weighting process. For most scenarios, leaving a single selection of LAN is best,
as this will not reduce any of the simulated traffic to the server.

Figure 5.45: New Load Test Wizard – Network Mix.

Chapter 5: Creating Performance Tests

132

Initially at least, this is best left at the default setting, with some tweaking performed at later
stages when a good idea of raw performance is obtained.

The next, penultimate step (Figure 5.46) involves defining additional computers and
associated counter sets for Visual Studio to monitor and collect during the performance test.
For now, we can accept the defaults Visual Studio provides, as these cover the main metric
points, such as the CPU, and memory for the test servers, load agents, and controllers.

Figure 5.46: New Load Test Wizard – Counter Sets.

The final step in the process involves defining the run settings (see Figure 5.47). These are
comprised of things like the time period for the performance test to run, including warm-
up time, or the number of test iterations to execute. Additionally, the sample rate and the
validation level are also specified. The validation level determines whether low validation
rules, low and medium ones, or all validation rules are executed against the tests. A validation
level of Low indicates only low validation rules are executed, whereas a validation level of
High indicates all validation rules are executed. Initially, leave the run duration at a default,
low time period of ten minutes, as this will allow us to perform a series of small tests to
ensure everything is working as expected.

Chapter 5: Creating Performance Tests

133

Figure 5.47: New Load Test Wizard – Run Settings.

Click on Finish, and the load test has now been added to the project.

Items can be selected in the main window and their properties edited using the property
window, in the same way as any object in the test project.

To run the load test, the controller needs to be running as an absolute minimum. Agents are
not strictly required to run the tests at low load levels, and are mainly used to distribute test
generation to simulate high load levels.

With the controller running, the Run Test button can be pressed (Figure 5.49) and the load
test will commence running, based on the run settings. If the defaults are used, then this will
be for ten minutes.

Chapter 5: Creating Performance Tests

134

Figure 5.48: Load Test in the project.

Figure 5.49: Load Test – Run Test button.

Chapter 5: Creating Performance Tests

135

When the load test is executing, a series of windows will be presented which show the
current progress of the load test, together with some key counters and measurements. The
display should look similar to that in Figure 5.50.

Figure 5.50: Load test currently executing.

While the test is executing, additional performance metrics can be viewed by simply
expanding and locating the desired metric in the left-hand counters pane, and then either
double-clicking or dragging the metric into the desired display window.

Once the load test has completed executing, a dialog is shown (Figure 5.51), asking if you'd like
to view the detailed results.

Chapter 5: Creating Performance Tests

136

Figure 5.51: Load Test Complete dialog.

The dialog allows the user to load in all the performance metric data for evaluation if desired,
as only a small portion is calculated and presented during the execution of the test. To get a
full view of the metric data, more data must be loaded and analyzed.

Putting automation in place

Executing a load test and collecting results is a relatively trivial task when all the
infrastructure is in place. Ideally, automating this manual task can allow tests to be run
without manual intervention and/or during non-business hours. Cleaning up after a test run
is another manual task that is a good candidate for automation.

All of this automation allows effort to be concentrated on the areas that provide value, such
as result analysis, rather than on manual, mundane tasks like initiating execution and clean
up. Furthermore, the cost of performance testing is substantially reduced as a result of
automating as much of the process as possible.

Executing the load test

Automating the execution of load tests is actually quite easy. Typically, a load test would be
scheduled to run overnight, over a weekend, or even over the course of a few weeks. For these
scenarios, it's useful to have the performance test execute without human interaction, so that
regular performance runs can be performed and analyzed.

The easiest way to accomplish this is to simply have a batch file that executes the load test,
and to use the NT Scheduler that comes with all current versions of windows to schedule
when this batch file is executed.

Chapter 5: Creating Performance Tests

137

The batch file itself only needs to execute the standard Microsoft test application, MSTest
executable (mstest.exe), and pass in arguments to allow MSTest to properly execute the tests.
An example load test start script may look something like this:

"C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\mstest.
exe" /TestContainer:ProdLoadTest.loadtest /RunConfig:"C:\Source
Code\LoadTest\PerfTestRun.testrunconfig"

In this example, the arguments below are passed to MSTest.

• TestContainer
Represents the load test that should be executed. This contains all the details, such as
Network Mix, run details, and so on, required to execute the test.

• RunConfig
Represents the current test configuration which lists the controller to use, deployment
options, test naming standards, etc., discussed earlier.

That is sufficient to start the load test executing. The Scheduler can be located in the
Administrative Tools section of the Windows Control Panel.

Collecting performance monitor data

Previously, the Perfmon tool was discussed as a great way of collecting server performance
metrics to validate and, indeed, of backing up the metric data collected by Visual Studio
Team Test. However, if the load test execution is being automated, it makes sense that
the beginning and end of the collection of performance data via Perfmon should also
be automated.

The Perfmon tool already contains functionality to schedule starting and stopping the
collection of performance data. Each version of Perfmon has a slightly different user
interface, although the overall functionality is the same.

Chapter 5: Creating Performance Tests

138

Figure 5.52: Windows 7 / Server 2008 Performance Monitor – Schedule dialog.

In both versions of Perfmon, you'll need to create a new counter set, select the properties
of that counter set and then select the appropriate scheduling options. Alternatively, select
the Data Collector set and then select its properties. From the displayed dialog, select the
Schedule tab to add, edit or remove a schedule, and define when it should start collecting, as
shown in Figure 5.53.

In Windows XP, Server 2000, and Server 2003, the terminology is a little different, but the
concepts are the same. Selecting the properties of an existing counter log, then selecting the
Schedule tab, allows a user to define the start and stop times of the counter recording.

Chapter 5: Creating Performance Tests

139

Figure 5.53: Windows Vista, Windows 7, Server 2008 Perfmon Schedule dialog.

Additionally, in more recent versions of Windows and Windows Server, selecting the Stop
Condition tab provides options as to when the data collection should terminate.

When scheduling performance monitor collection and termination, it is best to generally
start the collection a short period before the performance run commences, and then to
terminate it a short period after the performance run has ended. This ensures that all data for
the performance run is collected, but it will also clearly indicate what the idle or quiet times
of activity on the system look like from a performance metric point of view.

It is important to note that, under Windows XP, Server 2000 and Server 2003, the scheduling
features of performance monitor were somewhat unreliable. Occasionally, when scheduled
to start, they simply wouldn't, and I have yet to find a good reason for this. Terminating
collection has never seemed to be an issue. To prepare against this eventuality, you can
use a command-line tool called logman to instruct PerfMon to start collection, and let
the scheduling definition in PerfMon terminate the collection. logman is available on all
Windows server operating systems, and to use it to start a PerfMon collection, use the syntax:

logman start MyPerfCounters

where MyPerfCounters represents the counter log set name. This tool can also be used to
stop counter collection.

Chapter 5: Creating Performance Tests

140

Collecting SQL Server usage statistics

Since the database plays such an important part in today's applications, it is useful to
determine, not only how hard the database server is working, but ideally what are the most
expensive queries the database is running. This kind of information can be extremely useful
in determining how the database is performing, and how the application is making use of the
database.

SQL Server provides a convenient way to schedule the execution of scripts via the SQL Server
agent. Other database vendors offer similar methods. However, with SQL Server it is possible
to define scheduled jobs in SQL Management studio that execute scripts at specific times and
output the result to a file or database table. There are, of course, many ways to schedule such
an activity, but SQL Server Agent (managed via SQL Management Studio) provides one of the
most convenient.

In order to determine what the most expensive queries are, the system tables in SQL Server
need to be queried, as this is where SQL Server records its statistical data. An example SQL
script to retrieve the most expensive queries would be this:

set nocount on;

select
 qs.total_worker_time,
 qs.execution_count,
 SUBSTRING(st.text, (qs.statement_start_offset/2)+1,
 ((CASE qs.statement_end_offset
 WHEN -1 THEN DATALENGTH(st.text)
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1
) AS statement_text
from
 (select top 100
 qs.plan_handle,
 qs.total_worker_time,
 qs.execution_count,
 qs.statement_start_offset,
 qs.statement_end_offset
 from
 sys.dm_exec_query_stats qs
 order by qs.total_worker_time desc) as qs
 cross apply sys.dm_exec_sql_text(plan_handle) as st
order by qs.total_worker_time desc;

This query will return results that look similar to those in Figure 5.54.

Chapter 5: Creating Performance Tests

141

Figure 5.54: SQL Server most expensive query results.

The results of the query show the total worker time, execution count, and even the actual
text of the query. The first two results are related to the performance tests and SQL server
respectively, so these are not of immediate concern. The highlighted row (Row 3) represents
a query from the sample application, and Rows 12 and 13 also represent queries generated
from the application. This is determined by looking at the tables being used in the query text.
Given the relatively few times that these queries are executed, the fact that they are appearing
near the top of the result list may indicate an opportunity for optimization.

Results of this nature, when used in conjunction with performance tests, can quickly show
less than optimal parts of the application from a database perspective. This is in contrast
to the top-down perspective that Visual Studio adopts in reporting performance metrics.
Using these two techniques can provide enormous insight into potential performance gains
for your application.

Ideally, these scripts should be used after a performance run and then used comparatively
as further runs are executed, in order to ensure that any applied performance changes
are effective.

Another useful script to execute is one to determine the general index usage of the
target database:

set nocount on;

use PerfTestSampleDB;
select
 obj.Name as ObjectName,
 ind.name as IndexName,
 ind.index_id,
 ind.object_id,
 isnull(user_seeks, 0) as user_seeks,
 isnull(user_scans, 0) as user_scans,
 isnull(user_lookups, 0) as user_lookups

Chapter 5: Creating Performance Tests

142

from sys.indexes ind
 join sys.objects obj on (ind.object_id = obj.object_id)
 left join sys.dm_db_index_usage_stats st on (st.index_id =
ind.index_id and st.object_id = ind.object_id)
where obj.Type_Desc <> 'SYSTEM_TABLE'
order by obj.Name, ind.Name;

Note

If using this script, replace the PerfTestSampleDB database name with the name of the
target database to be analyzed.

Executing this script produces an output similar to that in Figure 5.55.

Figure 5.55: SQL Server database index usage statistics.

The results of the query show the general usage patterns of indexes within the sample
application, with metrics around the number of scans, seeks and lookups for each index.
Optimization of indexes is a great way to reduce query execution times, and the metrics
provided with this query can help to ensure that the index usage is always kept efficient.

Chapter 5: Creating Performance Tests

143

Clean up tasks

When a performance run is executing, sometimes the test agents can experience low memory
conditions, high CPU utilization and other resource issues. This is particularly likely at
very high loads where the expectations placed on the test agents were not in line with their
specifications. This usually happens early in the performance test phase, when the exact
characteristics of test agents are only estimated.

Additionally, be aware that, after a performance test run has completed execution, even with
the best intention and attempts by software, some memory may not be properly released.
Eventually this can lead to unstable test agents and, ultimately, failed or less-than-effective
performance test runs.

For this reason, I recommend that you restart or reboot the test agent machines after
each run. Thankfully, this can also be automated, using the included scheduling ability of
Windows as described previously. We need to instruct each of the agent machines to restart,
and this can be done using a command-line tool called Shutdown which is available on all
versions of Windows from Windows XP to Server 2008. To restart a remote machine, for
example, the following syntax is used:

shutdown -r -t 0 -f -m \\testagent

Where:

• -r : instructs the machine to restart, as opposed to simply shut down

• -t 0 : instructs the shutdown/restart process to happen after a timeout of 0 seconds, that
is, immediately.

• -f : instructs the machine to force all running applications to close without prompting
any warning.

• -m \\testagent: represents the machine to shut down/restart. In this case, the machine is
named testagent.

Typically a batch file is created that restarts all agent machines that you may have in
your performance test rig. This script could either be called directly after the scheduled
performance test execution script, or it could be scheduled to execute at regular times during
the day when it is known that the performance run has completed.

This way, the test agent machines are always in a known, clean state before each performance
test run, which better ensures a successful performance test.

Chapter 5: Creating Performance Tests

144

Note

This technique could also be applied to the controller if desired.

Conclusion

This chapter has provided an extensive walk-through of the following aspects of
performance testing:

• architecture of a test rig

• setting up the various components of the performance test rig such as controller
and agents

• troubleshooting test rig setup

• creating web tests and load tests, and parameterization of the tests

• automation of the execution of load tests, collection of performance data, and
clean-up tasks.

The amount of setup and effort required to have a performance test rig running and
automated is not small, and it is therefore important to have a good understanding of how
a performance test rig operates and, more importantly, how to debug and diagnose it if, or
when, errors occur.

Once the rig is running and automated, the cost of performance testing then just comes
down to analyzing the results and any subsequent changes this may generate. This is exactly
the situation you need to be in to effectively and continuously monitor your applications
for performance issues. More importantly, this will allow constant metrics to be fed back to
interested parties to ensure application development is going according to plan.

145

Chapter 6: Application Profiling

If you talk to teams of developers about performance profiling, someone will usually say
something like, "We don't have time to profile our code, that's why we have load testers" or "If
it runs slowly we just throw another server into the farm." Many developers see performance
profiling as an extra piece of work to add to their existing workload, and yet another steep
learning curve to climb.

Many developers enter the world of performance and memory profiling only when something
has gone badly wrong. This usually means during system testing, load testing, and often
(sadly) in production. Developers will download an evaluation copy of a profiler and try to
isolate why the application is running slowly or keeps crashing. The pressure is on, and it's
now the worst possible time to learn the skills required to be an effective application profiler.

Using profiling tools to look for potential bottlenecks during development can significantly
reduce the number of problems that show up later. With the right tools and training, it can
become a regular part of the development process without adding too much overhead.

Development profiling will never uncover all of the issues that a comprehensive load test
would, but it can highlight parts of the code that have the potential to become a bottleneck
when the application is stressed. Finding and fixing them early can make a big difference
overall, especially if all the developers are testing the code they write.

This chapter, and the next two, are all about the tools and techniques that you can quickly
master and then use as part of your development process. Remember, it costs between 15 and
75 times more to find and fix an issue found during test than if that same issue was found
during development (Boehm, 1981).

Types of profiling

Application profiling goes beyond the raw performance statistics obtained from system
performance monitoring tools, and looks directly at the functions and allocated objects inside
the executing application.

When profiling a .NET application, the execution speeds of its internal functions and the
resources they use are recorded for a specific set of test transactions. The recorded data will
give insight into where there may be performance bottlenecks and possible memory problems
(such as memory leaks).

Chapter 6: Application Profiling

146

Profilers retrieve performance and memory information from .NET applications in one of
three ways:

• Sample based
The application function call stack is periodically recorded to give a low overhead but
equally low resolution analysis.

• Events based
The Common Language Runtime can be configured to send notifications to specific
profiler DLLs. Key information on function execution, CPU, memory, and garbage
collection can be collected using this mechanism.

• Instrumentation
Instrumentation code that measures the application is added to it at runtime, which can
give very detailed and accurate results,, but also comes with a high overhead.

A word about profiler overhead

Whichever profiler you use will add some overhead to the executing application it's
measuring, and to the machine it is running on. The amount of overhead depends on the
type of profiler.

In the case of a performance profiler, the act of measurement may itself impact the
performance being measured. This is particularly true for an instrumenting profiler, which
has to modify the application binary to insert its own timing probes to every function. As
a result, there is more code to execute, requiring additional CPU and memory, causing
increased overhead. Most profilers try to compensate by deducting the overhead of the
instrumentation from the results.

The profiler also has to deal with the torrent of data it receives and, for a detailed analysis, it
may require a lot of memory and processor time just to cope.

If your application is already memory and processor intensive, things are unfortunately only
going to get worse, and it could be that it's just not possible to analyse the entire application.
Thankfully, most tools allow you to limit the scope and depth of the analysis, which can help.
In some situations, the only way to get results may be by writing test harnesses to exercise
portions of the application in ways analogous to the full application.

Chapter 6: Application Profiling

147

Performance profiling

Performance profiling is all about discovering which parts of your application consume a
disproportionate amount of time or system resource. For example, if a single function takes
up 80% of the execution time, it's usually worth investigating.

Profiling will highlight small areas of code that would never otherwise be looked at again, and
it makes developers ask some interesting questions. To be fair, most of the time the answer
will be, "It has to do that and that's as fast as we can make it." The rest of the time, a potential
bottleneck will have been uncovered.

What to profile

Profiling a multilayered networked application can be really difficult simply because of the
number of possible variables involved. The question that's difficult to answer is, "Which bit is
slow?" Is it the client, the web server, the application server, the database server, or even one
of the network links in between?

The first stage in profiling performance is to identify the "slow bit." Application server
monitoring can help isolate the guilty layer, and will often help you determine if it is an
application or a database problem. Sometimes the problem is even more complex, and a
network monitoring tool will be required. These tools analyze packet journey times between
the layers, and break down application transactions into server processing time and network
time. They can help identify the layer responsible for slow-down, and determine if the
problem is to do with a network issue, such as congestion, bandwidth or latency. Chapter 7
discusses this topic in more detail.

Once you have identified the layer responsible (or, if you like, the slow bit) that will give a
clue as to the kind of profiler to use. Obviously, if it's a database problem, then use one of the
profiling tools available for the products of the database vendor, or simply add another index
(just kidding!). If it's a .NET application problem, then there are a whole host of profilers
available, and we will be discussing some of the best ones later in this chapter, and when we
look at more specific types of profiling later on.

Function analysis

To measure the performance of an application, you need to know how long specific test
transactions take to execute. You then need to be able to break those results down in a
number of ways. Specifically, function call and function call tree (the sequence of calls created
when one function calls another, and so on).

Chapter 6: Application Profiling

148

This breakdown identifies the slowest function and the slowest execution path, which is
useful because a single function could be slow, or a set of functions called together could be
slow. Many tools create elaborate hierarchical diagrams which allow the developer to explore
the call trees, and this can really help when trying to identify a bottleneck.

Line level analysis

Profilers can accurately time individual code lines, allowing you to identify the slowest line
within a slow function. For me, this is an essential feature because it gives you the best chance
of coming up with workable optimizations.

However, line-level analysis does add a greater overhead to the profiling session and can
normally be switched off, leaving the profiler to analyze at the function level only.

Wall-clock (elapsed) vs. CPU time

Most profilers measure wall-clock time and CPU time. The ability to distinguish between
the two is important because CPU time is pure processing and excludes any waiting time.
By contrast, wall-clock time is the total time taken to process a function, including any
wait time.

A function may take a long time to execute, but use comparatively little CPU time because it
is actually waiting for a database / web service call to return or for a thread synchronization
lock to free up. Identifying wait time can help you identify where your application may
benefit from asynchronous processing.

At the same time, a CPU-intensive function is usually a good candidate for optimization,
because the CPU is a finite resource and a potential bottleneck.

Resource bottlenecks

Resources such as disk space, network bandwidth, server availability, graphics cards and
shared threads can all create bottlenecks in an application. Identifying functions causing high
levels of resource activity and contention is a key goal in profiling. This kind of activity, when
scaled, could quickly become a problem and reduce the scalability of the application.

Chapter 6: Application Profiling

149

Call count

Function call count is the easiest statistic to look at first, because a non-trivial function with a
high call count often indicates an immediate problem. It's always worth validating the origins
of the high call count.

Small optimizations add up and scale

The great thing about performance profiling an application during development is that a
developer can immediately see where the main processing hotspots/bottlenecks in the code
are. Optimizing the hotspots and asking intelligent questions about call counts can give small
but significant improvements in performance and, if the whole team adopts this strategy, the
gain can be significant.

With so much code executing on servers, small performance gains become significant because
they quickly scale according to the number of users and the number of locations they affect.
More to the point, identifying and eliminating potential bottlenecks will prevent them from
ever becoming problems during load testing or in production.

Memory profiling

The way you write your code directly impacts how and when the objects you create are
allocated and destroyed. Get it right, and your application will use memory efficiently as
needed, with minimal performance impact. Get it wrong, however, and your application
could use more memory than necessary, which will cause the memory manager to work
harder than it needs to, and this will directly impact performance.

Even worse than that, your application could just keep allocating memory until no more is
left, causing the application or the machine to crash. This is the Memory Leak which every
developer fears.

The good news is that there are plenty of tools out there which you can use to find and fix
memory problems before they actually become problems. All you need is some background
knowledge and a few basic techniques, and it will become second nature.

Checking that an application doesn't have memory leaks and efficiently uses memory,
together with fixing any issues found, will improve its overall stability and performance.

Chapter 6: Application Profiling

150

Garbage collection

The .NET memory management model ensures that any allocated objects which are no
longer in use by the application will be reclaimed automatically. This relieves developers of
the responsibility of having to free memory explicitly, which is something that was often
omitted in native C/C++ applications, leading to memory leaks.

Garbage collection was invented by John McCarthy et al. in 1959 as part of the Lisp language,
but gained most prominence when it was adopted as the memory management model for
Java in 1995.

Instead of depending on the developer to manually de-allocate objects, garbage collection
adopts an automatic model in which objects are monitored to determine if they are still in
use. Those no longer used will have their memory reclaimed automatically. The automatic
memory management model, of which garbage collection is a part, was adopted by Microsoft
as the model for .NET. I will cover .NET's memory management model and how it works in
detail in Chapter 7 but, for now, here is a brief overview.

The .NET CLR allocates objects (less than 85K) onto a managed memory heap, and ensures
they are placed consecutively in memory with no gaps in between objects. The garbage
collector then periodically determines which objects are still in use by looking to see if they
are referenced by other objects, or from the stack, globals, statics, or even CPU registers. If no
references are found, it concludes that the object isn't in use and can be "garbage collected."

When an object is garbage collected, it is simply overwritten by the objects above which are
moved down in memory – a process known as compaction. This makes sure there are no gaps
left in the heap. In truth, it's actually a bit more complicated than this, as objects are grouped
into generations depending on how recently they were allocated. (For performance reasons
the garbage collector always tries to collect the youngest objects first.)

Anything that keeps hold of a reference to an object will keep it alive indefinitely, and that
can be the cause of a leak if it repeats continually. Memory profiling is all about finding
suspiciously persistent objects, and tracing back to find the references in code that are
keeping them in memory.

Using memory profiling techniques and tools, you can identify large objects that cause the
application to have a larger memory footprint than necessary. You can also look for objects
that are continually created and never garbage collected, causing memory leaks. I'll cover the
garbage collector and associated concepts in much more detail in Chapter 8.

Chapter 6: Application Profiling

151

Profiler approaches

All memory profilers will track instances of allocated classes. Some will also track the
allocation call stack, which means that they can report on a function's allocation profile and
identify function "hotspots."

The ability to view allocations, in terms of both classes and functions, can be really useful.
However, recording allocation call stacks can be very memory intensive and can sometimes
limit the size and complexity of application that can be profiled.

Symptoms of memory problems

• Memory leak

• Memory usage slowly increases over time

• Performance degrades

• Application will freeze/crash requiring a restart

• After restart it's OK again, and the cycle repeats.

• Excessive memory footprint

• Application is slow to load

• After load, other application runs slower than expected.

• Inefficient allocation

• Application performance suddenly degrades and then recovers quickly

• % Time in GC Statistic in PerfMon is greater than 20–30%.

I will go through memory profiling in a lot more detail in Chapter 7.

When to start profiling

In my view, the answer to this question is profile when you feel you have achieved functional
stability in your coding task. That means, after you have completed the requirement and your
testing confirms it works as specified.

Chapter 6: Application Profiling

152

Profiling at this stage will highlight potential bottlenecks that should be investigated. Profile
any earlier and you could be optimizing code that may significantly change.

Profiling usually occurs in one of three ways: reactive debugging, proactive analysis, or
technique validation.

Reactive debugging

Reactive debugging happens when a problem has been found, typically during a load test or in
a live system, and the developers have to react to this unwelcome news and fix the problem.

With load test debugging, you have a lot more data to work with because the results will
describe the failing transactions in fine detail and give many detailed server statistics, which
will help in isolating exactly where the problems is.

Production debugging is much more difficult, because really all you will get is some
performance monitoring statistics and, if you are lucky, some anecdotal evidence about what
might have been running when the slowdown occurred.

If you carry out load testing late in the life cycle, or if it's a production problem, a number of
things now have to happen.

Developers have to:

• isolate the tests to run to reproduce the problem

• understand how to use the profiler

• interpret the results

• get familiar with the code again

• fix the code

• confirm the fix.

Production problems are inevitably accompanied by pressure from management to fix
the issue. Developers are also usually caught off guard and are ill prepared for an in-depth
analysis of a system they may have last worked with many months earlier.

This is all just an inefficient waste of time and resources, and it doesn't even include the time
that would then be required for system testing in a production environment.

Chapter 6: Application Profiling

153

The earlier you start your application profiling and load testing, the better. Which is why my
general recommendations are:

• Test your application transactions under load as soon as you can during development,
and test regularly (as soon as you have something testable). Ensure issues are found and
fixed early.

• Encourage a culture where developers proactively look for potential bottlenecks in their
code using profiling tools (see next section).

You don't have to wait until the load test phase to begin load testing (although often the
expense is too great to use these facilities too early). There are lots of tools out there that
you can use to place stress/load on your application, and doing this as early as possible will
highlight issues that single test profiling won't find. If you can, automate the stress testing
and run it regularly, so that any code changes that impact performance are picked up quickly.

Proactive analysis

Proactive analysis, as the term implies, is all about the developer actively looking for
performance and memory issues during the development cycle. It has the major advantage of
being by far the quickest and cheapest type of analysis, because the developer already knows
the code well, and is able to quickly make knowledgeable optimization decisions.

Proactive analysis takes place as part of the developer testing process, and should be an
essential requirement before source code is checked back into the repository. It takes 15–75
times longer to fix an issue in development, than if it was found in later testing (Boehm, 1981).

The proactive approach does require an investment in tools and training, but it also results
in more highly skilled development teams who are actively looking for problems in
applications, and who are empowered with the skills necessary to find and fix these
problems when they occur.

Technique validation

Profilers can really help developers choose the optimal algorithm to achieve a specific
processing task. Questions such as, "Should I process it all on the server, or on the client in
batches?" can be answered quickly and easily by running a few quick tests.

Finding the most efficient technique to process data can also be very difficult without a
profiler. Searching online merely opens up a huge debate, and the only way to be sure is to
write some test harnesses, and run a profile.

Chapter 6: Application Profiling

154

Tools used for profiling

Many of the available profiling tools combine both performance and memory profiling in one
package. I will summarize the features of some of the main tools on the market and, in later
chapters, I'll describe how to use them to carry out both performance and memory analysis.

CLR profiler

The CLR Profiler is, at first glance, quite a basic memory profiling tool. On closer analysis
it's actually extremely powerful once you get the hang of it. Whilst it isn't the most intuitive
or easy-to-use profiler you will find, it is certainly very detailed and comprehensive in the
information that can be retrieved.

It can profile applications up to and including .NET Framework 3.5, although it only officially
supports up to Framework 2.0.

Figure 6.1: CLR Profiler Histogram by age.

CLR Profiler will monitor the executing application (Exes, services and web applications) and
then provides a number of histograms and call graphs. These can be used to track memory
leaks, excessive memory usage, Large Object Heap issues and excessive garbage collection
overhead; it's also possible to analyze Finalizer issues.

Unfortunately, CLR Profiler is one of those tools most developers have downloaded and tried
out, but given up on after about twenty minutes because it is quite difficult to use.

Chapter 6: Application Profiling

155

It's free to download and, once you have mastered its quirky interface, and adopted a
technique that works for you, it's possible to gain real insight into the memory state of
the application.

CLR Profiler gets complicated really quickly and for that reason I will cover it in more detail
in Chapter 7.

Red Gate's ANTS Memory and Performance Profilers

The Red Gate .NET Developer Bundle v5 works with .NET framework 1.1, 2.0, 3.0, 3.5, and 4.0,
integrates into Visual Studio 2005, 2008, and 2010 at March 2010 release, and supports both
32-bit and 64-bit profiling.

The .NET Developer Bundle includes ANTS Performance Profiler Pro and and ANTS Memory
Profiler and, at the time of writing, costs $795 for a single user license (Red Gate, 2010).

ANTS Memory Profiler

ANTS Memory Profiler (Figure 6.2) captures class instance allocation and has a low overall
overhead. It provides an easy-to-use and flexible user interface.

ANTS also provides graphical insight into the heap with the memory timeline, which is
a graphical representation of various performance counters including bytes on all heaps,
private bytes and Large Object Heap size (other counters can be added in the options). The
primary technique for using this tool involves the developer taking memory snapshots at
relevant times. Snapshots can then be compared against each other and used to find classes
requiring further investigation.

Filters allow the developer to filter out application noise and to focus on specific problems.
Application noise refers to any object allocations that are irrelevant to our analysis but
whose presence on the heap we may misinterpret. There are standard filters to eliminate
general application noise, and specific filters that can be used to find common causes of
memory leaks.

Chapter 6: Application Profiling

156

Figure 6.2: ANTS Memory Profiler.

Once a set of suspicious class instances has been identified, the Class Reference Explorer
allows the developer to trace back into the tree of object references to find the exact
references in the code which are causing the problem.

It's also possible to view a session overview of the snapshot, which gives insight into the state
of both the Small Object Heap (including Gen 1 and 2) and the Large Object Heap.

Chapter 6: Application Profiling

157

ANTS Performance Profiler

When performance profiling an application, ANTS Performance Profiler (Figure 6.3) presents
a performance graph with percentage processor time, plus a number of other performance
counters which can be selected.

Figure 6.3: ANTS Performance Profiler.

Results can be viewed for the entire analysis or for just a small portion using the trace graph
and selecting an area of interest using the mouse (see Figure 6.4).

This can be really useful if you notice part of your trace for example with high CPU activity,
and it allows you to focus on what was happening just for that tightly defined period. The
profile results for the trace can be viewed in Call Tree, Grid or Call graph modes.

The Call Tree displays a hierarchical list of the slowest call trees for each execution path
in the selected period, and highlights as the "hottest" the path that is most likely to be
the bottleneck.

Chapter 6: Application Profiling

158

The grid displays the results in a classic grid format, giving:

• Time (CPU or wall clock)

• Time with children (CPU or wall clock)

• Hit count (number of times called).

A call graph can also be generated for every function, allowing the sequence of calls to and
from a function to be traced.

Figure 6.4: Selecting a portion of the analysis trace.

Performance results can be viewed by CPU time or wall-clock time, which is a useful
feature as it can help to quickly identify where the application may benefit from
asynchronous processing.

ANTS also provides a number of analysis modes which change the amount of overhead that is
added to the executing application:

• method level – lower overhead but less detailed

• line level – higher overhead, more detailed.

It is also possible to further reduce the overhead of both modes by selecting to profile only
methods that have source code. That is often the most sensible course of action, since you
can only optimize where you have source code to change.

Chapter 6: Application Profiling

159

Microfocus DevPartner Studio Professional 9.1

MicroFocus's DevPartner 9 is a suite of tools for .NET framework 2.0, 3.0, and 3.5, and Visual
Studio 2005 and 2008. DevPartner pricing depends on the licensing model, but if you are
buying from ComponentSource a single-user standalone license is $2834.67 at the time of
writing (ComponentSource.com, 2010).

The suite is a developer tool that integrates into Visual Studio 2005 and 2008, and can
optionally also be run from the command line. It supports 32-bit profiling on both x86 and
x64 systems, and includes a range of tools.

Memory Profiler

The Memory Profiler (Figure 6.5) can perform three types of analysis:

• RAM footprint analysis

• memory leak detection

• temporary object analysis.

DevPartner captures both the class instance allocation and the allocation call stack, so it's
possible to view the results in terms of class hotspots and function hotspots.

Figure 6.5: DevPartner memory analysis.

Chapter 6: Application Profiling

160

RAM footprint

RAM footprint looks at both the largest allocated objects and the methods and call trees
responsible for allocating large amounts of memory. With these types of analysis it is possible
to identify parts of the application that are causing its overall memory footprint to be larger
than may be necessary. This often occurs when an application loads data and keeps it cached
in memory for later use.

Temporary object analysis

Temporary Object Analysis looks at the allocation of relatively short-lived objects. These are
objects that manage to stay around long enough to survive a couple of garbage collections,
but then lose their references and become available for collection. These types of objects
make full garbage collections run more frequently, which is inefficient. Having insight into
where temporary objects are allocated can help a developer reduce object longevity and
improve overall memory usage and performance.

Memory leak detection

The memory leak detection tool allows the developer to navigate through the application
until they get to the point where they want to start tracking the leak. At that point, they
press a button and all objects allocated from that point are recorded. When the developer has
finished their test, they press a View Memory Leaks button, and the tool forces a full garbage
collection before presenting the results of all of the classes allocated since tracking began and
which survived collection.

The results can be viewed by class/object instance and also by function, as the call stack for
each allocation is also recorded.

Performance Profiler

There are two separate performance profilers in DevPartner; one for function timing analysis
the other, called Performance Expert, for function resource analysis, looking at the CPU, disk
and network activity.

The timing analyser can profile both managed and native instrumented applications, though
the resource analyser is a pure .NET tool only.

Chapter 6: Application Profiling

161

Performance timing analysis

The timing analyzer (Figure 6.4) can profile at the function and the code line level. It's also
possible to profile both managed and native code at the same time, although the native code
must be built with instrumentation.

Running a test is a simple matter of starting the application using the DevPartner Integration
toolbar button within Visual Studio.

Figure 6.6: DevPartner toolbar buttons.

A couple of further buttons will appear on the toolbar, which will allow you to take
performance snapshots, and the application will start.

The snapshots results are displayed within Visual Studio in a standard grid which can
be sorted and filtered. It's also possible to reduce the scope of results by selecting to only
view specific source or system modules. The main statistics provided per function (see
Figure 6.7) include:

• Called (number of times the function was called)

• % in Method (% of time spent in function excluding time spent in calls to
non-framework functions)

• % with Children (% of time spent in function including time spent in calls to
non-framework functions)

• Average time (total time in function/number of calls).

The user can view the source for each function listed, giving them a timed line-by-line
breakdown of the source code. Alternatively, it's possible to view the call tree for the function,
and from here you can track backwards or forwards through the call tree to investigate the
function's critical path (more on this later).

Chapter 6: Application Profiling

162

Figure 6.7: DevPartner performance analysis.

Performance Expert Analysis

As with performance timing analysis, Performance Expert Analysis (Figure 6.5) is started from
within Visual Studio, and additional buttons appear which allow you to take performance
snapshots. This time, the application is being measured for CPU, disk, network activity and
wait time, which are all potential bottlenecks.

When a snapshot is taken, the most CPU-intensive execution paths and functions are
displayed, and various forms of analysis are available. Execution path analysis allows you to
perform a call graph analysis on the execution path. The functions analysis displays a grid of
resource statistics for each function, allowing you to sort by each column. From this view, you
can quickly determine the most CPU/disk, etc. intensive functions.

Chapter 6: Application Profiling

163

Figure 6.8: DevPartner Performance Expert Analysis.

Other tools

In addition to the profiling tools, DevPartner also has:

• Code review tool
Code quality, standards, security analysis

• Code coverage analyzer
Determines how much of an application has been tested, and what hasn't been tested.

Microsoft Visual Studio 2008 profiling tools

Visual Studio 2008 Team Edition has a built-in performance and memory profiler, and
you can choose to use either sampling or instrumentation methodologies. As well as the
usual performance timing and memory allocation information, it is also possible to collect
additional CPU counters, Windows events and Windows counters with these tools.

A profile report can be produced at any time, at which point a summary report is displayed
from where you can drill into the data or select more detailed reports from a drop-down list.
The report view provides a filter mechanism which allows for the creation of sophisticated
queries on the available data. It's also possible to compare reports, which is useful, for
example, to check that an optimization has been successful.

Chapter 6: Application Profiling

164

Performance Explorer

Visual Studio's profiler settings have a lot of options available, and so multiple performance
analysis configurations can be set up for the same application in a Performance
Explorer window. You may, for example, have separate configurations for Sampling and
Instrumentation, and for Memory and Performance profiling. All of the reports for each
configuration are stored together.

Performance Analyzer

On completion of a test, the performance analyzer will give a summary of the worst
functions, as well as reports on most called functions, functions with the most individual
work, and functions taking the longest.

Figure 6.9: Visual Studio 2008 Performance Profiler.

Chapter 6: Application Profiling

165

From here, you can choose a function from the list and view its callers, its child calls, or you
can view the source, if available. The profiler works well at the function level, but has only a
crude reporting mechanism to give code-line level statistics. The next version of Visual Studio
2010 will address this issue, giving full line-level timings and source code visibility. Many
other reports can be selected, including a function grid to determine the slowest functions,
and a call tree to identify the slowest execution paths. It is possible, using a combination of
the reports, to find function bottlenecks, which is naturally a good starting point to being
able to correct these issues.

Memory Analyzer

To carry out a memory analysis (see Figure 6.10) you need to make sure that the Performance
Explorer configuration you are using has the following .NET memory profiling options set:

• Collect .NET object allocation information

• helps identify expensive allocated classes and functions.

• Also collect .NET object lifetime information

• memory leaks

• mid-life crisis detection

• Large Object Heap issues.

The application can now be launched from within the Performance Explorer window.

Run your test transaction, then either press the Stop button on the Performance Explorer
toolbar, or close your application.

The memory analyzer (see Figure 6.11) reports on:

• functions allocating the most memory

• types with the most memory allocated

• types with the most instances.

From the summary, you can view reports that detail:

• object allocation (largest allocated classes and the methods that allocated them)

• object lifetime (when objects are de-allocated)

• call tree (most memory expensive function call trees).

Chapter 6: Application Profiling

166

Figure 6.10: Visual Studio 2008 memory analysis configuration.

Figure 6.11: Visual Studio 2008 memory analysis.

Chapter 6: Application Profiling

167

What to look for

Let's now look briefly at some of the main types of problem that can be uncovered using the
tools described above. As this chapter is just an introduction to the noble art of profiling, all
of the techniques mentioned will be described in more detailed in subsequent chapters.

Performance analysis

The following key indicators can be used to identify potential bottlenecks and problems in
your code. We will cover performance profiling in Chapter 7.

High call count

Functions with very high call counts should be treated with suspicion and investigated. Often
the high call count is valid, but sometimes it's due to an error in event handling, and can be a
major source of unintended processing.

Resolution

Using the call graphing facility of your performance tool, it should be possible to trace back
to where the calls to the function originate, and decide if it is acceptable behaviour. It's a very
quick and easy check, and a very quick optimization if a problem is found.

I have actually lost count of the number of times I have found this issue in live code!

Slowest function excluding child calls

This is the slowest function where the body of the function itself is responsible for the time.
It includes time spent calling .NET framework functions, but excludes time spent calling
other source code functions. In other words, it's answering the question, "What's the slowest
function we have written?"

Chapter 6: Application Profiling

168

Resolution

Identify the slowest functions excluding child calls and then, if available, look for the slowest
code lines and determine if they are optimizable. You will often see slow lines waiting for
database and web service calls to return.

Slowest function including child calls

This is the slowest function where the total cost of the functions, including time spent into
calls to child functions (we have written), is accounted for.

Resolution

Use your tool's call graph facility to explore the slowest part of the call tree.

Functions with high CPU utilization

Any function with high CPU utilization is a prime candidate for optimization, as high
resource demands can be a key bottleneck.

Resolution

Identify the most CPU-intensive lines of code within the function and determine if there are
workable optimizations that may apply.

Functions with wait time

Functions with wait time can indicate performance problems in other application layers,
or problems with thread locking (I'll discuss thread locking in Chapter 7, where it'll be
more relevant).

Resolution

Identify which resource the function is waiting for, e.g. database or web service, then
investigate the cause of the contention on that layer.

Chapter 6: Application Profiling

169

Functions generating disk activity

A function generating disk activity needs to be investigated further, as it is demanding
resources and so is a potential bottleneck.

Resolution

Make sure the disk activity is necessary, particularly if this is a server application. Even if it is
necessary, try to find an alternative if possible.

Functions generating network activity

A function generating network activity needs to be investigated further as another
potential bottleneck.

Resolution

Make sure the network activity is valid and not an artifact left behind from prototyping or
developer testing. Ensure that the number of times this network activity occurs is as low as
possible, to reduce the effect of latency. If possible, get more data in one hit.

Memory analysis

When and where you create objects in your code has far-reaching consequences for the
application as a whole. Allocating too early and for too long will increase the application's
memory footprint. Leave references to objects in collections or from event listeners, for
example, and they will stay in memory indefinitely.

We're going to look at Memory Analysis in a lot more detail in Chapter 8 but, for now,
let's look at some of the key types of analysis that can help improve your application's
memory profile.

Chapter 6: Application Profiling

170

Memory leak detection

Finding memory leaks is all about identifying objects that are allocated but never garbage
collected. Memory leaks always get worse so, in theory, the longer the application runs, the
bigger the leak will get, and the easier it will be to see. That doesn't really help when profiling,
though, because you need to be able to identify a leak quickly.

Profiling tools help leak detection by allowing you to take memory snapshots. A snapshot
usually involves forcing a garbage collection and then recording all of the objects that are
left behind in memory. Objects that repeatedly survive garbage collection should be
investigated further.

If objects of the same type continually survive garbage collection and keep building up in
memory, you need to investigate the references that are keeping those objects in memory.
Tracking object references back to source code allows you to find the cause of the leak in your
own code, which means you can fix it.

Some profilers track memory allocation by function calls, which allows you to see the
functions that are potentially leaking memory. This can also be a highly effective technique
for finding a memory leak.

Excessive memory usage

Reducing the overall memory footprint can help an application to coexist with other
applications on the desktop or server. It's always worth checking where your application is
allocating and retaining large chunks of memory, just to ensure that this behaviour really
is necessary. Often it's done for performance reasons and is perfectly valid, as the memory
overhead is worth the performance gain. Unfortunately, I have analyzed many applications
where large amounts of data are held but then never used again, and this is the kind of
behaviour you need to be on the lookout for.

Inefficient allocation and retention

Certain programming techniques, such as string concatenation, for example, can create large
numbers of intermediate objects on the heap, which makes the garbage collector work harder
than it needs to. The harder the garbage collector works, the greater the performance impact
on the application.

Detecting when your application is allocating inefficiently will allow you correct the issue.

Chapter 6: Application Profiling

171

Large Object Heap fragmentation

The Large Object Heap is used to store objects that are greater than 85K in size. The trouble
is, it can become fragmented, which can lead to the heap size expanding to larger than it
needs to be. In severe cases, this can eventually lead to Out of Memory issues. See Chapter 8
for more detail on this.

Production / load test clues

Problems uncovered during load test or in production will usually be accompanied by a wide
variety of performance metrics collected from multiple servers. Below are some of the most
useful statistics that are widely regarded as key indicators of performance issues (Meier,
Vasireddy, Babbar, Mariani, Mackman, and Microsoft, 2004). They are, at the very least, a
starting point, and will help you identify where to begin your analysis and which tools to
employ. For this article, go to http://msdn.microsoft.com/en-us/library/ms998579.aspx.

General performance counters

The following performance counters can act as general guidelines for different performance
problems. Please refer to Chapter 3 for a more detailed breakdown.

• Processor\% Processor Time

• Memory\% Committed Bytes in Use

• PhysicalDisk\%Idle Time

• Network Interface\Output Queue Length

• .NET CLR Memory\% Time in GC

• .NET CLR Memory\# Gen 0,1,2 Collections

• .NET CLR Memory\# of Pinned Objects

• .NET CLR Memory\Large Object Heap Size

• .NET CLR LocksAndThreads\Contention Rate/sec

• ASP.NET\Requests Queued

• ASP.NET\Requests Rejected

http://msdn.microsoft.com/en-us/library/ms998579.aspx

Chapter 6: Application Profiling

172

Managing profiling results

Each of the profiling tools stores the profile data in a proprietary flat file format, although
some of the tools allow the data to be exported to XML or CSV files.

The main benefit to XML or CSV export is that you can use the data to generate your own
reports and publish that data to other systems. This becomes more important when you
begin automating your unit testing because you can also analyze the executing tests using a
profiler. Instead of just getting Pass and Fail for your tests, you could also collect performance
and stability metrics. By comparing these metrics with previous test runs, it's then possible to
identify problems as they occur.

Comparing analysis runs

Applications such as Visual Studio 2008 Profiler and DevPartner Professional have tools
which allow various profiling results to be compared, and ANTS Memory Profiler allows for
the comparison of memory profiling snapshots. This feature can help to quickly identify
where there has been a performance improvement or degradation.

Pre-check-in requirements

In support of proactive analysis, it's a good idea to require developers to include evidence of
performance and memory analysis results as part of a source code check-in procedure at the
end of a unit of work.

This could be as simple as a manual procedure in which all of the profiler results files are
zipped together and added (suitably labelled) to the project office. Alternatively, the source
control system itself could be used to define a pre-check-in process requiring the addition
of profile results files. This largely depends on how extensible the source control system
is. Microsoft Team Foundation Server 2005 and 2008 allow custom check-in policies to be
defined, allowing more complex check-in procedures.

Continuous integrated testing

Tools which support command-line execution and XML export can be incorporated into
an automated testing framework, in which the automated tests are run and the executing
process is profiled using performance or memory analysis.

Chapter 6: Application Profiling

173

The results are then extracted to XML and uploaded to a results server, along with the results
for the control cases.

To make life even easier, an automated testing framework can be set up to identify when the
performance of a test transaction has degraded, and report it to the development team.

Summary

Knowing how to profile an application, and understanding what the potential issues are,
will help you write better code. Routinely testing the functionality you have written using a
profiler, and looking for the common bottlenecks and problems will allow you to find and fix
many minor issues that would otherwise become bigger problems later on.

Load testing as early as possible during development, as well as adding to these tests and
running them regularly with the latest builds, will identify problems almost as soon as they
occur. It will also highlight when a change has introduced a problem.

In the next two chapters, I will go through the performance and memory issues you might
encounter, and techniques you can use to deal with them. I will also highlight how to use
some of the most common tools to find and fix problems in your code.

.NET and
SQL Server Tools
from Red Gate Software

Pricing and information about Red Gate tools are

correct at the time of going to print. For the latest

information and pricing on all Red Gate's tools,

visit www.red-gate.com

ANTS Memory Profiler™
Profile the memory usage of your C# and VB.NET applications

$495

 Speed up the performance of your .NET applications

 Identify performance bottlenecks in minutes

 Drill down to slow lines of code, thanks to line-level code timings

 Profile any .NET application, including ASP.NET web applications

 Locate memory leaks within minutes

 Optimize applications with high memory usage

 Get clear, meaningful profiling results, for easy interpretation of your data

 Profile any .NET application, including ASP.NET web applications

Visit www.red-gate.com for a 14-day, free trial

"Freaking sweet! We have a known memory
leak that took me about four hours to find using
our current tool, so I fired up ANTS Memory
Profiler and went at it like I didn't know the leak
existed. Not only did I come to the conclusion
much faster, but I found another one!"
Aaron Smith IT Manager, R.C. Systems Inc.

ANTS Performance Profiler™
Profile and boost the performance of your .NET code

from $395

"ANTS Performance Profiler
took us straight to the specific
areas of our code which were
the cause of our performance
issues."

Terry Phillips Sr Developer, Harley-Davidson
Dealer Systems

"Thanks to ANTS Performance
Profiler, we were able to
discover a performance hit in our
serialization of XML that was fixed
for a 10x performance increase."
Garret Spargo Product Manager, AFHCAN

.NET Reflector ®

Explore, browse, and analyze .NET assemblies

 View, navigate, and search through the class hierarchies of .NET assemblies,
even if you don't have the source code for them

 Decompile and analyze .NET assemblies in C#, Visual Basic and IL

 Understand the relationships between classes and methods

 Check that your code has been correctly obfuscated before release

SmartAssembly™
Protect your .NET code, your Intellectual Property, and your business

 Obfuscate and secure your .NET application

 Optimize your .NET assemblies (remove non-useful code and metadata
and perform other code optimization) and simplify the deployment of your
application

 Save countless hours of debugging and diagnostics

 Build a bullet-proof application

 Analyze your .NET assemblies

 Locate unhandled exceptions that can be thrown by a particular method –
before you even ship

 Find out where those exceptions originate (down to a single line of code)

 Decide which exceptions need to be handled (with some exception-handling
code) before you release

Exception Hunter™
Analyze your .NET assembly for possible unhandled exceptions

$295

from $499

Visit www.red-gate.com for a 14-day, free trial

"It is the most effective
obfuscation, optimization, and all-
round compilation improvement
tool we've come across to date."
John Cioni Fabsoft

SQL Compare Pro®

Compare and synchronize SQL Server database schemas

SQL Data Compare Pro™
Compare and synchronize SQL Server database contents

$595

$595

 Automate database comparisons, and synchronize your databases

 Simple, easy to use, 100% accurate

 Save hours of tedious work, and eliminate manual scripting errors

 Work with live databases, snapshots, script files, or backups

 Compare your database contents

 Automatically synchronize your data

 Row-level data restore

 Compare to scripts, backups, or live databases

Visit www.red-gate.com for a 14-day, free trial

"SQL Compare and SQL Data Compare are
the best purchases we've made in the .NET/
SQL environment. They've saved us hours of
development time, and the fast, easy-to-use
database comparison gives us maximum
confidence that our migration scripts are
correct. We rely on these products for every
deployment."
Paul Tebbutt Technical Lead, Universal Music Group

"We use SQL Data Compare daily
and it has become an indispensable
part of delivering our service to our
customers. It has also streamlined
our daily update process and cut back
literally a good solid hour per day."
George Pantela GPAnalysis.com

SQL Prompt Pro™
The fastest way to work with SQL

$295

 Code-completion for SQL Server, including suggestions for complete
 join conditions

 Automated SQL reformatting with extensive flexibility to match your
 preferred style

 Rapid access to your database schema information through schema panes
 and tooltips

 Snippets let you insert common SQL fragments with just a few keystrokes

"With over 2,000 objects in one database alone,
SQL Prompt is a lifesaver! Sure, with a few mouse
clicks I can get to the column or stored procedure
name I am looking for, but with SQL Prompt it is
always right in front of me. SQL Prompt is easy
to install, fast, and easy to use. I hate to think of
working without it!"
Michael Weiss VP Information Technology, LTCPCMS, Inc.

SQL Search™
A free Management Studio add-in to search for SQL in your databases

Free

 Find fragments of SQL text within stored procedures, functions, views,
 and more

 Quickly navigate to objects wherever they happen to be on your servers

	 Find all references to an object

	 No need to use a separate tool

Visit www.red-gate.com for a 14-day, free trial

How to Become an
Exceptional DBA
Brad McGehee

A career guide that will show you, step by step,

exactly what you can do to differentiate yourself

from the crowd so that you can be an Exceptional

DBA. While Brad focuses on how to become an

Exceptional SQL Server DBA, the advice in this

book applies to any DBA, no matter what database

software they use. If you are considering becoming

a DBA, or you are a DBA and want to be more than

an average DBA, this is the book to get you started.

ISBN: 978-1-906434-05-2
Published: July 2008

Exchange 2010 –
A Practical Approach
Jaap Wesselius

As a practical field-guide to Exchange Server 2010,

this book will tell you exactly what you need to know

to get started with upgrading, installing, configuring,

and managing your new Exchange Server. If you

need to get to grips with Exchange Server 2010 fast,

or you want a short, to-the-point, practical guide to

Microsoft's latest offering, then you should read this

book.

ISBN: 978-1-906434-31-1
Published: December 2009

SQL Server Tacklebox
Rodney Landrum

As a DBA, how well prepared are you to tackle

"monsters" such as backup failure due to lack

of disk space, or locking and blocking that is

preventing critical business processes from running,

or data corruption due to a power failure in the

disk subsystem? If you have any hesitation in your

answers to these questions, then Rodney Landrum's

SQL Server Tacklebox is a must-read.

ISBN: 978-1-906434-25-0

Published: August 2009

Mastering SQL Server Profiler
Brad McGehee

For such a potentially powerful tool, Profiler is

surprisingly underused; unless you have a lot of

experience as a DBA, it is often hard to analyze

the data you capture. As such, many DBAs tend

to ignore it and this is distressing, because Profiler

has so much potential to make a DBA's life more

productive. SQL Server Profiler records data about

various SQL Server events, and this data can be

used to troubleshoot a wide range of SQL Server

issues, such as poorly-performing queries, locking

and blocking, excessive table/index scanning, and a

lot more.

ISBN: 978-1-906434-16-8
Published: January 2009

	About the Authors
	Chapter 1: Introduction – The What and the Why
	Performance testing
	Load testing
	Stress testing
	Profiling
	Cost benefits of performance
and load testing
	Example scenarios

	Sometimes, what seems right
can be wrong.
	Conclusion

	Chapter 2: Understanding Performance Targets
	Identifying performance targets
	Structuring test breakdowns
	Determining what load to target
	Contingency in your estimations
	Estimate the mix of browsers for your web application
	What data do we measure?
	Time to First Byte
	Total page response time
	What about average response time?

	Sweet spots and operational ceilings
	Conclusion

	Chapter 3: Performance and Load Test Metrics
	What metrics do we need?
	Basic metrics
	Web application basic metrics

	What to look for
	CPU utilization
	Memory utilization
	Response time

	Creating a baseline
	Using Visual Studio to analyze
the results
	Using the Test Results management window
	Using the Open and Manage Test Results dialog
	Filtering performance test result selection

	Sweet spots and operational ceilings
	Detailed performance metrics
	Performance metrics

	What do I do with all this information?
	Conclusion

	Chapter 4: Implementing Your Test Rig
	Creating the performance test rig
	Architecture and structure of a performance test rig
	Role breakdown

	Setting up and configuration
	Port setup and firewall considerations
	Network segmentation/isolation
	Controller setup
	Creating the load test database
	Guest policy on Windows XP in workgroup mode
	Agent setup
	Workstation setup
	Troubleshooting the controller and agents

	Setting up performance counter collection
	Conclusion

	Chapter 5: Creating Performance Tests
	Basic solution structure
	Recording the web tests
	Test replay
	Data Binding Web Tests
	Creating a data source for data binding
	Test deployment considerations
	Web test code generation
	Extensibility through plug-ins

	Alternative ways of recording web tests
	Considerations for load balancing / load balanced hardware
	Test automation
	Creating a performance test scenario

	Putting automation in place
	Executing the load test
	Collecting performance monitor data
	Collecting SQL Server usage statistics
	Clean up tasks

	Conclusion

	Chapter 6: Application Profiling
	Types of profiling
	Performance profiling
	Memory profiling

	When to start profiling
	Reactive debugging
	Proactive analysis
	Technique validation

	Tools used for profiling
	CLR profiler
	Red Gate's ANTS Memory and Performance Profilers
	Microfocus DevPartner Studio Professional 9.1
	Microsoft Visual Studio 2008 profiling tools

	What to look for
	Performance analysis
	Memory analysis

	Production / load test clues
	General performance counters

	Managing profiling results
	Comparing analysis runs
	Pre-check-in requirements
	Continuous integrated testing

	Summary

