
Not Your Father's
Von Neumann Machine:

A Crash Course in Modern Hardware

Dr. Cliff Click
cliffc@acm.org
cliffc.org/blog

Kraków, 9-11 May 2018

www.neurensic.com

Agenda

• Introduction

• The Quest for ILP

• Memory Subsystem Performance & Data Races

• Specter and Meltdown

• New Performance Models for a New Era

www.neurensic.com

The Von Neumann Machine Architecture

• Characteristics of the von Neumann
architecture include

─ Program is stored in memory
─ Memory is shared between

program and data
─ Sequential execution model

• This is a great model for designing algorithms
─ But it's not how computers really work today!

─ At one point this described real computers
─ Now it is a useful abstraction for computation
─ Like all abstractions, we should understand its

limitations

www.neurensic.com

CPU Performance

2008/01 2009/01 2010/01 2011/01 2012/01 2013/01 2014/01 2015/01 2016/01
1

10

100

1000

10000

• Graph shows CPU performance over time
─ Log scale, normalized to VAX-11/780 performance

• Can divide graph into three distinct phases
─ CISC era
─ Frequency scaling era
─ Multicore era

Single-threaded
10% perf / year
(scale different)

www.neurensic.com

CISC systems, pre 1988

• CISC ISAs were designed to be used by humans

• VAX exemplified the CISC approach
─ Orthogonal instruction set

─ Any instruction, any data type, any addressing mode
─ Exotic hardware primitives for library stuff:

─ Packed character arithmetic, string pattern matching,
polynomial evaluation

─ Lots of addressing modes
─ Multiple levels of indirection in a single instruction

─ Convenient to program, hard to pipeline!
─ Example: ADDL3 4(R1)[R2], @8(R1), R3

www.neurensic.com

CISC systems, pre 1988

• CPI (cycles per instruction) for CISC chips varied
─ 4-10 was typical (but highly predictable!)
─ Program performance was basically:

 N*page faults + instructions executed
─ Or, basically, page faults (for typical systems)

─ And just instruction count for embedded
systems

─ Page fault count very easy to measure
─ Managing code and data locality key to good

performance

• Complex architecture == harder to scale

www.neurensic.com

The era of cheap frequency scaling, 1988-2002

• For about 15 years, we were able to scale CPU
performance at ~50% / year

─ Enabled by development of RISC processors
─ Simpler processors → easier to scale
─ Simpler instructions → fewer CPI, better pipelining

─ ISA not practical for programming by hand
─ Example: delay slots

─ Instruction after branch is always executed
─ Some ISAs had data delay slots, which means result

of a computation isn't necessarily available to the
next instruction

─ Required more sophisticated compilers
─ Memory got cheaper → fewer page faults

www.neurensic.com

Hitting the wall

• Serial performance has hit the wall
─ Power Wall

─ Higher freq → more power → more heat → chip melts!
─ ILP Wall

─ Hitting limits in branch prediction, speculative execution
─ Memory Wall

─ Memory performance has lagged CPU performance
─ Program performance now dominated by cache misses

─ Speed of light
─ Takes more than a clock cycle for signal to propagate

across a complex CPU!

www.neurensic.com

The Multicore era, 2002- ?

• Clock rates have been basically flat for 15 years
─ Getting more expensive to build faster processors
─ Instead we put more cores on a chip

• Moore's law: more cores, but not faster cores
─ Core counts likely to increase rapidly for some time

• Challenges for programmers
─ How are we going to use those cores?
─ Adjusting our mental performance models?

www.neurensic.com

Agenda

• Introduction

• The Quest for ILP

• Memory Subsystem Performance and Data Races

• Specter and Meltdown

• New Performance Models for a New Era

www.neurensic.com

The Quest for ILP

• ILP = Instruction Level Parallelism

• Faster CPUs at the same clock rate
─ Multiple-issue
─ Pipelining
─ Branch Prediction
─ Speculative execution
─ Out-Of-Order (O-O-O) execution
─ Hit-Under-Miss cache, no-lockup cache
─ Prefetching

www.neurensic.com

The Quest for ILP: Pipelining

• Internally, each instruction has multiple stages
─ Many of which must be done sequentially

─ Fetching the instruction from memory
─ Also identifying the end of the instruction (update PC)

─ Decoding the instruction
─ Fetching needed operands (memory or register)
─ Performing the operation (e.g., addition)
─ Writing the result somewhere (memory or register)

─ Each instruction takes more than one clock cycle
─ But stages of different instructions can overlap

─ While decoding instruction N, fetch instruction N+1

www.neurensic.com

Pipelining

• On early machines, these ops would be e.g. 4 clks

• Pipelining allows them to appear as 1 clk
─ And allows a much higher clock rate
─ Much of the execution is parallelized in the pipe

• Found on all modern CPUs

add rbx,16 add 16 to register RBX
cmp rax,0 then compare RAX to 0

add rbx,16
cmp rax,0
Time

www.neurensic.com

Pipelining

• Pipelining improves throughput, but not latency
─ The deeper the pipeline, the higher the (theoretical)

multiplier for effective CPI

• "Single cycle execution" is a misnomer
─ All instructions take multiple cycles end-to-end
─ Pipelining can reduce CPI to 1 (in theory)

• RISC ISAs are designed for easier pipelining
─ Instruction size is uniform, simplifying fetch
─ No memory-to-memory ops
─ Some ops not pipelined (e.g. div, some FP ops)

www.neurensic.com

Pipelining hazards

• Pipelining attempts to impose parallelism on
sequential control flows

• This may fail to work if:
─ There are conflicts over CPU resources
─ There are data conflicts between instructions
─ Instruction fetch is not able to identify the next PC

─ For example, because of branches

• Hazards can cause pipeline stalls
─ In the worst case, a branch could cause a

complete pipeline flush

www.neurensic.com

Loads & Caches

ld raxï[rbx+16] Loads RAX from memory

• Loads read from cache, then memory
─ Cache hitting loads take 2-3 clks
─ Cache misses to memory take 200-300 clks
─ Can be many cache levels; lots of variation in clks

• Key theme: value in RAX might not be available for a long
long time

• Simplest CPUs stall execution until value is ready
─ e.g. Typical GPU

www.neurensic.com

Loads & Caches

ld raxï[rbx+16]
...
cmp rax,0 RAX still not available

• Commonly, execution continues until RAX is used
─ Allows useful work in the miss “shadow”

• True data-dependence stalls in-order execution

• Also Load/Store Unit resources are tied up

• Fairly common
─ Many embedded CPUs, Azul, Sparc, Power

cmp rax,0

www.neurensic.com

Branch Prediction

ld raxï[rbx+16]
...
cmp rax,0 No RAX yet, so no flags
jeq null_chk Branch not resolved
st [rbx-16]ïrcx ...speculative execution
jeq null_chk

• Flags not available so branch predicts
─ Execution past branch is speculative
─ If wrong, pay mispredict penalty to clean up mess
─ If right, execution does not stall
─ Right > 95% of time

www.neurensic.com

Multiple issue

• Modern CPUs are designed to issue
multiple instructions on each clock cycle

─ Called multiple-issue or superscalar execution
─ Offers possibility for CPI < 1

─ Subject to all the same constraints
(data contention, branch misprediction)
─ Requires even more speculative execution

www.neurensic.com

Dual-Issue or Wide-Issue

• Can be dual-issued or wide-issued
─ Same 1 clk for both ops
─ Must read & write unrelated registers
─ Or not use 2 of the same resource

• Dual issue is a common CPU feature
─ Not found on simplest embedded cpus

add rbx,16 add 16 to register RBX
cmp rax,0 then compare RAX to 0

www.neurensic.com

Register Renaming, Speculation, O-O-O

• Register renaming, branch prediction, speculation, O-O-O
are all synergistic

─ Speculative state kept in extra renamed registers
─ On mis-predict, toss renamed registers

─ Revert to original register contents, still hanging around
─ Like rolling back a transaction

─ On correct-predict, rename the extra registers
─ As the “real” registers

• Allows more execution past cache misses
─ Old goal: just run more instructions
─ New goal: run until can start the next cache miss

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx
ld rcxï[rdx+0]
ld raxï[rax+8]

www.neurensic.com

X86 O-O-O Dispatch Example

ld rax[rbx+16] Load RAX from memory
add rbx,16 Assume cache miss -
cmp rax,0 300 cycles to load
jeq null_chk Instruction starts and
st [rbx-16]ïrcx dispatch continues...
ld rcxï[rdx+0]
ld raxï[rax+8]

ld raxï[rbx+16]

Clock 0 – instruction 0

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16 Next op writes RBX -
cmp rax,0 which is read by prior op
jeq null_chk Register-renaming allows
st [rbx-16]ïrcx parallel dispatch
ld rcxï[rdx+0]
ld raxï[rax+8]

add rbx,16

Clock 0 – instruction 1

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0 RAX not available yet -
jeq null_chk cannot compute flags
st [rbx-16]ïrcx Queues up behind load
ld rcxï[rdx+0]
ld raxï[rax+8]

cmp rax,0

Clock 0 – instruction 2

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk flags still not ready
st [rbx-16]ïrcx branch prediction -
ld rcxï[rdx+0] speculates not-taken
ld raxï[rax+8] Limit of 4-wide dispatch -
 next op starts new clock

jeq null_chk

Clock 0 – instruction 3

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx Store is speculative
ld rcxï[rdx+0] Result kept in store buffer
ld raxï[rax+8] Also RBX might be null
 L/S used, no more mem
 ops this cycle

st [rbx-16]ïrcx

Clock 1 – instruction 4

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx
ld rcxï[rdx+0] Unrelated cache miss!
ld raxï[rax+8] Misses now overlap
 L/S unit busy again

ld rcxï[rdx+0]

Clock 2 – instruction 5

www.neurensic.com

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx
ld rcxï[rdx+0]
ld raxï[rax+8] RAX still not ready
 Load cannot start till
 1st load returns

ld raxï[rax+8]

Clock 3 – instruction 6

www.neurensic.com

X86 O-O-O Dispatch Summary

ld raxï[rbx+16] - In 4 clks started 7 ops
add rbx,16 - And 2 cache misses
cmp rax,0 - Misses return in cycle
jeq null_chk 300 and 302.
st [rbx-16]ïrcx - So 7 ops in 302 cycles
ld rcxï[rdx+0] - Misses totally dominate
ld raxï[rax+8] performance

www.neurensic.com

The Quest for ILP

• Itanium: a Billion-$$$ Effort to mine static ILP

• Theory: Big Gains possible on “infinite” machines
─ Machines w/infinite registers, infinite cache-misses,

infinite speculation, etc

• Practice: Not much gain w/huge effort
─ Instruction encoding an issue
─ Limits of compiler knowledge

─ e.g. memory aliasing even with whole-program opt
─ Works well on scientific apps
─ Not so well on desktop & server apps

www.neurensic.com

The Quest for ILP

• X86: a Grand Effort to mine dynamic ILP
─ Incremental addition of performance hacks

• Deep pipelining, ever wider-issue, parallel dispatch, giant
re-order buffers, lots of functional units, 128 instructions “in
flight”, etc

• Limited by cache misses and branch mispredict
─ Both miss rates are really low now
─ But a miss costs 100-1000 instruction issue slots
─ So a ~5% miss rate dominates performance

www.neurensic.com

How did this turn out?

• ILP is mined out
─ As CPUs get more complicated, more transistors are

thrown at dealing with the hazards of ILP
─ Like speculative execution
─ Instead of providing more computational power

─ Moore's law gives us a growing transistor budget
─ But we spend more and more on ILP hazards

• Contrast to GPUs
─ Zillions of simple cores
─ But only works well on narrow problem domain

www.neurensic.com

Agenda

• Introduction

• The Quest for ILP

• Memory Subsystem Performance and Data Races

• Specter and Meltdown

• New Performance Models for a New Era

www.neurensic.com

Memory subsystem performance

• Chart shows speedup in
CPU vs memory

─ Exponentially widening gap

• In older CPUs, memory access
was only slightly slower than register fetch

• Today, fetching from main memory could take several
hundred clock cycles

─ Modern CPUs use sophisticated multilevel memory caches
─ And cache misses still dominate performance

www.neurensic.com

Types of memory

• Static RAM (SRAM) – fast but expensive
─ Six transistors per bit

• Dynamic RAM (DRAM) – cheap but slow
─ One transistor + one capacitor per bit
─ Improvements in DRAM (DDR, DDR2, DDR4, etc)

improve bandwidth but latency not so much
─ More improvements in power & density than speed

www.neurensic.com

Caching

• Adding small amounts of faster SRAM can really improve
memory performance

─ Caching works because programs exhibit both code and
data locality (in both time & space)
─ Typically have separate instruction and data caches
─ Code and data each have their own locality

• Moves the data closer to the CPU
─ Speed of light counts!
─ Major component of memory latency is wire delay

www.neurensic.com

Caching

• As the CPU-memory speed gap
widens, need more cache layers

─ Relative access speeds
─ Register: <1 clk
─ L1: ~3 clks
─ L2: ~15 clks
─ Main memory: ~300 clks

• On multicore systems, lowest
cache layer is shared

─ But not all caches visible to
all cores

www.neurensic.com

Caching

• With high memory latency, ILP doesn't help
─ In the old days, loads were cheap and multiplies / FP ops

were expensive
─ Now, multiplies are cheap but loads expensive!

• With a large gap between CPU and memory speed, cache
misses dominate performance

• Memory is the new disk!

www.neurensic.com

In search of faster memory access

• To make memory access cheaper
─ Relax coherency constraints
─ Improves throughput, not latency

─ Is this theme sounding familiar yet?

• More complex programming model
─ Must use synchronization to identify shared data

• Weird things can happen
─ Stale reads
─ Order of execution is

 relative to the observing CPU (thread)

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

Memory Controller

CPUs

Caches

RAM

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

Complex reality:
Many cache levels
Each layer is 10x bigger
And 10x slower

RAM is itself complex:
“Best effort” throughput
Not FIFO !

Data is replicated
No single “home”

Complex protocol
 Modified
 Exclusive
 Shared
 Invalid

Memory Controller

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

bool flag;
Object data;
init() {
 data = ...;
 flag = true;
}
Object read() {
 if(!flag) ...;
 return data;
}

Memory Controller

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

bool flag;
Object data;

Initial values
Memory Controller

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax

data: 0 S
----: --- I

?flag
Compute

data: 0
flag: 0

?flag

if(!flag) ...

ld rax,[&flag]

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax

data: 0 S
----: --- I

?flag
Compute

data: 0
flag: 0

!flag

if(!flag) ...

ld rax,[&flag]

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax

data: 0 S
----: --- I

?flag
jeq rax,...

data: 0
flag: 0

-flag

if(!flag) ...

ld rax,[&flag]
jeq rax,...

 ?flag

jeq rax,...

Load not ready
Value unknown
Branch predicts!

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

rax:123

----: --- I
flag: 0 S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0 S
----: --- I

?flag, ?data

data: 0
flag: 0

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

Speculative
execution

?datadata:123

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

rax:123

----: --- I
flag: 0 S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0 S
----: --- I

?flag, ?data

data: 0
flag: 0

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

?datadata:123
True
data
race

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0 S
----: --- I

?flag, ?data

data: 0
flag: 0

!data

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

data:0

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

-data

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

data in 2 places
Value is relative to observer

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 0 S

flag:1
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

!flag

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

flag:1

data:123

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

-flag

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

data:123 ?flag

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

data:123 ?flag

flag:1

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

flag:1 ?flag
data:123

flag:1

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
flag: 1 S

?flag

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

flag:1
data:123

flag:1

www.neurensic.com

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 S

LD/ST Unit
Compute

CPU #1

rax:1, rbx:0

----: --- I
flag: 1 S

LD/ST Unit

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]
ret rbx

flag:1
data:123

Returning null
Crash-n-burn time!

www.neurensic.com

Agenda

• Introduction

• The Quest for ILP

• Memory Subsystem Performance and Data Races

• Specter and Meltdown

• New Performance Models for a New Era

www.neurensic.com

Specter & Meltdown

• Both use CPU speculation
─ Speculation changes the non-architectural state

─ e.g. state of caches, branch prediction, BTB

• Speculation loads secret data into cache

• Secret data still not available to normal process
─ Security works as expected

• Then read cache via timing
─ Side-channel timing attack

address value

0x123 0x456

key keybytes

0x234 0x567

0x345 0x678

www.neurensic.com

Specter

• Find certain code in victim’s memory:

• ary is byte[]; attacker knows both ary and buf

• Attacker controls x but x is range-checked

• Goal: read byte at any address ‘key’ using speculation
─ Such as secret crypto byte k

• Pick x = key – ary; e.g. ary[x] == key

if (x < ary.length)
 y = buf[ary[x] * 256];

www.neurensic.com

Specter: Train Branch Prediction

• Want range-check predicted to pass:

• It normally does. Use code normally ‘enough’ times.
─ ‘enough’ varies by CPU, but e.g. 100 times should work

• During attack, ary.length will miss in cache and CPU
will speculate next instruction

─ With carefully selected ary[x] == key

if (x < ary.length)
 y = buf[ary[x] * 256];

branch address Prediction

&(x<len) false

0x123 false

0x456 true

www.neurensic.com

Specter: Prepare caches

• L1 cache is e.g. 64kb with 2048 32b lines.
─ Suffices to read 2048 times from 64kb array
─ L2 is larger, but flushed with same strategy

• Desired end result:
─ Cache does NOT hold ary.length nor any of buf.

• Load ‘key’ into cache, e.g. ask process to use crypto key
─ Note: ‘k’ still not available to attacker
─ But IS in cache
─ On the value side, not the address side

address value

junk 0

junk+32 0

junk+64 0

junk+96 0

address value

junk 0

key k

junk+64 0

junk+96 0

www.neurensic.com

Specter: Run the Attack

• Load ary.length misses in cache ld4 Rlen,[Rary+4]

address value

junk 0

key k

junk+64 0

junk+96 0

www.neurensic.com

Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

address value

junk 0

key k

junk+64 0

junk+96 0

www.neurensic.com

Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

• Branch speculates

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

ja fail_check

address value

junk 0

key k

junk+64 0

junk+96 0

www.neurensic.com

Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

• Branch speculates

• Following load of ‘k’ hits in cache

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

ja fail_check

ld1 Rk,[Rary+Rx]

mul Rtmp,Rk*256

address value

junk 0

key k

junk+64 0

junk+96 0

www.neurensic.com

Specter: Run the Attack

• Load ary.length misses in cache

• Range check unknown, pending

• Branch speculates

• Following load of ‘k’ hits in cache

• Dependent load changes cache

• Note: value of ‘k’ now in cache address

ld4 Rlen,[Rary+4]

cmp Rx,Rlen

ja fail_check

ld1 Rk,[Rary+Rx]

mul Rtmp,Rk*256

ld8 Ry,[Rtmp+Rbuf]

address value

junk 0

key k

junk+64 0

k*256+buf 0x1234

www.neurensic.com

Specter: Read out secret ‘k’

• Time cache loads
─ for i=0 to 255

─ rdtsc // read fast&accurate counter
─ ld Ra,[buf+i*256]
─ Diff rdtsc // check speed of load

─ Will be fast for i==’k’ and slow for other i

• We now have ‘k’

• Repeat for other bytes of ‘key’
─ ...and we now have entire crypto key

• Actually, fast enough to read much of process

www.neurensic.com

Agenda

• Introduction

• The Quest for ILP

• Memory Subsystem Performance and Data Races

• Specter and Meltdown

• New Performance Models for a New Era

www.neurensic.com

Managing performance

• Dominant operations
─ 1985: page faults

─ Locality is critical
─ 1995: instructions executed

─ Multiplies are expensive, loads are cheap
─ Locality not so important

─ 2005: cache misses
─ Multiplies are cheap, loads are expensive!
─ Locality is critical again!

─ 2015: same speed cores, but more of them

• We need to update our mental performance models as the
hardware evolves

www.neurensic.com

Think Data, Not Code

• In the old days, we could count instructions
─ Because instruction time was predictable

• Today, performance is dominated by
patterns of memory access

─ Cache misses dominate – memory is the new disk
─ VMs are very good at eliminating the cost of code

abstraction, but not yet at data indirection

• Multiple data indirections may mean
multiple cache misses

─ That extra layer of indirection hurts!

www.neurensic.com

Think Data, Not Code

• Remember when buffer-copy was bad?
─ (hint: 80's OS classes, zero-copy network stacks)

• Now it's Protobuf → JSON → DOM → SQL → …

• Each conversion passes all data thru cache

• Don't bother converting unless you must!

• If you convert for speed (e.g. JSON → DOM)
─ Then must recoup loss with repeated DOM use
─ A 1-use conversion is nearly always a loser

www.neurensic.com

Share & mutate less

• Shared data == OK

• Mutable data == OK

• Shared + mutable data = EVIL
─ More likely to generate cache contention

─ Multiple CPUs can share a cache line if all are readers
─ Requires synchronization

─ Error-prone, has costs

• Bonus: exploiting immutability also tends to make for more
robust code

─ Tastes great, less filling!

www.neurensic.com

New metrics, new tools

• With Chip-Multi-Threading, speedup depends on how
memory is used:

─ Code with lots of misses may see linear speedup
─ (until you run out of bandwidth)

─ Code with no misses may see none

• CPU utilization is often a misleading metric

• Need cache-utilization tools, bandwidth tools

• Out-of-cache is hard to spot in most profilers
─ Just looks like all code is slow...

www.neurensic.com

Summary

• CPUs give the illusion of simplicity

• But are really complex under the hood
─ There are lots of parts moving in parallel
─ The performance model has changed
─ Heroic efforts to speed things up are mined out

• Performance analysis is not an armchair game
─ Unless you profile (deeply) you just don't know
─ Premature optimization is the root of much evil

For more information

Dr Cliff Click Kraków, 9-11 May 2018

● Computer Architecture: A Quantitative Approach

– Hennesey and Patterson

● What Every Programmer Should Know About
Memory

– Ulrich Drepper

Dr. Cliff Click
cliffc@acm.org

http://www.cliffc.org/blog

	PRESENTATION TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

