Effective use of FindBugs in large
software development efforts

TL” e OMLy VAL mensugemen+ CodeMash 2012

OF Coche Q(/\F\L.l‘f’\/f \/\ﬂ\FS/miMV(‘rg

William Pugh

(c) 2008 Focus Shift/OSNews/Thom Holwerda - http://www.osnews .com/comics

Code has bugs

® no perfect correctness or security

® you shouldn’t try to fix everything that is wrong with
your code

® engineering effort is limited and zero sum

® how can you get the best return on the investment of
engineering time using FindBugs

Defective Java Code 4

Learning from mistakes

® I'm the lead on FindBugs
® static analysis tool for defect detection
® more than a million downloads
® Spent a lot of time at Google
® Found thousands of errors
® not style issues, honest to god coding mistakes

® but mistakes found weren’t causing problems in
production

FindBugs fixit @ Google
May 2009

® 4,000 issues to review

® Bug patterns most relevant to
Google

® 8’000 reviews > 1 ,800 bugS f||ed
> more than 600 fixed

> More than 1,500 issues
® many issues independently removed In several days

reviewed by multiple engineers

® 8|+9% must/should fix

FindBugs demo

[== O T T 400 =

1
eno FindBugs: l
4 - . - . .
: . mpr R ream.java in sun.jvm.h 5 V b
Class name filter- EFilter))DCIo pressedReadStream.java in sun.j otspot.code iew in browser’
58 |
Group bugs by: | Bug Kind | Bug Pattern < Bug Rank | Designation C| 59 public float readFloat() {
_ |70 return Float.intBitsToFloat(reverselInt(readInt()));
@ Bugs (73) & 71}
v @ Bad shift (2) [B ’§ ublic double readDouble() {
v @ 32 bit int shiftd by an amunt not in the range 0..31 (2) :4 P int rh = readInt(); ()
L4132 bit int shifted by 32 bits in readDouble() 75 int rl = readInt();
® 32 bit int shifted by 32 bits in swapLong(long) 76 int h = reverselnt(rh);
» 1 Bad use of return value from method (8) £ s R B2 L LU AR
il v 18 return Double.longBitsToDouble((h << 32) | ((long)l & 0x
Evaluations :/; g }
L_mostly harmless *) 81 public long readLong() {
| 82 long low = readSignedInt() & 0x00000000FFFFFFFFL;
83 long high = readSignedInt();
34 return (high << 32) | low;
First seen 06/02, 2009 25 }
6
, . B7 7 cenanstun o st st vt 8 A 0, A M A e 0
pwagland@gmail.com @ 05/27, 2010: should fix 28 e 1 e e P
The code as it stands does not work correctly, but | have not verified that it | |, % AT DG, SIS DR S
is used. 30
91 5
bill. pugh@gmail.com @ 10/06, 2010: mostly harmless e ——————— —— — A
(Find) (Next) (Previous)

AV

32 bit int shifted by 32 bits
At CompressedReadStream.java:[line 78]

Shifted by 32 bits
Local variable named h

In method sun.jvm.hotspot.code.CompressedReadStream.readDouble() [Lines 74 - 78]

The code performs shift of a 32 bit int by a constant amount outside the range
how much to shift by (e.g., shifting by 40 bits is the same as shifting by 8 bits,
what was expected, and it is at least confusing.

32 bit int shifted by an amount not in the range 0..31

0..31. The effect of this is to use the lower 5 bits of the integer value to decide
and shifting by 32 bits is the same as shifting by zero bits). This probably isn't

9860 bugs hidden by filters

FindBugs Cloud:
Signed in - bill.pugh@gmail.com

@ UNIVERSITY OF

y

FindBugs web start

® Go to http://findbugs.sourceforge.net/findbugs2.html

® Click on one of the links for communal reviews of
FindBugs issues

http://findbugs.sourceforge.net/findbugs2.html
http://findbugs.sourceforge.net/findbugs2.html

| earned wisdom

® Static analysis typically finds mistakes (often just inconsistencies)
® but some mistakes don’t matter
® need to find the intersection of stupid and important

® The bug that matter depend on context

® Static analysis, at best, might catch 5-10% of your software quality
problems

e 80+% for certain specific defects
® but overall, not a magic bullet

® Used effectively, static analysis is cheaper than other techniques for
catching the same bugs

VVhat is wrong with
this code?

Eclipse 3.7
org.eclipse.update.internal.ui.views.FeaturesStateAction

public void run() {

try

if ((adapters == null) && (adapters.length == 0))
return,

IStatus status
= OperationsManager
.getValidator()
.validatePlatformConfigValid();

if (status != null)
throw new CoreException(status);

What is wrong?

® Definitely no test cases for when adapters is null
® Probably no test cases for when adapters is empty

® Need to replace
(adapters == null) && (adapters.length == 0)
with
(adapters == null) || (adapters.length == 0)

Effective use of a static
analysis tool

® Tune it to report only the kinds of issues you care
about

® Run it automatically, alerting you when new serious
issues are found

® Deal with issues where you don’t want to change the
code

® Figure out how to deal to legacy bugs: clear mistakes
that have existed in the code for a long time

What bugs matter to you?

® |f you have a public static final field pointing to an array
® anyone can change the contains of the array

® A big concern if you are concerned about untrusted
code running in the same VM

® 2 minor concern otherwise

® Are you concerned about internationalization,
character encodings, etc?

® |ots of issues here, only matters in some applications

Compiler warnings

® compiler warnings are a similar issue

® At Google, they’'ve spent some time thinking about the
compiler warnings they care about

® Try to fix the ones they care about, globally disable the
ones they don’t care about

Running it automatically

® Most changes don’t introduce serious new issues
detected by FindBugs (probably less than 2%)

® You don’t want developers to have to think about
running it, or be blocked while it is running

® their time and focus is too valuable; too little return

® But, some of the mistakes caught will cause developers
to go on a frustrating hours long debugging hunt

How!

® Need better IDE integration

® we've got some work to do here
® Need a way to know which issues are new and scary
® Run at unit test time, or at continuous build time

® .. need to write a shim for launching it from a unit
test...

Dealing with issues where you
don’t want to change the code

® FindBugs is very accurate, certainly compared to many
other tools

® For rank 1-12 issues, Google engineers said they
were “should fix” 81% of the time

® But sometimes, the warning doesn’t inspire you to
want to change the code

® VWe have 55 such issues in the FindBugs code base

® only 10 of them at rank |-18

Dealing with “not a bug”

® Put an annotation in the source code

® Careful: annotations can suppress future issues that
shouldn’t be suppressed

® [n many circumstances, resistance to changing source
code to suppress issues

® Store issues and evaluations in a central database

® used by every major commercial static analysis tool

legacy bugs

® Understand whether the code is being executed now,
and whether the buggy behavior is occurring now

® code coverage from production!?

® |[f the code isn’t being executed, consider just deleting
the code, or adding logging if it ever does get executed

® |[f you want to fix it, figure out the right behavior and
write a test case to document it

® then fix it

Maybe you shouldn't fix all
old issues

® |[f 2 mistake was written into your code two years ago,
and it hasn’t caused any problems, maybe you shouldn’t
fix it.

® Probably no test cases, code may not be used or
understood

® Changing the code to silence the warning without
really understanding the code or having any test
cases is dangerous

® it just removes the WTF from the code.

Bug fix regressions

® VWhenever you try to fix a bug, there is a chance that
you will won’t do so correctly

® might make things worse, or only partially fix the
problem

® Estimates of incomplete/bad bug fixes range from
5-30%

Important concepts in
FindBugs

® VWays to run FindBugs
® Bug attributes:
® confidence, rank, category, kind, pattern
® Ways to filter and rank bugs
® Baseline bugs
® Bug clouds

® plugins

Running FinaBugs

® Works on |VM classfiles

® Some detectors produce poor results for some non-
Java languages, such as Scala

® Runs on command line, ant, maven, Eclipse, Netbeans,
Intelli), Jenkins, Fortify, Coverity,

Bug attributes

® Each bug is an instance of a pattern

® patterns are groups by category (e.g.,
internationalization) and kind (e.g., null pointer
dereference)

® Each instance has a confidence (low, medium high)

® priority in previous versions of FindBugs, but this
confused people because priorities weren't
comparable between different bug patterns

BugRank

® Each instance has a rank 1-20, with | being scariest
® Scariest: rank |-4
® Scary: rank 5-9
® troubling: rank 10-14
® of concern: rank |5-20

® Scariest are issues most likely to cause significant and
stealthy changes in behavior

® roughly corresponds to the OMG level

Customizing bug rank

® Bug ranks can be and should be customized for
production deployments

® can create a plugin that contains a bugrank.txt file, and
add plugin to your deployement or project

Filtering Bugs

® You can filter bugs using either options to a command-
line or ant task, or via a filter file

® Filter files can involve more complicated logic,
including things such as “filter warnings of type X if
they involving invoking method Y”

® Filters can be put into a plugin

Baseline bugs

® Easy way to show just new bugs

® Filter a bug report, excluding issues that are already
present in another bug report

® Allows you to say: show me just the issues that weren't
in the previous release

Comparing bugs across
versions

® FindBugs using techniques that use the bug pattern,
class, method, and other components of the issue to
identify when two different analysis reports contain the
same issue

® it is confused by refactorings such as class and
method renaming

Bug clouds

® Previously, we had provided a way for you to store
evaluations of issues in the XML used to store the
analysis results

® but it was very hard to share results among a team

® VWe now provide bug clouds, where we store
information about the first time an issue was seen, and
any evaluations of the issue

Which bug cloud!?

® We provide a free bug cloud, hosted on Google app
engine, suitable for use on open source or other non-
confidential projects

® people have to sign in using open-id before anything is
stored there.

® You can set up your own bug cloud on your own servers

® At the moment, requires making some changes to the
distro and rebuilding, should soon be possible to
configure as separate plugin

Plugins

® FindBugs has had plugins for a long time, but we’ve
really added lots of features

® A plugin might just consist of some xml files specifying
various properties

® Plugins are loaded from the findbugs installation
directory and from a .findbugs directory in the user’s
home directory

® in both, looks in subdirections plugin and
optionalPlugin

Enabling plugins

® Plugins loaded from a plugin directory are enabled by
default

® those loaded from optionalPlugin are not

® You can set which plugins are enabled for a particular
project

Some privacy and
confidentiality issues

FindBugs update check

® FindBugs does an update check to see if there is a new
version of FindBugs

® doesn’t report anything about the code being
analyzed

® but does report things like OS, Java version, locale,
invocation mechanism (Ant, Maven, command line,

GUI)

® You can install a plugin that completely blocks this
check, or write your own plugin that reroutes the

FindBugs communal cloud

® We are hosting a free server to record information
about bugs

® when the bug was first seen, and any evaluations of
the issue by developers.

® c.g,°0On Jan | Ith, Sam marked this as a “Should
Fix”’ issue and said “....”

® Appropriate for open source and other non-
confidential source code

FindBugs communal cloud
privacy

® Source code is never uploaded

® You have to select the “FindBugs Communal Cloud”,
and log in with an open-id account, before anything is
uploaded into the cloud

® You can remove the FindBugs communal cloud from
your configuration if you are concerned

Defect density

® For Eclipse 3.0 (fairly typical)
® Scariest: 30 per million
® Scary: 160 per million LOC
® Troubling: 480 per million LOC
® Of concern: 6000 per million LOC

Understand your risk/bug
environment

® What are the expensive risks?

® |s it OK to just pop up an error message for one web
request or GUI event!

® how do you ensure you don't show the fail whale to
everyone!

® Could a failure destroy equipment, leak or loose
sensitive/valuable data, kill people!?

mistakes charactertistics

® Will you know quickly if it manifests itself?
® What techniques are good for finding it?
® |s unit testing effective?

® Might a change in circumstances cause it to start
manifesting itself?

® What is the cost of it manifesting itself?

® |f is does manifest itself, will it come on slowly or in a
tidal wave

Bugs in Google's code

® Google's code base contains thousands of "serious” errors

® code that could never function in the way the developer
intended

® |f noticed during code review, would definitely have been fixed

® Most of the issues found by looking at Google's entire codebase
have been there for months or years

® despite efforts, unable to find any causing noticeable problems in
production

As issues/bugs age

® 5O up:

® cost of understanding potential issues, deciding if they
are bugs

® cost and risk of changing code to remedy bugs
® soes down:

® chance that bug will manifest itself as misbehavior

More efficient to look at
issues early

® be prepared for disappointment when you look at old
Issues

® may not find many serious issues

® don't be too eager to "fix" all the old issues

VVhere bugs live

® code that is never tested

® |f code isn't unit or system tested, it probably doesn't
work

® throw new UnsupportedOperationException () Is
vastly underrated

® if your current functionality doesn't need an equals
method, and you don't want to write unit tests for it, make
it throw UnsupportedOperationException

® Particularly an issue when you implement an interface with
|2 methods, and your current use case only needs 2

Bug manifestation

® You can have an error in your code that never
manifests itself

® Perhaps the code is never executed

® Or the code is never executed in the state required
for the bug to manifest itself

® But if it does manifest itself, how does it manifest itself?

Bug manifestations

® Always throws a Runtime exception

® Sometimes/rarely throws a runtime exception
® cither probabilistically, or based on data

® Silently computes the wrong value

® Sometimes computes the wrong value

Improving software
quality

Improving software quality

® Many different things can catch mistakes and/or
improve software quality

® Each technique more efficient at finding some
mistakes than others

® Fach subject to diminishing returns
® No magic bullet

® Find the right combination for you and for the
mistakes that matter to you

Test, test, test...

® Many times FindBugs will identify bugs
® that |leave you thinking “Did anyone test this code?”
® And you find other mistakes in the same vicinity

® FindBugs might be more useful as an untested code detector than as a
bug detector

® Overall, testing is far more valuable than static analysis
® [’'m agnostic on unit tests vs. system tests

® But no one writes code so good you don’t need to check that it does
the right thing

® |'ve learned this from personal painful experience

Dead code

® Many projects contain lots of dead code

® abandoned packages and classes

® classes that implement |2 methods; only 3 are used
® Code coverage is a very useful tool

® but pushing to very high code coverage may not be
worthwhile

® you'd have to cover lots of code that never gets
executed in production

Code coverage from
production

® |f you can sample code coverage from production,
great

® |ook for code executed in production but not
covered in unit or system test

Cool idea

® |f you can’t get code coverage from production
® |ust get list of loaded classes

® just your code, ignoring classes loaded from core
classes or libraries

® Very light weight instrumentation
® | og the data

® could then ask queries such as “VWhich web services
loaded the FooBar class this month?”

Using FindBugs to find
mistakes

® FindBugs is accurate at finding coding mistakes

® /5+% evaluated as a mistake that should be fixed
® But many mistakes have low costs

® memory/type safety lowers cost of mistakes

e |f applied to existing production code, many expensive
mistakes have already been removed

® perhaps painfully

® Need to lower cost of using FindBugs to sell to some
projects/teams

FindBugs integration at
Google

® FindBugs has been in use for years at Google

® |n the past week, finally turned on as a presubmit
check at Google

® When you want to commit a change, you need a code
review

® now, FindBugs will comment on your code and you
need to respond to newly introduced issues and
discuss them with the person doing your code
review

® First research paper published in 2004

® FindBugs 1.0 released in 2006
® |, 150,000+ downlads from |60+ countries

® Released [.3.9 in last year

® Working towards 2.0.0 release

FindBugs 2.0

® FindBugs analysis engine continues to improve, but only
incrementally

® Focus on efficiently incorporating static analysis into
the large scale software development

® Review of issues done by a community
® Once issue is marked as “not a bug”, never forget

® [ntegration into bug tracking and source code version
control systems

Bug ranking

® FindBugs reported a priority for an issue, but it was
only meaningful when comparing instances of the same
bug pattern

® 3 medium priority X bug might be more important
than a high priority Y bug

® Now each issue receives a bug rank (a score, |-20)
® Can be customized according to your priorities

® Grouped into Scariest, Scary, Troubling, and Of
Concern

FindBugs community review

® VWhenever / where ever you run FindBugs, after
completing or loading an analysis

® it talks to the cloud
® sees how we've been seeing this issue

® sees if anyone has marked the issue as “should fix” or
“not a bug”

® As soon you classify an issue or enter text about the
issue, that is sent to the cloud

® Jalk

More cloud integration

® Integration with bug tracking systems

® One click to bring up pre-populated web page in bug
tracker describing issue

® |f bug already filed against issue, click shows you
existing issue in bug tracker

® [ntegration with web based source viewers, such as
FishEye

® Allow viewing of file history, change lists, etc.

