IS U EXINT
eyt (T 81




“H[IW’S your project going?” Isn't this the first question
people ask? It's natural and necessary to have

some idea how a project is proceeding. Some people want to

know if it will be done on time. Others have fixed the delivery

date and want to know how much functionality the system

will have. Some people are looking for an early warning sign

that changes need to be made. Everyone wants to peer into the

tuture for reassurance that they’ll get what they want.

Burn charts are a simple method to
monitor the progress of the work. They
provide an easy to comprehend, visual
representation of project progress. They
can be visually extrapolated to make
predictions about delivery date for fixed
scope, or scope for a fixed delivery date,
as shown in figures 1a and 1b. If this

Scope
% Today

Delivery Date

" Predicted

-

6 7 8 91011 12

Delivery Date

1234567 89101112
Iteration

Work Remaining i

Time

www.StickyMinds.com

JULY/AUGUST 2009

visual extrapolation is difficult because
of the shape of the line, then the chart
is telling us other things about how the
project is going. This may be a diffi-
culty in delivering working software or
a difficulty in deciding what the soft-
ware should be. We’ll take a closer look
at some of these scenarios a little later.
First, we’ll examine some of the varia-
tions of these charts.

Measuring Work Remaining

If you’ve got a shovel and you’re
spreading a pile of dirt, the size of the re-
maining pile shows you how much work
you’ve got left to do. As you take shov-
elfuls off the top of the pile and spread
them around, the height of the pile goes
down over time. If we plot the height of
the pile over time, we’ll see something
like figure 2.

This is an example of a burn down
chart. At each increment of time, we
plot the work remaining. We can see the
progress toward our final goal, which
is to have no work remaining. In effect,
we “burn down” the planned amount of
work until there’s none left. If the rate of
progress is at all consistent, then we can
easily predict when the work will be fin-
ished. If we’ve got a fixed deadline, we’ll
see if we’re going to meet that deadline.

Ways of Measuring Work
There are various ways of measuring
work. For a physicist, work is measured
in joules. If your manager asks how much
work is left to do on your project, and you
well, let’s
hope your manager has a sense of humor.

reply with a value in joules ...

By Hours, Davs, WEeks
A more common way of measuring
work is with units of time. I do eight

BETTER SOFTWARE 27



hours of work for a day’s pay. This is a
simple and easily understood measure.
It’s just that it does not measure what
you may think it does.

Suppose I start work on time but then
go for coffee while waiting for my com-
puter to boot up. In the cafeteria, I run
into my boss, and we spend forty-five
minutes talking about company policies.
After that, I log onto my email to catch
up. Some of the emails require detailed
responses, and it takes a couple of hours
to collect the information. Now, down
to work. I start up my IDE, start up
my local server, re-deploy the code I'm
writing, and start the application. I try
the scenario that my current user story
addresses. Oops, time for lunch. Right
after lunch I’ve got a two-hour meeting.
OK, where did I leave off? Oh yeah, here
it is. I start to code, but I notice people
are leaving. The workday is over and
Ive done eight hours of “work,” but I
haven’t accomplished very much.

Of course, not every day is this bad,
but time has an amazing tendency to slip
away unnoticed. Not every hour corre-
sponds to the same amount of work. It
doesn’t take much for hours—or days,
weeks, months—to become a highly in-
accurate way of measuring work.

People are not very accurate in
making predictions, particularly about
the future. If we’re doing a repetitive
task, such as spreading dirt from a big
pile, then we might estimate how long
it will take to spread the rest of the pile
based on the amount we’ve done so far.
Or, if we're doing a task that is essen-
tially the same as one we’ve done before,
we use that experience to estimate how
long this instance will take.

With a complex task such as soft-
ware development, we’ve got bigger
problems. The work doesn’t proceed at
a steady pace. We’re zipping along and
suddenly run into an issue that stops
us in our tracks. There’s something we
don’t know, and we have to figure it out
before we can continue. This makes a
mess of our prediction for how long the
task will take. With no apparent prog-
ress while we are discovering, we can’t
know when the stuck period will end.

This doesn’t mean that you can’t suc-
ceed by estimating in hours and days.
By estimating in time units and checking

28 BETTER SOFTWARE

JULY/AUGUST 2009

your actuals against your estimates, you
will get better at estimating. At the indi-
vidual level, there’s some merit to that.
But with a group of people, the chance
of getting really good at estimating
is lessened, the cost of doing so is in-
creased, and the payoff is uncertain. The
goal of a software development team is
building valuable software. It’s not clear
that better estimating will increase either
the quantity or quality of the software
produced, but it is clear that the estima-
tion ability will be disturbed every time
there’s a change in the team.

Adherents of Scrum recommend that
the team estimate each task and then
daily re-estimate the remaining amount of
work on each task in order to calculate
the total hours of work remaining. [1]
This may provide more precision, but
it creates a lot of overhead work and
doesn’t produce the software any faster.
And, by taking up time and energy, it de-
lays delivery.

By Story Points

I recommend a different approach.
Divide the work into user stories—small
but functional slices of the application
(see the StickyNotes for more informa-
tion). Assign each user story a simple,
relative estimate. For example, assign
each of the simple stories one point. As-
sign the stories that seem about twice as
hard two points. Estimate your work
in story points and track the number of
story points left to do. You don’t “get
credit” for a story point until it is com-
pletely done—coded, tested, acceptable
to the customer, and ready for potential
deployment. This gives you a reliable in-
dication of work accomplished—what
you really want to know—rather than
effort expended.

Don’t worry about improving your
estimating accuracy. In a large project,
there’s probably enough random pertur-
bation that you’ll never achieve the ac-
curacy you would like. Remember, our
desired output is working software, not
accurate estimates. The estimates just
have to be consistent enough to use for
planning purposes. While our estimates
may be off by 50 percent or even 100
percent, if we expect to accomplish the
same estimated amount next iteration as
we did this iteration, we’ll be on target.

www. StickyMinds.com

Variable Scope

The simple burn down chart uses
the zero point of the y-axis as the goal
line. This works fine as long as the goal
doesn’t change.

If you don’t keep the scope of work
constant, then from time to time you’re
likely to get a burn down chart like that
shown in figure 3. What happened here?
Why did the amount of work remaining
increase rather than decrease? Did more

Work Remaining

Time

work get added? Within a single itera-
tion, this shouldn’t happen but some-

times does. Over a longer period of time,
it’s generally expected that new work
will be added.

Did unforeseen tasks come to light? If
you’re burning down hours and re-esti-
mating the remaining work on each task,
as frequently recommended in Scrum
books and articles, then you might get
such a thing.

Did a story move backward? Perhaps
it was thought to be done, but a new
scenario was discovered and the story
was handed back to the developers for
more development. Or, perhaps the tes-
ters found a bug that had escaped devel-
opment.

When the burn down chart curves
upward like this, you no longer can pre-
dict when the work will be done. If the
scope changes, we can no longer trust
the goal line. If the measure of work
remaining proves unreliable, then we’re
losing the ability to predict when the
current scope of work will be done. We
can’t extrapolate the burn down chart to
the goal line.

Burn BeLow Zero

One way to separate changes in scope
and progress is to use a burn down chart
with a variable floor, as shown in figure
4. In other words, the work remaining
is plotted as before, but the goal line



removed

Work Remaining

Total
Work

Work
Done

Time

may vary from the zero point. If scope
is added, the goal line moves below the
zero point. If scope is removed, the goal
line moves up. We can see our continued
progress, but the intersection with the
goal changes. Or, to reach completion
sooner, we may reduce scope and bring
the goal closer (see the StickyNotes for
more information).

This seems to me a little compli-
cated to draw, especially if the scope
changes very much. It also presupposes
that you know the goal line at the very
start, which I find difficult to do. I gener-
ally find that the addition of new story
points continues well into development,
if not to the very end. I prefer not to use
this chart, but people have used it effec-
tively when the scope of work is changed
during an iteration. I also prefer not to
do that, but there are times when it’s
appropriate—when the team has under-
estimated and is running out of things
to do, the team has overestimated and
clearly needs to cut scope, or an emer-
gency occurs.

Burn up

A good way to indicate variable scope
is to use a burn up chart. [2] This is like
a burn down chart turned upside down.

Instead of tracking work remaining,
a burn up chart tracks work completed.
The goal line can be moved, and the dif-
ference between it and the work com-
pleted will give you an estimate of the
work remaining. In the burn up chart in
figure 5, you can see the addition of scope
over time. Periodically, the goal takes a
step upward. Each of the upticks in the
goal line may represent a major feature’s
being defined as stories and estimated.
Or, the upticks may indicate scope that
was assumed but is now being made ex-
plicit. The scope of work also may be ad-
justed downward to meet a particular re-
lease date or because the least important

functionality is being trimmed.

For a fixed scope of work, a burn up
chart doesn’t match the simplicity of a
burn down chart. But for variable scope,
as most projects are over any extended
period of time, the burn up chart gives
a clear indication of the progress so far
and a visual prediction of the finish date.

My preference when doing iterative
software development is to use a burn
down chart for an iteration, which has
a short time span and a fixed scope, and
a burn up chart for release planning or
other longer-term project planning, as
shown in figures 6a and 6b.

Story Points Remaining

12345067 89101 12

Day in Iteration

Story
Points

Release 2
Scope J

Release
1 Scope

Release 1

R RN

1234567 80910112
Release 2
Target Date

Figure 6b

Reading the Charts

A burn down or burn up chart does
more than track progress. By examining
the graph, we can make inferences about
how the work is progressing. Figures 7a
through 7e show some examples of burn
down charts tracking progress in itera-
tive development.

Iteration

www.StickyMinds.com

JULY/AUGUST 2009

Work Remaining

End of
Iteration

Too MucH Work

Figure 7a shows a burn down chart
that doesn’t reach the goal line. At the
end of the iteration, there’s work left un-
finished. This may be an indicator of an
unusual problem in this iteration, but if

Time

it happens frequently, I would interpret
it as a sign of overcommitment.
Frequently, software development
teams are overly optimistic about their
capabilities. They know how to do the
things that they see need to be done.
Often they don’t remember or consider
the times they got stuck, either on a hard
problem or waiting for some external
dependency. They may ignore the time
spent doing things other than creating
code. And when they come up a little
short at the end, they may commit to
even more work during the next itera-

tion to catch up.

Work Remaining

Time

Figure 7b

SANDBAGGING
Some software development teams go

in the other direction. Not wanting to
miss their commitments and disappoint
their stakeholders, they are conservative
in their commitments. Figure 7b shows
a steady progress and then slacking off
when reaching the goal seems assured.
Or, this chart could mean that the later
stories were estimated low, relative to the

BETTER SOFTWARE 29



30

THE RuLE oF THREE

Gerald M. Weinberg, in his
book, The Secrets of Consult-
ing, states the Rule of Three:
If you can't think of three
things that might go wrong
with your plans, then there's
something wrong with your
thinking. This rule is applica-
ble to much more than plan-
ning. It particularly applies

to reading burn down charts.
The possibilities that | offer
are common ones |'ve seen,
but they are offered without
any knowledge of the context
of your project. You'll need to
discern what your burn down
charts might be telling you.
After you have an answer, try
to think of at least two more.
Then, armed with these pos-
sibilities, try to check it out to
see which, if any, reflect the

reality around you.

BETTER SOFTWARE

JULY/AUGUST 2009

work they required. Or, it could mean
that technical debt incurred in the earlier
stories slowed down the development of
later ones. It’s often the case that a single
graph of the iteration could be telling
one of several stories. You may need to
look at other information to clarify your
understanding.

Another possibility: A team that
never misses its commitment is a team
that isn’t pushing the boundaries. A
high-performing team should always
be testing where the line is between
too much and too little work. This is
much like a sailor who heads closer to
the wind until the sail just starts to luff
and then bears off to achieve maximum
speed. The wind and waves are always
changing, so this test needs to be done
repeatedly and continually. So it is with
software development. Try to push for
just a little more, but be sensitive for
signs that you’re tempted to cut corners
or leave something not quite done. Then,

back off slightly.

Work Remaining

Time

Stories Too Big
Figure 7c shows a picture where

there’s no indication of progress for a
long time; then, suddenly, there’s a big
chunk accomplished all at once. The
most likely cause for this is “big sto-
ries.” Often, teams accustomed to a
serial project lifecycle—with require-
ments definition, design, implementa-
tion, and then testing—have a difficult
time breaking work down into small
but valuable stories. Instead, they do
“mini-waterfalls” on larger chunks of
work, and they break the work down by
architectural layers instead of by func-
tionality. As a result, they bundle a lot of
work together into one unit.

Doing work in large chunks makes
real progress hard to see. Some people

www. StickyMinds.com

try to counter this by estimating progress
on unfinished pieces of work. It’s easy to
fool yourself about the amount of prog-
ress, though. There is a danger of cre-
ating the old situation of having done 90
percent of the work but the 10 percent
remaining takes 90 percent of the time.
It’s much more reliable to judge progress
by functionality that’s easily tested to be
complete or not. I like to see progress
every day. Otherwise, I think I need to
look for a bottleneck that’s halting prog-
ress. This is just a small instance of de-
velopers “going dark” and no one else
knowing what’s happening.

Large stories also prevent the product
owner from effectively steering the devel-
opment of the product. Such a story may
contain many little details that are “nice
to haves” rather than “must-haves.” If
they’re all lumped together with must-
have functionality, the product owner
must accept or reject the story alto-
gether. This will mean putting these nice
to haves into the product ahead of must
haves in other stories.

What really works, once you learn
how to do it, is to create very thin slivers
of functionality. I call these vertical slices
because they slice through the architec-
tural layers from the user interface all the
way down to the database. (This is the
typical description of layers for business
systems, but other types of software will
have different layers.) This has been called
“a walking skeleton” [3] or “firing tracer
bullets through the application.” [4] Each
thin sliver doesn’t do much, but it works
all the way through. In addition to these
slices of functionality, there may be stories
that only modify existing functionality.

Work Remaining

Time

Figure 7d

Big Work IN ProGRESS
Figure 7d could be telling us that

there’s one huge story, the worst case of



"Unfinished work has a cost (the work done so far)

but no value (we can't deliver it to the customer).

It's far better to finish a small amount of work than

“stories too big.” Or, it could be telling
us that all of the stories are being worked
simultaneously. Either of these is an indi-
cation that a lot of work is in progress
at one time. Another alternative, that the
developers were doing other work rather
than the requested stories, would also
produce a burn down chart like this.

What’s the problem with this? One
issue is that you’re not sure of com-
pleting the stories. What if you reach the
end of the iteration and all of the stories
are “90 percent done,” but there’s no
working business value to deliver to the
product owner?

Unfinished work has a cost (the work
done so far) but no value (we can’t de-
liver it to the customer). It’s far better
to finish a small amount of work than
to start a large amount. By dividing the
story into small, functional slices, we
can see the progress being realized. If we
then start work on all of those small sto-
ries at once, we lose that advantage. It’s
better for the team to swarm over each
story to get it done and then start on the
next one. The goal should be to have as
few stories in progress at a time as you
can work on productively.

Work Remaining

Time

Cook THE Books

One of the most insidious burn down
charts is the one where the progress line
is arrow straight from start to finish, as
shown in figure 7e.

to start a large amount.”

While this could happen occasion-
ally, it most likely means that someone is
cooking the books. He may be reporting
the progress that he perceives people
want to see rather than an honest mea-
sure of how the project is proceeding.
This is especially easy to do when
tracking progress in task hours rather
than story points. It also can be done by
cutting corners on stories and claiming
they’re done when the code is still a mess
internally.

Why would this happen? There may
be a number of contributing factors:

e The person (or software) drawing
the burn down chart may mark a
line to be able to tell easily if de-
velopment is lagging behind or
getting ahead of the average ex-
pected rate. Such a line can be in-
terpreted by others as the “ideal”
rate.

e The team may feel that it is being
judged on the basis of the chart,
so team members want it to look
good.

e It may be that progress is being
measured more by effort than
by accomplishment. Systems that
automatically calculate time re-
maining on a task are prone to
this.

When a “good looking” burn down
chart becomes the focus, then the ability
to use it to understand and manage de-
velopment is lost.

It's Your Choice

Burn down and burn up charts offer
considerable variety in the ways they can
display progress so it can be understood
at a glance. They’re highly adaptable to
your context—you can track work with
whatever measurement makes sense in
your environment. You can track it over

www.StickyMinds.com

JULY/AUGUST 2009

short or long periods of time—or both.
Do you have a fixed scope? Then a burn
down is a good fit. Do you have a well-
understood scope with relatively small
adjustments? Either the variable floor
burn down chart or a burn up chart
would be appropriate. Are you working
in a continuous flow, continuing to add
to the backlog as you develop? Then
a burn up chart is probably the best
choice.

The important point is that your
burn chart should reflect an objective
reality, not wishes and hopes. It should
be built with data that is measured, not
estimated. Post your chart prominently
where you will look at it every day.
In this way, it can tell you at a glance
whether your wishes and hopes are likely
to be realized. If it tells you something
else, it will give you the clues you need
to take some corrective action. {end}

REFERENCES

[1] Schwaber, Ken. “Work Burn Down.”
www.controlchaos.com/about/burndown.php

[2] Brewer, John. “Burn-down vs. Burn-up
Charts.” tech.groups.yahoo.com/group/extreme
programming/message/81856

[3] Cockburn, Alistair. “Walking Skeleton.”
alistair.cockburn.us/Walking-+skeleton

[4] Hunt, Andy and Dave Thomas. “Tracer Bul-
lets and Prototypes.” Artima Developer, 2003.
wwuw.artima.com/intv/tracer.html

Sticky
Notes

For more on the following topics go to
www.StickyMinds.com/bettersoftware.

W User stories
m Variable floor burn down charts

BETTER SOFTWARE 31



