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The Von Neumann Machine Architecture

• Characteristics of the von Neumann
architecture include

─ Program is stored in memory
─ Memory is shared between 

program and data
─ Sequential execution model

• This is a great model for designing algorithms
─ But it's not how computers really work today! 

─ At one point this described real computers 
─ Now it is a useful abstraction for computation
─ Like all abstractions, we should understand its 

limitations
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CPU Performance
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• Graph shows CPU performance over time
─ Log scale, normalized to VAX-11/780 performance

• Can divide graph into three distinct phases
─ CISC era
─ Frequency scaling era
─ Multicore era

Single-threaded 
10% perf / year
(scale different)
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CISC systems, pre 1988

• CISC ISAs were designed to be used by humans

• VAX exemplified the CISC approach
─ Orthogonal instruction set

─ Any instruction, any data type, any addressing mode
─ Exotic hardware primitives for library stuff:

─ Packed character arithmetic, string pattern matching, 
polynomial evaluation

─ Lots of addressing modes
─ Multiple levels of indirection in a single instruction

─ Convenient to program, hard to pipeline!
─ Example: ADDL3  4(R1)[R2], @8(R1), R3
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CISC systems, pre 1988

• CPI (cycles per instruction) for CISC chips varied
─ 4-10 was typical (but highly predictable!)
─ Program performance was basically:

  N*page faults + instructions executed
─ Or, basically, page faults (for typical systems)

─ And just instruction count for embedded 
systems

─ Page fault count very easy to measure
─ Managing code and data locality key to good 

performance

• Complex architecture == harder to scale
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The era of cheap frequency scaling, 1988-2002

• For about 15 years, we were able to scale CPU 
performance at ~50% / year

─ Enabled by development of RISC processors
─ Simpler processors → easier to scale
─ Simpler instructions → fewer CPI, better pipelining

─ ISA not practical for programming by hand
─ Example: delay slots

─ Instruction after branch is always executed
─ Some ISAs had data delay slots, which means result 

of a computation isn't necessarily available to the 
next instruction

─ Required more sophisticated compilers
─ Memory got cheaper → fewer page faults
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Hitting the wall

• Serial performance has hit the wall
─ Power Wall 

─ Higher freq → more power → more heat → chip melts!
─ ILP Wall

─ Hitting limits in branch prediction, speculative execution
─ Memory Wall

─ Memory performance has lagged CPU performance
─ Program performance now dominated by cache misses

─ Speed of light
─ Takes more than a clock cycle for signal to propagate 

across a complex CPU!  
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The Multicore era, 2002- ?

• Clock rates have been basically flat for 15 years
─ Getting more expensive to build faster processors
─ Instead we put more cores on a chip 

• Moore's law: more cores, but not faster cores
─ Core counts likely to increase rapidly for some time

• Challenges for programmers
─ How are we going to use those cores?
─ Adjusting our mental performance models?  
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The Quest for ILP

• ILP = Instruction Level Parallelism

• Faster CPUs at the same clock rate
─ Multiple-issue
─ Pipelining
─ Branch Prediction
─ Speculative execution
─ Out-Of-Order (O-O-O) execution
─ Hit-Under-Miss cache, no-lockup cache
─ Prefetching
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The Quest for ILP: Pipelining

• Internally, each instruction has multiple stages
─ Many of which must be done sequentially

─ Fetching the instruction from memory
─ Also identifying the end of the instruction (update PC)

─ Decoding the instruction
─ Fetching needed operands (memory or register)
─ Performing the operation (e.g., addition)
─ Writing the result somewhere (memory or register)

─ Each instruction takes more than one clock cycle
─ But stages of different instructions can overlap

─ While decoding instruction N, fetch instruction N+1
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Pipelining

• On early machines, these ops would be e.g. 4 clks

• Pipelining allows them to appear as 1 clk
─ And allows a much higher clock rate
─ Much of the execution is parallelized in the pipe

• Found on all modern CPUs

  
add  rbx,16           add 16 to register RBX
cmp  rax,0            then compare RAX to 0
  

add rbx,16
cmp rax,0 
Time
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Pipelining

• Pipelining improves throughput, but not latency
─ The deeper the pipeline, the higher the (theoretical) 

multiplier for effective CPI

• "Single cycle execution" is a misnomer
─ All instructions take multiple cycles end-to-end
─ Pipelining can reduce CPI to 1 (in theory)

• RISC ISAs are designed for easier pipelining
─ Instruction size is uniform, simplifying fetch
─ No memory-to-memory ops
─ Some ops not pipelined (e.g. div, some FP ops)
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Pipelining hazards

• Pipelining attempts to impose parallelism on 
sequential control flows

• This may fail to work if:
─ There are conflicts over CPU resources
─ There are data conflicts between instructions
─ Instruction fetch is not able to identify the next PC

─ For example, because of branches

• Hazards can cause pipeline stalls
─ In the worst case, a branch could cause a 

complete pipeline flush
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Loads & Caches

ld   raxï[rbx+16]    Loads RAX from memory
          

• Loads read from cache, then memory
─ Cache hitting loads take 2-3 clks
─ Cache misses to memory take 200-300 clks
─ Can be many cache levels; lots of variation in clks

• Key theme: value in RAX might not be available for a long 
long time

• Simplest CPUs stall execution until value is ready
─ e.g. Typical GPU
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Loads & Caches

ld   raxï[rbx+16]   
...         
cmp  rax,0            RAX still not available

• Commonly, execution continues until RAX is used
─ Allows useful work in the miss “shadow”

• True data-dependence stalls in-order execution

• Also Load/Store Unit resources are tied up

• Fairly common
─ Many embedded CPUs, Azul, Sparc, Power

cmp  rax,0
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Branch Prediction

ld   raxï[rbx+16]   
...                  
cmp  rax,0         No RAX  yet, so no flags
jeq  null_chk      Branch not resolved 
st   [rbx-16]ïrcx ...speculative execution
jeq  null_chk 

• Flags not available so branch predicts
─ Execution past branch is speculative
─ If wrong, pay mispredict penalty to clean up mess
─ If right, execution does not stall
─ Right > 95% of time
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Multiple issue

• Modern CPUs are designed to issue 
multiple instructions on each clock cycle

─ Called multiple-issue or superscalar execution
─ Offers possibility for CPI < 1

─ Subject to all the same constraints 
(data contention, branch misprediction)
─ Requires even more speculative execution
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Dual-Issue or Wide-Issue

• Can be dual-issued or wide-issued
─ Same 1 clk for both ops
─ Must read & write unrelated registers
─ Or not use 2 of the same resource

• Dual issue is a common CPU feature
─ Not found on simplest embedded cpus

  
add  rbx,16           add 16 to register RBX
cmp  rax,0            then compare RAX to 0
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Register Renaming, Speculation, O-O-O

• Register renaming, branch prediction, speculation, O-O-O 
are all synergistic

─ Speculative state kept in extra renamed registers
─ On mis-predict, toss renamed registers

─ Revert to original register contents, still hanging around
─ Like rolling back a transaction

─ On correct-predict, rename the extra registers
─ As the “real” registers

• Allows more execution past cache misses
─ Old goal: just run more instructions
─ New goal: run until can start the next cache miss
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx   
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    
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X86 O-O-O Dispatch Example

ld   rax[rbx+16]  Load RAX from memory
add  rbx,16         Assume cache miss -
cmp  rax,0            300 cycles to load
jeq  null_chk      Instruction starts and
st   [rbx-16]ïrcx  dispatch continues...
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    

ld   raxï[rbx+16] 

Clock 0 – instruction 0
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16        Next op writes RBX -
cmp  rax,0          which is read by prior op
jeq  null_chk      Register-renaming allows
st   [rbx-16]ïrcx   parallel dispatch
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    

add  rbx,16 

Clock 0 – instruction 1
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0         RAX not available yet -
jeq  null_chk      cannot compute flags
st   [rbx-16]ïrcx  Queues up behind load
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    

cmp  rax,0 

Clock 0 – instruction 2
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk      flags still not ready
st   [rbx-16]ïrcx  branch prediction - 
ld   rcxï[rdx+0]    speculates not-taken
ld   raxï[rax+8]   Limit of 4-wide dispatch -
                    next op starts new clock

jeq  null_chk

Clock 0 – instruction 3
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx  Store is speculative 
ld   rcxï[rdx+0]   Result kept in store buffer
ld   raxï[rax+8]   Also RBX might be null
                   L/S used, no more mem
                   ops this cycle

st   [rbx-16]ïrcx

Clock 1 – instruction 4
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx   
ld   rcxï[rdx+0]   Unrelated cache miss!
ld   raxï[rax+8]   Misses now overlap
                   L/S unit busy again 

ld   rcxï[rdx+0]

Clock 2 – instruction 5
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx   
ld   rcxï[rdx+0]    
ld   raxï[rax+8]   RAX still not ready
                   Load cannot start till
                   1st load returns

ld   raxï[rax+8]

Clock 3 – instruction 6
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X86 O-O-O Dispatch Summary

ld   raxï[rbx+16]  - In 4 clks started 7 ops
add  rbx,16         - And 2 cache misses
cmp  rax,0          - Misses return in cycle
jeq  null_chk         300 and 302.
st   [rbx-16]ïrcx  - So 7 ops in 302 cycles
ld   rcxï[rdx+0]   - Misses totally dominate
ld   raxï[rax+8]      performance
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The Quest for ILP

• Itanium: a Billion-$$$ Effort to mine static ILP

• Theory: Big Gains possible on “infinite” machines
─ Machines w/infinite registers, infinite cache-misses, 

infinite speculation, etc

• Practice: Not much gain w/huge effort
─ Instruction encoding an issue
─ Limits of compiler knowledge 

─ e.g. memory aliasing even with whole-program opt
─ Works well on scientific apps
─ Not so well on desktop & server apps
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The Quest for ILP

• X86: a Grand Effort to mine dynamic ILP
─ Incremental addition of performance hacks

• Deep pipelining, ever wider-issue, parallel dispatch, giant 
re-order buffers, lots of functional units, 128 instructions “in 
flight”, etc

• Limited by cache misses and branch mispredict
─ Both miss rates are really low now
─ But a miss costs 100-1000 instruction issue slots
─ So a ~5% miss rate dominates performance
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How did this turn out?

• ILP is mined out
─ As CPUs get more complicated, more transistors are 

thrown at dealing with the hazards of ILP
─ Like speculative execution
─ Instead of providing more computational power

─ Moore's law gives us a growing transistor budget
─ But we spend more and more on ILP hazards

• Contrast to GPUs
─ Zillions of simple cores
─ But only works well on narrow problem domain
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Memory subsystem performance

• Chart shows speedup in 
CPU vs memory

─ Exponentially widening gap

• In older CPUs, memory access
was only slightly slower than register fetch

• Today, fetching from main memory could take several 
hundred clock cycles

─ Modern CPUs use sophisticated multilevel memory caches
─ And cache misses still dominate performance
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Types of memory

• Static RAM (SRAM) – fast but expensive
─ Six transistors per bit

• Dynamic RAM (DRAM) – cheap but slow
─ One transistor + one capacitor per bit
─ Improvements in DRAM (DDR, DDR2, DDR4, etc) 

improve bandwidth but latency not so much
─ More improvements in power & density than speed
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Caching

• Adding small amounts of faster SRAM can really improve 
memory performance

─ Caching works because programs exhibit both code and 
data locality (in both time & space)
─ Typically have separate instruction and data caches
─ Code and data each have their own locality

• Moves the data closer to the CPU
─ Speed of light counts!  
─ Major component of memory latency is wire delay
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Caching

• As the CPU-memory speed gap 
widens, need more cache layers

─ Relative access speeds
─ Register: <1 clk
─ L1: ~3 clks
─ L2: ~15 clks
─ Main memory: ~300 clks

• On multicore systems, lowest
cache layer is shared

─ But not all caches visible to
all cores
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Caching

• With high memory latency, ILP doesn't help
─ In the old days, loads were cheap and multiplies / FP ops 

were expensive
─ Now, multiplies are cheap but loads expensive!

• With a large gap between CPU and memory speed, cache 
misses dominate performance

• Memory is the new disk!  
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In search of faster memory access

• To make memory access cheaper
─ Relax coherency constraints
─ Improves throughput, not latency

─ Is this theme sounding familiar yet?

• More complex programming model
─ Must use synchronization to identify shared data

• Weird things can happen
─ Stale reads
─ Order of execution is 

     relative to the observing CPU (thread)
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

Memory Controller

CPUs

Caches

RAM
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

Complex reality: 
Many cache levels
Each layer is 10x bigger
And 10x slower

RAM is itself complex: 
“Best effort” throughput
Not FIFO !

Data is replicated
No single “home”

Complex protocol
   Modified
   Exclusive
   Shared
   Invalid

Memory Controller
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

bool flag;
Object data;
init() {
  data = ...; 
  flag = true;
}
Object read() {
  if( !flag ) ...;
  return data;
}

Memory Controller
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

bool flag;
Object data;

Initial values
Memory Controller
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax

data: 0      S
----: ---    I

?flag
Compute

data: 0    
flag: 0

?flag

if( !flag ) ...

ld  rax,[&flag]
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax

data: 0      S
----: ---    I

?flag
Compute

data: 0    
flag: 0

!flag

if( !flag ) ...

ld  rax,[&flag]
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax

data: 0      S
----: ---    I

?flag
jeq rax,...

data: 0    
flag: 0

-flag

if( !flag ) ...

ld  rax,[&flag]
jeq rax,...

           ?flag
      

jeq rax,...

Load not ready
Value unknown
Branch predicts!
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Real Chips Reorder Stuff

CPU #0

rax:123

----: ---    I
flag: 0      S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0      S
----: ---    I

?flag, ?data

data: 0    
flag: 0

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

Speculative
execution

?datadata:123
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Real Chips Reorder Stuff

CPU #0

rax:123

----: ---    I
flag: 0      S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0      S
----: ---    I

?flag, ?data

data: 0    
flag: 0

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

?datadata:123
True 
data 
race



www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0      S
----: ---    I

?flag, ?data

data: 0    
flag: 0

!data

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

data:0
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

-data

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

data in 2 places
Value is relative to observer
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 0      S

flag:1
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

!flag

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

flag:1

data:123
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

-flag

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

data:123    ?flag
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

data:123    ?flag
      

flag:1
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

flag:1      ?flag
data:123   
      

flag:1
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
flag: 1      S

?flag

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

flag:1      
data:123   
      

flag:1
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      S

LD/ST Unit
Compute

CPU #1

rax:1, rbx:0

----: ---    I
flag: 1      S

LD/ST Unit

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]
ret rbx

flag:1      
data:123   
      

Returning null
Crash-n-burn time!
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Specter & Meltdown

• Both use CPU speculation
─ Speculation changes the non-architectural state

─ e.g. state of caches, branch prediction, BTB

• Speculation loads secret data into cache

• Secret data still not available to normal process
─ Security works as expected

• Then read cache via timing
─ Side-channel timing attack

address value

0x123 0x456

key keybytes

0x234 0x567

0x345 0x678
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Specter

• Find certain code in victim’s memory:

• ary is byte[]; attacker knows both ary and buf

• Attacker controls x but x is range-checked

• Goal: read byte at any address ‘key’ using speculation
─ Such as secret crypto byte k

• Pick x = key – ary;  e.g. ary[x] == key

if (x < ary.length)
    y = buf[ary[x] * 256];
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Specter: Train Branch Prediction

• Want range-check predicted to pass:

• It normally does.  Use code normally ‘enough’ times.  
─ ‘enough’ varies by CPU, but e.g. 100 times should work

• During attack, ary.length will miss in cache and CPU 
will speculate next instruction

─ With carefully selected  ary[x] == key

if (x < ary.length)
    y = buf[ary[x] * 256];

branch address Prediction

&(x<len) false

0x123 false

0x456 true
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Specter: Prepare caches

• L1 cache is e.g. 64kb with 2048 32b lines.
─ Suffices to read 2048 times from 64kb array
─ L2 is larger, but flushed with same strategy

• Desired end result: 
─ Cache does NOT hold ary.length nor any of  buf.

• Load ‘key’ into cache, e.g. ask process to use crypto key
─ Note: ‘k’ still not available to attacker
─ But IS in cache
─ On the value side, not the address side

address value

junk 0

junk+32 0

junk+64 0

junk+96 0

address value

junk 0

key k

junk+64 0

junk+96 0
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Specter: Run the Attack

• Load ary.length misses in cache ld4 Rlen,[Rary+4]

address value

junk 0

key k

junk+64 0

junk+96 0
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Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

address value

junk 0

key k

junk+64 0

junk+96 0
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Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

• Branch speculates

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

ja fail_check

address value

junk 0

key k

junk+64 0

junk+96 0
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Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

• Branch speculates

• Following load of ‘k’ hits in cache

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

ja fail_check

ld1 Rk,[Rary+Rx]

mul Rtmp,Rk*256

address value

junk 0

key k

junk+64 0

junk+96 0
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Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

• Branch speculates

• Following load of ‘k’ hits in cache

• Dependent load changes cache

• Note: value of ‘k’ now in cache address

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

ja fail_check

ld1 Rk,[Rary+Rx]

mul Rtmp,Rk*256

ld8 Ry,[Rtmp+Rbuf]

address value

junk 0

key k

junk+64 0

k*256+buf 0x1234
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Specter: Read out secret ‘k’

• Time cache loads
─ for i=0 to 255

─ rdtsc // read fast&accurate counter
─ ld Ra,[buf+i*256]
─ Diff rdtsc // check speed of load

─ Will be fast for i==’k’ and slow for other i

• We now have ‘k’

• Repeat for other bytes of ‘key’
─ ...and we now have entire crypto key

• Actually, fast enough to read much of process
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Agenda

• Introduction

• The Quest for ILP

• Memory Subsystem Performance and Data Races

• Specter and Meltdown

• New Performance Models for a New Era
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Managing performance

• Dominant operations
─ 1985: page faults

─ Locality is critical
─ 1995: instructions executed

─ Multiplies are expensive, loads are cheap
─ Locality not so important

─ 2005: cache misses
─ Multiplies are cheap, loads are expensive!
─ Locality is critical again!

─ 2015: same speed cores, but more of them

• We need to update our mental performance models as the 
hardware evolves
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Think Data, Not Code

• In the old days, we could count instructions
─ Because instruction time was predictable

• Today, performance is dominated by 
patterns of memory access

─ Cache misses dominate – memory is the new disk
─ VMs are very good at eliminating the cost of code 

abstraction, but not yet at data indirection

• Multiple data indirections may mean 
multiple cache misses

─ That extra layer of indirection hurts!
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Think Data, Not Code

• Remember when buffer-copy was bad?
─ (hint: 80's OS classes, zero-copy network stacks)

• Now it's Protobuf → JSON → DOM → SQL → …

• Each conversion passes all data thru cache

• Don't bother converting unless you must!

• If you convert for speed (e.g. JSON → DOM)
─ Then must recoup loss with repeated DOM use
─ A 1-use conversion is nearly always a loser
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Share & mutate less

• Shared data == OK

• Mutable data == OK

• Shared + mutable data = EVIL
─ More likely to generate cache contention

─ Multiple CPUs can share a cache line if all are readers
─ Requires synchronization

─ Error-prone, has costs

• Bonus: exploiting immutability also tends to make for more 
robust code

─ Tastes great, less filling!
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New metrics, new tools

• With Chip-Multi-Threading, speedup depends on how 
memory is used:

─ Code with lots of misses may see linear speedup
─ (until you run out of bandwidth)

─ Code with no misses may see none

• CPU utilization is often a misleading metric

• Need cache-utilization tools, bandwidth tools

• Out-of-cache is hard to spot in most profilers
─ Just looks like all code is slow...
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Summary

• CPUs give the illusion of simplicity

• But are really complex under the hood
─ There are lots of parts moving in parallel
─ The performance model has changed
─ Heroic efforts to speed things up are mined out

• Performance analysis is not an armchair game
─ Unless you profile (deeply) you just don't know
─ Premature optimization is the root of much evil



For more information

Dr Cliff Click    Kraków, 9-11 May 2018

● Computer Architecture: A Quantitative Approach

– Hennesey and Patterson

● What Every Programmer Should Know About 
Memory

– Ulrich Drepper

Dr. Cliff Click
cliffc@acm.org

http://www.cliffc.org/blog
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