1Y

Effective Aggregate Design
Part I: Modeling a Single Aggregate

Vaughn Vernonyvernon@shiftmethod.com

Clusteringentities andvalue objects into anaggregate
with a carefully crafted consistency boundary mifjrst
seem like quick work, but among all [DDD] tacticplid-
ance, this pattern is one of the least well underkt

To start off, it might help to consider some comnooies-
tions. Is areggregate just a way taclustera graph of
closely related objects under a common parent@, liss
there some practical limit to the number of objebtt
should be allowed to reside in the graph? Sinceagne
gregate instance can reference otlaggregate instances,
can the associations be navigated deeply, modifyangpus
objects along the way? And what is this conceptwdiri-
antsand aconsistency boundamil about? It is the answer
to this last question that greatly influences theveers to
the others.

There are various ways to mo@gpregates incorrectly.
We could fall into the trap of designing for comjpiosal
convenience and make them too large. At the otheoé
the spectrum we could strip alfjgregates bare, and as a
result fail to protect true invariants. As we'lesét's imper-
ative that we avoid both extremes and instead fiaptéoon
to the business rules.

Designing a Scrum Management Application

The best way to explaisggregatesis with an example.
Ouir fictitious company is developing an applicattorsup-
port Scrum-based projecfrojectOvation It follows the
traditional Scrum project management model, coreplet
with product, product owner, team, backlog itentanped
releases, and sprints. If you think of Scrum atidiest,
that's wherd°rojectOvationis headed. This provides a fa-
miliar domain to most of us. The Scrum terminoldggyms
the starting point of thabiquitous language. It is a
subscription-based application hosted using theveoé as
a service (SaaS) model. Each subscribing orgaaiz i
registered as tenant another term for ourbiquitouslan-
guage.

The company has assembled a group of talented Sexum
perts and Java developéddowever, their experience with
DDD is somewhat limited. That means the team iago
make some mistakes with DDD as they climb a difficu
learning curve. They will grow, and so can we. Thei
struggles may help us recognize and change siomila-
vorable situations we've created in our own soféwar

1 Although the examples use Java and Hibernatef tis material is applicable
to C# and NHibernate, for instance.

The concepts of this domain, along with its perfance
and scalability requirements, are more complex #granof
them have previously faced. To address these issneof
the DDD tactical tools that they will employaggr egate.

How should the team choose the best object clistere
aggregate pattern discusses composition and alludes to in-
formation hiding, which they understand how to awgbi It
also discusses consistency boundaries and tramsschiut
they haven't been overly concerned with that. Ttlearsen
persistence mechanism will help manage atomic casnmi
of their data. However, that was a crucial misustéerding

of the pattern's guidance that caused them to segkéere's
what happened. The team considered the followiaig st
ments in thaubiquitous language:

« Products have backlog items, releases, and sprints.
» New product backlog items are planned.

» New product releases are scheduled.

» New product sprints are scheduled.

- Aplanned backlog item may be scheduled for
release.

» Ascheduled backlog item may be committed to a
sprint.

From these they envisioned a model, and madefirstir
attempt at a design. Let's see how it went.

First Attempt: Large-Cluster Aggregate

The team put a lot of weight on the words “Prodietge”
in the first statement. It sounded to some like position,
that objects needed to be interconnected like gatbb
graph. Maintaining these object life cycles togethas
considered very important. So, the developers atitzd
following consistency rules into the specification:

« If a backlog item is committed to a sprint, we must
not allow it to be removed from the system.

« If a sprint has committed backlog items, we must
not allow it to be removed from the system.

- If arelease has scheduled backlog items, we must
not allow it to be removed from the system.

» If a backlog item is scheduled for release, we must
not allow it to be removed from the system.

As a resultPr oduct was first modeled as a very larag
gregate. Theroot object,Pr oduct , held allBackl og

It em allRel ease, and allSpr i nt instances associated
with it. The interface design protected all partsf inad-
vertent client removal. This design is shown inflkw-
ing code, and as a UML diagram in Figure 1:

public class Product extends ConcurrencySafeEntity {
private Set<Backl oglten> backl oglt ens;
private String description;
private String nang;
private Productld productld;
private Set<Rel ease> rel eases;
private Set<Sprint> sprints;
private Tenantld tenantld;

(Laggregate rootdd

Praduct
1
Veo..* Vo..* Vo..x
Centity>) entity?) Centity>)
Backl gitem Release Sprint

Figure1: Product modeled as a very largggregate.

The bigaggregate looked attractive, but it wasn't truly
practical. Once the application was running inritended
multi-user environment it began to regularly expece
transactional failures. Let's look more closela &¢w cli-
ent usage patterns and how they interact with exhrtical
solution model. Ouaggregate instances employ optimistic
concurrency to protect persistent objects from fameous
overlapping modifications by different clients, shavoid-
ing the use of database locks. Objects carry doreraim-
ber that is incremented when changes are made and
checked before they are saved to the database Ver-
sion on the persisted object is greater than th&iome on
the client's copy, the client's is considered saalg updates
are rejected.

Consider a common simultaneous, multi-client ussogs-
ario:

- Two users, Bill and Joe, view the saRreoduct
marked as version 1, and begin to work on it.

- Bill plans a newBackl ogl t emand commits.
ThePr oduct version is incremented to 2.

« Joe schedules a nd®el ease and tries to save,
but his commit fails because it was based on
Pr oduct version 1.

Persistence mechanisms are used in this generaiondaal
with concurrency.If you argue that the default concurrency
configurations can be changed, reserve your vefolic

while longer. This approach is actually importanptotect-
ing aggregate invariants from concurrent changes.

These consistency problems came up with just tveosus
Add more users, and this becomes a really big probl
With Scrum, multiple users often make these kinfdsver-
lapping modifications during the sprint planningatiag
and in sprint execution. Failing all but one ofitlrequests
on an ongoing basis is completely unacceptable.

Nothing about planning a new backlog item shougidde
ally interfere with scheduling a new release! Wity &be's
commit fail? At the heart of the issue, the largesterag-
gregate was designed with false invariants in mind, nat re
business rules. These false invariants are asifi@in-
straints imposed by developers. There are othes iay

the team to prevent inappropriate removal withaihd ar-
bitrarily restrictive. Besides causing transactiassues,

the design also has performance and scalabilitylohaks.

Second Attempt: Multiple Aggregates

Now consider an alternative model as shown in Edrin
which we have four distin@ggregates. Each of the de-
pendencies is associated by inference using a commo
Pr oduct I d, which is the identity oPr oduct con-
sidered the parent of the other three.

{Caggregate root?d
Product

- Cvalve object))

Praductid
({aggregate rootd)

(Caggregate rootd)
Backls gltem

(Caggregate rootd)

Release Spriat

Figure 2: Product and related concepts are modeled as
separateggr egate types.

Breaking the largeggregate into four will change some
method contracts or oduct . With the large clusteag-
gregate design the method signatures looked like this:

public class Product ... {

public void pl anBackl ogl t en{
String aSummary, String aCategory,
Backl ogl t eniType aType, StoryPoints aStoryPoints) {

2 For example, Hibernate provides optimistic coneny in this way. The same
could be true of a key-value store because theecatfir egate is often serial-
ized as one value, unless designed to save compasesdseparately.

public void schedul eRel ease(
String aName, String aDescription,
Dat e aBegi ns, Date anEnds) {

}

public void schedul eSprint (
String aName, String aCoal s,
Dat e aBegins, Date anEnds) {

All of these methods are [CQS] commands. Thahisy t
modify the state of thEBr oduct by adding the new ele-
ment to a collection, so they have @i d return type. But
with the multipleaggregate design, we have:

{

public class Product ...

publ i ¢ Backl ogl t em pl anBackl ogl t en{
String aSummary, String aCategory,
Backl ogl t enlType aType, StoryPoints aStoryPoints) {

}

publ i c Rel ease schedul eRel ease(
String aName, String aDescription,
Dat e aBegins, Date anEnds) {

}

public Sprint schedul eSprint(
String aName, String aCoal s,
Dat e aBegi ns, Date anEnds) {

These redesigned methods have a [CQS] query cgntrac
and act asactories. That is, they each respectively create a
newaggregate instance and return a reference to it. Now
when a client wants to plan a backlog item, thedaation-

al application service must do the following:

public class ProductBackl ogltenService ... {
@ransactional
public void pl anProduct Backl ogl t en(

String aTenantld, String aProductld,

String aSummary, String aCategory,

String aBackl ogltenilype, String aStoryPoints) {

Product product =
product Reposi t ory. product Of | d(
new Tenant | d(aTenant | d),
new Product | d(aProductld));

Backl ogl t em pl annedBack! ogl tem =
product . pl anBackl ogl t en{
asummary,
aCat egory,
Backl ogl t enTType. val ueCf (aBackl ogl t enilype) ,
St or yPoi nts. val ueC (aSt oryPoi nts)) ;

backl ogl t enReposi t ory. add(pl annedBackl ogl t em) ;

So we've solved the transaction failure isbyenodeling it
away Any number oBackl ogl t em Rel ease, and

Spri nt instances can now be safely created by simultan-
eous user requests. That's pretty simple.

However, even with clear transactional advantaiesfour
smalleraggregates are less convenient from the perspect-
ive of client consumption. Perhaps instead we ctwhe

the largeaggregate to eliminate the concurrency issues. By
setting our Hibernate mappirgt i m sti c-1 ock op-

tion tof al se, the transaction failure domino effect goes
away. There is no invariant on the total numbecrefited
Backl ogl t em Rel ease, orSpri nt instances, so why
not just allow the collections to grow unbounded &nore
these specific modifications ¢ oduct ? What additional
cost would there be in keeping the large cluatgr egate?
The problem is that it could actually grow out ofitrol.
Before thoroughly examining why, let's consider nhest
important modeling tip the team needed.

Rule: Model True Invariants In Consistency
Boundaries

When trying to discover thaggregates in abounded con-
text, we must understand the model's true invariantgy O
with that knowledge can we determine which objects
should be clustered into a givaggregate.

An invariant is a business rule that must alwaysdresist-
ent. There are different kinds of consistency. @rteans-
actional, which is considered immediate and atoiffiere
is also eventual consistency. When discussing iants,
we are referring to transactional consistency. Wghin
have the invariant:

c=a+b

Therefore, whem is 2 andb is 3,¢c must be 5. According
to that rule and conditions, f is anything but 5, a system
invariant is violated. To ensure thais consistent, we
model a boundary around these specific attributtéiseo
model:

Aggr egat eTypel {

int a; int b; int c;

operations...
}

The consistency boundary logically asserts thatyghimg
inside adheres to a specific set of business iamtirules

no matter what operations are performed. The ctamgig

of everything outside this boundary is irrelevantteag-
gregate. Thus,aggregate is synonymous with transactional
consistency boundary. (In this limited example,

Aggr egat eTypel has three attributes of typet , but
any givenaggregate could hold attributes of various types.)

When employing a typical persistence mechanism seeau

single transactiotto manage consistency. When the trans- To see this clearly, look at the diagram in FigBieontain-

action commits, everything inside one boundary rbest
consistent. A properly designadgregate is one that can
be modified in any way required by the busines$ w# in-
variants completely consistent within a single $aation.
And a properly designeabunded context modifies only

ing the zoomed composition. Don't let the 0..* fgou; the
number of associations will almost never be zewaiti
keep growing over time. We would likely need todoa
thousands and thousands of objects into memoat all
once, just to carry out what should be a relativelgic op-

oneaggregate instance per transaction in all cases. What iseration. That's just for a single team member sihgle

more, we cannot correctly reasonagyregate design
without applying transactional analysis.

Limiting the modification of onaggregate instance per
transaction may sound overly strict. However, @ islle of
thumb and should be the goal in most cases. leadds
the very reason to usggregates.

Sinceaggr egates must be designed with a consistency fo-
cus, it implies that the user interface should emtate
each request to execute a single command on jesigpn
gregate instance. If user requests try to accomplish too
much, it will force the application to modify muydte in-
stances at once.

Therefore aggregates are chiefly about consistency bound-

aries and not driven by a desire to design objeagttts.
Some real-world invariants will be more complexrtlthis.
Even so, typically invariants will be less demamgdam our
modeling efforts, making it possible design smalbg-
gregates.

Rule: Design Small Aggregates

We can now thoroughly address the question: Whdit ad
tional cost would there be in keeping the largsteuag-

tenant on a single product. We have to keep in rtfintl
this could happen all at once with hundreds andgshnds
of tenants, each with multiple teams and many prtsdu
And over time the situation will only become worse.

{{aggregate rootd)
Product

Ve..* Ve..« Ve..x
CLentity?> CLentity?> (Centity»>
Backl gitem Release Sprint

A

CLentity?> CLentity?> Centityd>
Task ScheduledBacklogitem CommittedBackl gitem

L.

{Cvalve objectd >
EstimationLogEntry

orderOfPriority orderOfPriority

Figure 3: With thisPr oduct model, multiple large collec-

gregate? Even if we guarantee that every transaction wouldions load during many basic operations.

succeed, we still limit performance and scalabiity our
company develops its market, it's going to brinépis of
tenants. As each tenant makes a deep commitmémnbto
jectOvation they'll host more and more projects and the
management artifacts to go along with them. Thiitres-
ult in vast numbers of products, backlog itemssases,
sprints, and others. Performance and scalabilgyhan-
functional requirements that cannot be ignored.

Keeping performance and scalability in mind, wheg-h
pens when one user of one tenant wants to addjk sin
backlog item to a product, one that is years olil @ready
has thousands of backlog items? Assume a persistenc
mechanism capable of lazy loading (Hibernate). Weat
never load all backlog items, releases, and spaihest
once. Still, thousands of backlog items would tzedlkxl
into memory just to add one new element to theadlye
large collection. It's worse if a persistence madidra does
not support lazy loading. Even being memory conssio
sometimes we would have to load multiple collection
such as when scheduling a backlog item for releasem-
mitting one to a sprint; all backlog items, andheitall re-
leases or all sprints, would be loaded.

3 The transaction may be handled hynit of work.

This large clusteaggregate will never perform or scale
well. It is more likely to become a nightmare leagdbnly
to failure. It was deficient from the start becatlsefalse
invariants and a desire for compositional convergen
drove the design, to the detriment of transactisnatess,
performance, and scalability.

If we are going to design smalfjgr egates, what does
“small” mean? The extreme would be aggr egate with
only its globally unique identity and one additibattrib-
ute, which is not what's being recommended (urtltesssis
truly what one specifiaggr egate requires). Rather, limit
theaggregate to just theroot entity and a minimal number
of attributes and/ovalue-typed propertie$The correct
minimum is the ones necessary, and no more.

Which ones are necessary? The simple answer e that
must be consistent with others, even if domain gspion't
specify them as rules. For examp@Pe,oduct hasnane

4 A value-typed property is an attribute that holdeference to &alue object. |
distinguish this from a simple attribute such &tring or numeric type, as does
Ward Cunningham when describing Whole Value;gge//fit.c2.com/wiki.cqi?
WholeValue

anddescri pti on attributes. We can't imagimane and
descri pti on being inconsistent, modeled in separate
aggregates. When you change theane you probably also
change thelescri pti on. If you change one and not the
other, it's probably because you are fixing a spgkrror

or making thedescri pt i on more fitting to thenane.
Even though domain experts will probably not thaikhis
as an explicit business rule, it is an implicit one

What if you think you should model a contained @artn
entity? First ask whether that part must itself changsr ov
time, or whether it can be completely replaced when
change is necessary. If instances can be completely
placed, it points to the use ofralue object rather than an
entity. At timesentity parts are necessary. Yet, if we run
through this exercise on a case-by-case basis, oany
cepts modeled amtities can be refactored telue ob-
jects. Favoringvalue types agggregate parts doesn't
mean theaggregate is immutable since theoot entity it-
self mutates when one of itglue-typed properties is re-
placed.

There are important advantages to limiting intepaats to
values. Depending on your persistence mechanisatyes
can be serialized with theot entity, whereagntities usu-
ally require separately tracked storage. Overhgdibher
with entity parts, as, for example, when SQL joins are ne-
cessary to read them using Hibernate. Readinggesi
database table row is much faskalue objects are smal-

ler and safer to use (fewer bugs). Due to immuitghilis
easier for unit tests to prove their correctness.

On one project for the financial derivatives sectsing
[Qi4j], Niclas [Hedhman] reported that his team vade to
design approximately 70% of @lfgr egates with just a

root entity containing somealue-typed properties. The re-
maining 30% had just two to three togatities. This does-
n't indicate that all domain models will have a3split. It
does indicate that a high percentagagufregates can be
limited to a singleentity, theroot.

The [DDD] discussion ofggregates gives an example
where multipleentities makes sense. A purchase order is
assigned a maximum allowable total, and the suail dihe
items must not surpass the total. The rule becdrivdy to
enforce when multiple users simultaneously additemas.
Any one addition is not permitted to exceed thetlibout
concurrent additions by multiple users could cdiledy do
so. | won't repeat the solution here, but | wargngphasize
that most of the time the invariants of businessl@®are
simpler to manage than that example. Recogniziisg th
helps us to modelggregates with as few properties as pos-
sible.

Smalleraggregates not only perform and scale better, they
are also biased toward transactional success, nge#rat
conflicts preventing a commit are rare. This makaystem
more usable. Your domain will not often have tnueariant

constraints that force you into large compositiesign
situations. Therefore, it is just plain smart titiaggr eg-
ate size. When you occasionally encounter a true sbnsi
ency rule, then add another fentities, or possibly a col-
lection, as necessary, but continue to push ydusé&kep
the overall size as small as possible.

Don't Trust Every Use Case

Business analysts play an important role in delinguse
case specifications. Since much work goes intogeland
detailed specification, it will affect many of odesign de-
cisions. Yet, we mustn't forget that use casewvee@rin this
way does not carry the perspective of the domaiees
and developers of our close-knit modeling team.sile
must reconcile each use case with our current ekl
design, including our decisions abaggregates. A com-
mon issue that arises is a particular use casedliatfor
the modification of multipleggregate instances. In such a
case we must determine whether the specified lasge
goal is spread across multiple persistence traiosector if
it occurs within just one. If it is the latter,days to be
skeptical. No matter how well it is written, suchise case
may not accurately reflect the traggregates of our
model.

Assuming youiaggregate boundaries are aligned with real
business constraints, then it's going to causelgmubif
business analysts specify what you see in FiguTdnidhk-
ing through the various commit order permutatioss'll
see that there are cases where two of the threeseywill
fail.> What does attempting this indicate about yourgiesi
The answer to that question may lead to a deepigrun
standing of the domain. Trying to keep multiplgregate
instances consistent may be telling you that yeant has
missed an invariant. You may end up folding thetipig
aggregates into one new concept with a new name in order
to address the newly recognized business rule.,(8ihd
course, it might be only parts of the @lggregates that get
rolled into the new one.)

User 1 User 2 User 3

qumf request requﬁi

(Caggregate rootd)
Backlo gitem

(Caggregate root?)
Product

Figure 4: Concurrency contention exists between three
users all trying to access the same aggregate instances,
leading to a high number of transactional failures.

5 This doesn't address the fact that some use dasesbe modifications to mul-
tiple aggregates that span transactions, which would be fine. A gsal should
not be viewed as synonymous with transaction. Wepaly concerned with use
cases that actually indicate the modification oftiple aggregates instances in
one transaction.

So a new use case may lead to insights that puthras
model theaggregate, but be skeptical here, too. Forming
oneaggregate from multiple ones may drive out a com-
pletely new concept with a new name, yet if modgtinis
new concept leads you toward designing a largderiag-
gregate, that can end up with all the problems of laage
gregates. What different approach may help?

Just because you are given a use case that caltsafo-
taining consistency in a single transaction doesa&n you
should do that. Often, in such cases, the busipesiscan
be achieved witleventual consistendyetweenaggregates.
The team should critically examine the use casd<hal-
lenge their assumptions, especially when followiimgm as
written would lead to unwieldy designs. The teanyma
have to rewrite the use case (or at least re-ineaigifithey
face an uncooperative business analyst). The newase
would specifyeventual consistency and the acceptable

Acknowledgments

Eric Evans and Paul Rayner did several detaileiwes/of
this essay. | also received feedback from Udi Dalkarg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Oberg.

References

[CQS] Martin Fowler explains Bertrand Meyer's
Command-Query Separatiamttp://martinfowler.com/bliki/
CommandQuerySeparation.html

[DDD] Eric Evans;Domain-Driven Design—Tackling
Complexity in the Heart of Softwar2Q03, Addison-
Wesley, ISBN 0-321-12521-5.

[Hedhman] Niclas Hedhmahttp://www.jroller.com/niclas/

update delayThis is one of the issues taken up in Part Il of [Qi4]] Rickard Oberg, Niclas Hedhman; Qi4j framepr

this essay.

Coming in Part Il

Part | has focused on the design of a number off sma
aggregates and their internals. There will be cases that
require references and consistency betvaggnegates,
especially when we keegggregates small. Part Il of this
essay covers hoaggregates reference otheaggr egates as
well as eventual consistency.

Copyright © 2011 Vaughn Vernon. All rights reserved
Effective Aggregate Desigs licensed under th@éreative
Commons Attribution-NoDerivs 3.0 Unported License
http://creativecommons.org/licenses/by-nd/3.0/

http://qi4j.org/

Biography

Vaughn Vernon is a veteran consultant, providing
architecture, development, mentoring, and trairsieiyices.
This three-part essay is based on his upcoming book
implementing domain-driven design. H&Con San
Francisco 201(presentation onontext mapping is
available on the DDD Community site:
http://dddcommunity.org/library/vernon_201¢aughn
blogs herehttp://vaughnvernon.cpand you can reach him
by email herevvernon@shiftmethod.com

