
 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2005, Allen I. Holub www.holub.com 1

Allen I. Holub
Holub Associates
www.holub.com
allen@holub.com

Everything
You Know is

Wrong!

©2003, Allen I. Holub www.holub.com 2

The Problem

©2003, Allen I. Holub www.holub.com 3

Words of Wisdom

"A long habit of not thinking a thing wrong,
gives it a superficial appearance of being
right, and raises at first a formidable outcry
in defense of custom."

-Thomas Paine

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 4

People don’t know they don’t
know

• Unskilled and Unaware of It: How
Difficulties in Recognizing One's Own
Incompetence Lead to Inflated Self-
Assessments

» Justin Kruger and David Dunning, Department
of Psychology, Cornell University.

• http://www.apa.org/journals/psp/psp7761121.html

• I’ve gotten death threats when I’ve written
about this stuff.

©2003, Allen I. Holub www.holub.com 5

Procedural thinking is
everywhere

• OO really is a different way of thinking about
programming.

• Don’t confuse familiar with “right.”
– Procedural methods are familiar.
– Many commonly used libraries (particularly open

source [e.g. Struts, JavaBeans]) are
fundamentally procedural.

• It takes as long (or longer) to learn design
as it does to learn how to program.
– Programming and design are different disciplines.

©2003, Allen I. Holub www.holub.com 6

Basic OO principles.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 7

OO ≠ Procedural

main

•Centralized control.

•Data passed to functions.

•Cloud of peers.

•Messages flow between
objects, data stays put.

©2003, Allen I. Holub www.holub.com 8

The “Replacement” Principal

You should be able to
radically change a

class’s implementation,
even replace it entirely,
without affecting any of

the objects that use
that class.

©2003, Allen I. Holub www.holub.com 9

Data abstraction

• The less you know about how objects work,
the more maintainable your code.

• The less you know about the actual classes
you’re using, the more maintainable your
code. (Abstraction)
– Program in terms of an abstraction layer

(interfaces), not concrete classes.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 10

What is an object?

• Objects are defined by what they do,
not what they contain.
– objects ≠ data + functions.
– objects have responsibilities, not data.

• The way in which the object does the work
should be completely hidden
(Encapsulation).

©2003, Allen I. Holub www.holub.com 11

Ask for help, not for information

 Don’t ask an object to give
you the data you need to do
something  ask the object
that has the information to do
the work for you. (Delegation)

©2003, Allen I. Holub www.holub.com 12

Some Examples

• An Employee doesn’t need a getName()
– exportAsXML(“name”, Writer out);

• A String doesn’t need a getBytes()
– The String class should support all necessary string

operations.

– String.print(Writer)

• An EJB running on a bank’s server does not
need a getBalance().

Boolean IsBalanceGreaterThan(
Money requestedFunds);

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 13

Getters and Setters Are Evil

©2003, Allen I. Holub www.holub.com 14

More on Data Abstraction

• The goal is to be able to change a class’s
implementation without impacting the code
that uses that class.

• Implications of implementation hiding:
– public fields are bad

• They expose implementation.

– Getter/setter (accessor/mutator) methods are
bad
• They are just complicated ways of making a field

public.

©2003, Allen I. Holub www.holub.com 15

An example of why accessors are
bad

• Consider this class: class Money
{ double value;

double getValue();
}

• What if you need to support multiple currencies?
– getValue() fails: we don’t know the currency.
– Adding getCurrency() doesn’t help

• All the code that uses getValue() must be modified to
use getCurrency().

– Operations like comparing values represented in
different currencies are now complicated, and
must be performed all over your code.

– Can’t be fixed with automated refactoring.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 16

The problem is endemic

• A procedural programmer sees nothing
wrong.
– Many books recommend putting mutators and

accessors on all fields!

• JavaBeans introduced the getter/setter
“design pattern” because it was “easy.”
– There’s a better alternative, called a

BeanCustomizer, but nobody uses it.
– “Metadata” (Java 1.5) is vastly better:

@property private int someProperty;

• People have blindly copied the idiom
without considering the consequences.

©2003, Allen I. Holub www.holub.com 17

How should it work?

• Don’t ask for the information that you need
to do the work; ask the object that has the
information to do the work for you.

class Money
{ private double value;

public Money addTo (Money x) {/*...*/}
public int compare (Money x) {/*...*/}
public Money printTo (Writer w) {/*...*/}

 public String asXML () {/*...*/}
public String toString () {/*...*/}

}

©2003, Allen I. Holub www.holub.com 18

Ramifications in the UI

• An object must be responsible for building its own UI.
– or at least providing generic representations of its attributes.

• (Simplistically) not
System.out.println(obj.getAttribute());

but
obj.printTo(Writer w);

or
JComponent c =
 object.getRepresenationOf(“attribute”);

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 19

A realistic solution

• You can’t add a billion printYourselfAsXXX()
methods for different representations.

• exportAsXML() can work, but is awkward.
• Solve the problem generically with the GoF Builder

design pattern.
– An object (the “director”) builds a representation to itself

by passing information to a builder object, which is passed
into the director.

– Different builders build different products.
– The director doesn’t know what is build.
– Accessors, if reqired, are part of the builder, not the

director, so changes in the director ripple only to the
builders.

©2003, Allen I. Holub www.holub.com 20

Using the Builder

XMLBuilder exporter = new XMLBuilder();
Employee.exportTo(exporter);
exporter.printTo (someOutputStream);

JComponentBuilder builder =
new JComponentBuilder();

Employee.exportTo(builder);
someFrame.add(builder.getRepresentation());

XMLImporter importer= new XMLImporter(stream);
Employee fred = new Employee(importer);

©2003, Allen I. Holub www.holub.com 21

Builder (1)

public class Employee
{ private Name name;
 private EmployeeId id;
 private Money salary;

 public interface Exporter
 { void addName (String name);
 void addID (String id);
 void addSalary (String salary);
 }

 public interface Importer
 { String provideName();
 String provideID();
 String provideSalary();
 void open();
 void close();
 }

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 22

Builder (2)

public Employee(Importer builder)
{ builder.open();

this.name = new Name (builder.provideName());
 this.id = new EmployeeId(builder.provideID());
 this.salary = new Money (builder.provideSalary(),
 new Locale("en","US"));
 builder.close();
 }

 public void export(Exporter builder)
 { builder.addName (name.toString());
 builder.addID (id.toString());
 builder.addSalary(salary.toString());
 }
 //...
}

©2003, Allen I. Holub www.holub.com 23

Building a Swing UI

class JComponentExporter implements Employee.Exporter
{ private String name, id, salary;

 public void addName (String name){ this.name = name;}
 public void addID (String id){ this.id = id; }
 public void addSalary(String salary){this.salary=salary;}

 JComponent getJComponent()
 { JComponent panel = new JPanel();
 panel.setLayout(new GridLayout(3,2));
 panel.add(new JLabel("Name: "));
 panel.add(new JLabel(name));
 panel.add(new JLabel("Employee ID:"));
 panel.add(new JLabel(id));
 panel.add(new JLabel("Salary:"));
 panel.add(new JLabel(salary));
 return panel;
 }
}

©2003, Allen I. Holub www.holub.com 24

Exporting to HTML

HTMLExporter implements Employee.Exporter
{ private final String HEADER = "<table border=\"0\">\n";
 private final StringBuffer out = new StringBuffer(HEADER);

 public void addName(String name)
 { out.append("\t<tr><td>Name:</td><td>");
 out.append("<input type=\"text\" name=\"name\”value=\"");
 out.append(name);
 out.append("\"></td></tr>\n");
 }
 public void addID(String id) { /*.. .*/ }
 public void addSalary(String salary) { /*.. .*/ }
 String getHTML()
 { out.append("</table>");
 String html = out.toString();
 out.setLength(0); // erase the buffer
 out.append(HEADER);
 return html;
 }
} HTML Exporter e = new HtmlExporter;

someEmployee.export(e);
someStream.print(e.getHTML());

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 25

Initializing from an HTML form

class HTMLImporter implements Employee.Importer
{ ServletRequest request;
 public void open() { /*nothing to do*/ }
 public void close(){ /*nothing to do*/ }
 public HTMLImporter(ServletRequest request)
 { this.request = request;
 }
 public String provideName()
 { return request.getParameter("name");
 }
 public String provideID()
 { return request.getParameter("id");
 }
 public String provideSalary()
 { return request.getParameter("salary");
 }
}

Employee e =
new Employee(new HTMLImporter(request));

©2003, Allen I. Holub www.holub.com 26

Ask for help, not for information

• Eliminate getters/setters by rethinking how
the object works.

• Ask the object that has the information
to do the work for you.
– then you don’t need to “get” anything.

• Develop code using accepted OO-Design
processes.
– Code that develops from use-case analysis and

dynamic modeling doesn’t have getters &
setters because they simply aren’t necessary.

©2003, Allen I. Holub www.holub.com 27

When are getters/setters okay?

• Returning an object in terms of an interface that it
implements can reduce the consequences, but
should be avoided if possible.
– Eg. Collection.iterator().
– The returned object must hid its own implementation.

• Accessors/mutators are mandatory at the
“procedural boundary layer.”
– The database.
– The Operating System.
– The UI Toolkit.

• Designers of generic toolkits must accessors and
mutators because they don’t know how the objects
will be used, so can’t define the operations.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 28

Extends is evil

©2003, Allen I. Holub www.holub.com 29

Inheritance

• There are two types of inheritance:
– Implementation inheritance (extends)

• The base class has methods and fields which
are effectively part of (are inherited by) the
derived class.

– Interface inheritance (implements)
• The base class is nothing but prototypes of

methods that are implemented by the derived
class.

• Implementation inheritance is risky, and
can almost always be replaced by interface
inheritance and delegation.

©2003, Allen I. Holub www.holub.com 30

Interfaces make your code more
flexible.

• LinkedList list = new LinkedList();
g(list);

g(LinkedList list)
{ list.add(...);
 g2(list)
}

• – vs. –
Collection list = new LinkedList();
g(list);

g(Collection list)
{ list.add(...);
 g2(list)
}

Changing the
collection type doesn’t
impact g().

Changing the list
type impacts g().

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 31

Design patterns can add even
more flexibilty

• void f2()
{ Collection c = new HashSet();
 //...
 g2(c.iterator());
}

void g2(Iterator i)
{ while(i.hasNext() ;)
 do_something_with(i.next());
}

©2003, Allen I. Holub www.holub.com 32

When is implementation
inheritance appropriate?

• Implementation normalization.
– Encapsulate into a base class operations that

would otherwise be implemented identically in
several derived classes.

• Compile-time restriction of activities.
Class Employee { /*…*/ }
Class Manager extends Employee
{ do_manager_stuff(){/*…*/}
}

• Other reasonable uses of extends all
involve design trade offs.

©2003, Allen I. Holub www.holub.com 33

Fragile base classes

• The main problem with implementation
inheritance is “fragility.”
– Derived classes often depend on base class

behaving in a certain way.
– If you change the behavior of a base-class

method, you can break the derived class.
– This base-class change is often an

IMPROVEMENT.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 34

Consider this code

• class Stack extends ArrayList
{ private int stack_pointer = 0;

 public void push(Object article)
 { add(stack_pointer++, article);
 }

 public Object pop()
 { return remove(--stack_pointer);
 }

 public void push_many(Object[] articles)
 { for(int i = 0; i < articles.length; ++i)
 push(articles[i]);
 }
}

©2003, Allen I. Holub www.holub.com 35

So what’s wrong?

• What if a user leverages inheritance and uses
the ArrayList's clear() method to pop everything
off the stack:
Stack a_stack = new Stack();
a_stack.push("1");
a_stack.push("2");
a_stack.clear();

• The stack pointer is not modified, so the stack
now holds garbage.

©2003, Allen I. Holub www.holub.com 36

How about using encapsulation?

• class Stack
{ private int stack_pointer = 0;
 private ArrayList the_data = new ArrayList();
 public void push(Object article)
 { the_data.add(stack_pointer++, article);
 }
 public Object pop()
 { return the_data.remove(--stack_pointer);
 }
 public void push_many(Object[] articles)
 { for(int i = 0; i < o.length; ++i)
 push(articles[i]);
 }
}

• There’s no clear() [that’s good]. But ...

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 37

The new version breaks under
inheritance

• class MonitorableStack extends Stack
{ private int high_water_mark = 0;
 private int current_size;
 public void push(Object article) // override
 { if(++current_size > high_water_mark)
 high_water_mark = current_size;
 super.push(article);
 }
 public Object pop() // override
 { --current_size;
 return super.pop();
 }
 public int maximum_size_so_far() // new
 { return high_water_mark;
 }
 // inherit pushMany();
}

©2003, Allen I. Holub www.holub.com 38

Consider what happens when
someone improves base class

class Stack
{ private int stack_pointer = -1;
 private Object[] stack = new Object[1000];
 public void push(Object article)
 { assert stack_pointer < stack.length;
 stack[++stack_pointer] = article;
 }

//...
 public void push_many(Object[] articles)
 { assert (stack_pointer + articles.length) < stack.length;

 System.arraycopy(articles, 0, stack, stack_pointer+1,
 articles.length);

 stack_pointer += articles.length;
 }
}

No longer
calls push()

©2003, Allen I. Holub www.holub.com 39

The improvement broke the
derived class.

• The MonitorableStack did not override
pushMany() because it expected pushMany() to
call push() (which it did override).

• If someone calls pushMany(), then the high-
water-mark will not be adjusted.

• A solution using interfaces and
encapsulation fixes the problem
permanently. (next slide)

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 40

An improved version (1)

• First, introduce an interface:

interface Stack
{ void push(Object o);
 Object pop();
 void push_many(Object[] source);
}

• Implement SimpleStack just like before, but
implement the interface:

class SimpleStack implements Stack
{ //... as in eariler slide.
}

©2003, Allen I. Holub www.holub.com 41

An improved version (2)

class MonitorableStack implements Stack
{ private SimpleStack stack = new SimpleStack();

 private int high_water_mark = 0, current_size;
 public void push(Object o)

 { if(++current_size > high_water_mark)
 high_water_mark = current_size;
 stack.push(o);
 }
 //...
 public void push_many(Object[] source)
 { if(current_size + source.length > high_water_mark)
 high_water_mark = current_size + source.length;
 stack.push_many(source);
 }
 //...
}

©2003, Allen I. Holub www.holub.com 42

The “inheritance” pattern

• Rather than:
class Simple{ void f(){ /*...*/ } }
class Specialization extends Simple{ /*...*/ }

Use:
interface Simple
{ void f();

static class Implementation implements Simple
{ void f(){ /* does some work */ }
}

}
class Specialization implements Simple
{ Simple delegate = new Simple.Implementation();

void f(){ delegate.f(); }
}

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 43

A few observations

• At any time in the future, anyone can add a
method to a base class (e.g. clear()) that
might break the derived class.

• Avoid “Framework” architectures. (in which
you must use implementation inheritance to
customize base-class behavior)

• Since you can implement as many
interfaces as you like, you can use the
“inheritance” pattern to implement multiple
inheritance in Java.

©2003, Allen I. Holub www.holub.com 44

What this all means

©2003, Allen I. Holub www.holub.com 45

There is no such thing as perfect

• Design is a series of trade-offs.
• Assess risk, then make reasonable decisions.

– If you use implementation inheritance, then you
run the risk of a fragile-base-class related bug.

– If you expose implementation (with getters and
setters) then you run the risk of a change to the
exposing class rippling out to the entire program,
with concomitant maintenance headaches.

– That might be okay. Use your brain!

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 46

There’s often a better solution

• Approach popular libraries with skepticism
– Use them if they help, but don’t hold them out as a model

of good design.

• There’s almost always a way to do it “right.”
– Move the work into the class that has the information

needed to do the work.
– Replace implementation inheritance with interface

inheritance.

• You will learn to think in an OO way with enough
practice.

• Study design.
– Know the Gang-of-Four design patterns cold.
– Read code.
– Learn at least two OO languages.

©2003, Allen I. Holub www.holub.com 47

References

• These slides
– http://www.holub.com/publications/notes_and_slides

• Why extends is evil: Improve your code by
replacing concrete base classes with interfaces
– http://www.javaworld.com/javaworld/jw-08-2003/jw-

0801-toolbox.html

• Why getter and setter methods are evil: Make your
code more maintainable by avoiding accessors
– http://www.javaworld.com/javaworld/jw-09-2003/jw-

0905-toolbox.html

• More on getters and setters: Build user interfaces
without getters and setters
– http://www.javaworld.com/javaworld/jw-01-2004/jw-

0102-toolbox.html

©2003, Allen I. Holub www.holub.com 48

Shameless Self-Promotion

The first couple chapters
discuss these issues
in depth.

 www.holub.com

 © 2005, Allen I. Holub. All Rights Reserved. DO NOT DUPLICATE ‹#›

©2003, Allen I. Holub www.holub.com 49

Q&A

Allen Holub
www.holub.com

