
Understanding dynamic positioning

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial 2

2. Principles of page layout 4

3. A single box 12

4. Positioning content 19

5. Layering content 26

6. Visibility 29

7. Scripting position 31

8. Dynamic positioning summary 36

Understanding dynamic positioning Page 1

Section 1. About this tutorial

Should I take this tutorial?
This tutorial is designed to assist Web developers who need tight control over the
placement of content on their pages, but who understand the need to separate content
from presentation in order to improve compliance with standards and ease of
maintenance.

The tutorial assumes that you are already comfortable using HTML and Cascading
Style Sheets (CSS). Basic knowledge of JavaScript is helpful, but not required, for
understanding the scripting examples. You can gain a thorough understanding of the
topic without trying out the scripting examples. (See Resources on page 36for tutorials
that can get you up to speed on JavaScript and CSS.)

What is this tutorial about?
Dynamic positioning using DHTML provides complete flexibility in the placement of content
on a page. However, using it can be like using a professional-grade camera -- to get the
most out of it, you need to understand its nuances. Building pages using dynamic positioning
requires an understanding of the normal page flow and the properties that can alter that flow
or even remove items from it altogether. It also requires an understanding of the internal
workings of individual items and the interdependencies of various properties.

This tutorial takes you through an introduction to the normal flow of a page, and explains how
it can be altered to suit your purposes. It also shows you the details behind the process of
laying out a DHTML page using dynamic positioning, including the different types of
elements and how to use them to create a page that behaves just as you planned. Finally,
this tutorial takes a brief look at scripting CSS properties related to positioning to give you the
foundation you need to build your own scripts.

Tools
This tutorial will help you understand the topic even if you only read through the examples
without trying them out. If you want to try the examples as you go through the tutorial, make
sure you have the following tools installed and working properly:

* A text editor: DHTML files are simply text. To create and read them, a text editor is all
you need.

* Microsoft Internet Explorer 5.5, or other CSS2-capable browser: Not all browsers are
able to exploit all of the capabilities of dynamic positioning. The examples in this tutorial
use IE 5.5, but other alternatives are listed in Resources on page 36.

About the author
Nicholas Chase has been involved in Web site development for companies including Lucent

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 2

Technologies, Sun Microsystems, Oracle Corporation, and the Tampa Bay Buccaneers. Nick
has been a high school physics teacher, a low-level radioactive waste facility manager, an
online science fiction magazine editor, a multimedia engineer, and an Oracle instructor. More
recently, he was the Chief Technology Officer of Site Dynamics Interactive Communications
in Clearwater, Florida. He is the author of three books on Web development, including Java
and XML From Scratch (Que). He loves to hear from readers and can be reached at
nicholas@nicholaschase.com .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 3

mailto:nicholas@nicholaschase.com

Section 2. Principles of page layout

The normal flow
Under normal circumstances, a Web author doesn't need to worry about how the browser
goes about laying out the page: The browser simply takes each item and lays it out in the
next available space on the page.

That "next available space" depends on a number of factors, including the size of the item,
the size of the containing block, and the type of item. For example, block-level elements
(such as h1 and p) appear on a line by themselves, so the browser starts a new line before
placing them.

For years, Web authors used their knowledge of how the browser constructs the flow to build
attractive and functional pages. Unfortunately, this flow is ultimately dependent on the size of
the browser window, which can be unpredictable. For several years authors have used
constructs such as tables to attempt to control the size and location of their content, with
some measure of success.

Unfortunately, these techniques can result in pages that are complex and inaccessible to
those attempting to access the material from nontraditional browsers, and they completely
ignore the goal of separating content from presentation. These techniques can also be a
maintenance nightmare. In any case, there were still many effects that could not be
accomplished without additional functionality.

Dynamic positioning
Dynamic positioning using Cascading Style Sheets allows Web authors to precisely control
their content and where it appears on the page. In addition to directly specifying the size of
items, authors can offset them from their original locations in the normal flow, or remove
them from the flow altogether and place them in a specific location.

Dynamic positioning provides several advantages over simply manipulating the normal flow
of the page:

* The actual position of content can be determined with precision. Browser window size is
no longer a constraining factor, though good design mandates that it be taken into
account.

* The content does not have to be distorted to fit into complex table structures.
* Content can be rendered visible or invisible, allowing for dynamic effects that lend

themselves to scripting.
* Content can be layered, so that more than one item appears in the same location on a

page.

These are just a few of the advantages of dynamic positioning. Dynamic positioning allows
Web authors to build content that is attractive and predictable, and also has the potential to
increase usability (as menu-like structures can be built within pages), decreasing the number
of times users must click to reach their goal.

Understanding dynamic positioning requires an understanding of the different types of

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 4

content that may appear on a page, such as blocks, inline content, and floats.

Block elements
Every page is, at its heart, a block of content. This block also contains other content that may
itself be made up of blocks or other content. Block elements are distinguished from other
elements in two ways.

One major characteristic of blocks is that they are stacked on the page vertically, with each
block appearing below the block that precedes it, even if it appears that there is sufficient
room on the line for the new content.

HTML elements that are displayed as block elements include headers, paragraphs, and divs:

<html>
<head><title>Block-level content</title>

<style type="text/css">
* { border: 1px solid red; }

</style>
</head>
<body>

<h1>Headlines...</h1>
<p>... paragraphs ...</p>
<div>

... and divs are all displayed as block-level
content, meaning that they appear on a line
all by themselves.

</div>
</body>
</html>

As shown below, each of these blocks of content appears on a line by itself:

Notice that even the page itself is considered a block.

Inline elements
A second type of content, which always appears within a block, is known as inline content.
Inline content items are rendered next to each other as long as there is room on the line.
When there is no more room on the line, an inline item may be converted into two inline
items, with the second appearing on the next line.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 5

In other words, an inline item doesn't force the start of a new line the way a block-level
element does. Inline elements are typically used for formatting in traditional HTML (using
tags such as b and i), though they can also be used to provide information or styling
properties (using span):

<html>
<head><title>Inline content</title>

<style type="text/css">
* { border: 1px solid red }
b, span, i { border: 3px solid blue }

</style>
</head>
<body>

<h1>Headlines...</h1>
<p>... paragraphs ...</p>
<div>

... and divs are all displayed as block-level content, meaning that they appear
on a line all by themselves. Inline content, on the
other hand, is displayed within a block without creating a <i>new</i> block.

</div>
</body>
</html>

The exact layout of inline content can vary wildly depending on the width of the block in
which it lives.

Controlling block vs. inline display
Whether an element appears inline or becomes a block can be determined by the display
property. Every HTML element has an intrinsic value for display, but it can also be altered
using style sheets. The img tag is normally displayed inline, but can be made into a block

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 6

element, as seen below:

<html>
<head><title>The display property</title>
<style type="text/css">

#nebula { display: inline }
#bubble { display: block }

</style>
</head>
<body>

A second type of content, which always appears within a block, is known
as inline content. Inline content items are rendered next to each other
as long as there is room on the line.
When there is no more room on the line, an inline item may be converted
into two inline items, with the second appearing on the next line.
</body>
</html>

Notice that the nebula image shares the first line with text because it is designated as
inline, but the bubble image forces a new line before and after because it is designated as
a block.

Other display values
In addition to block and inline, the display property can take more than a dozen
values, each serving a different purpose.

Removing content

Setting the display property to none ensures that the element creates no box within the
flow. The layout is completely unaffected by the element. Children of the element inherit this
value and cannot override it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 7

Table-related values

These are the default values for their corresponding HTML elements, such as table, tr,
and so on, and can be used to mimic the behavior of those elements. They include:

* inline-table
* table-row-group
* table-header-group
* table-footer-group
* table-row
* table-column-group
* table-column
* table-cell
* table-caption
* table

Other values

Other values serve their own purposes:

* list-item: This value causes the element to mimic the li element.
* marker: This value designates content generated with the :before and :after

psuedo-elements as a marker.
* compact: This value allows an author to indicate that content should appear in the

margin of a block. If it doesn't fit in the margin, the browser displays the block on the
next line.

* run-in: This value generally renders as inline if the element is followed by a block
element. If not, it renders as a block.

* inherit: This value instructs the browser to use the display value of the element's
parent.

Floats
Floats, or elements that have been floated, combine some of the characteristics of both block
and inline elements. A floated element is initially laid out according to the normal flow of the
page, but it is then floated to either the right or the left until its outer edge touches the edge of
its containing block. (Determining the containing block involves several factors. See The
containing block on page 22for more information.)

In addition to their positioning, floats differ from normal block elements in that content can
flow along their side. For example, even though an unfloated paragraph and an image that's
floated to one side are both block-level elements, they can exist next to each other:

<html>
<head><title>Floated Items</title>
<style type="text/css">

#bubble { float: right; }
</style>
</head>
<body>

<p>When there is no more room on the line, an
inline item may be converted into two inline items, with the second appearing on the next

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 8

</p>

</body>
</html>

Note that regardless of other settings, a float always becomes a block element.

The clear property
Floats provide a great deal of flexibility in that the Web author doesn't need to know precisely
where the edge of the containing block is. That flexibility, however, can be a double-edged
sword. A floated element floats to the edge of the containing block, unless there is an
additional float in the way. For example, if both images in an earlier example were floated to
the right, they could stack up, preventing the text from flowing properly:

The clear property prevents this from happening by indicating that one side of the floated
object should be free of other floating objects. In other words, the browser must move the
element down until it can be laid out on that side free of other floated elements.

<html>
<head><title>The clear property</title>
<style type="text/css">

#nebula { float: right; }
#bubble { float: right;

clear:right; }

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 9

</style>
</head>
<body>

...

</body>
</html>

Replaced elements
In the actual rendering of the page, elements fall into two categories: replaced and
non-replaced .

Non-replaced elements generally make up the majority of HTML. Replaced elements are
those that are typically "linked in" to a page, such as images (img) and objects (object).
Select boxes (select) are also replaced elements.

The distinguishing factor of a replaced element is that the browser knows only the intrinsic
dimensions. All other information is determined by the content of the element.

Whether an element is replaced or non-replaced is important because in certain situations
involving determinations of size and location, the browser treats replaced and non-replaced
elements differently.

Line boxes
Ultimately, a page is made up of blocks, and a block is made up of line boxes, or rows, of
content. The browser creates a line box by adding, in order, all inline elements until one of
two events occurs.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 10

If the browser encounters a block-level element, it ends the current line box and creates a
new one for the block element, then a third line box for subsequent content.

Otherwise, the browser continues to add elements until the length of the row is filled. The
length of the row is typically the width of the containing block, but it may be reduced by the
width of elements that have been floated to one side of the block or the other.

The height of a line box is the distance from the top of the highest element to the bottom of
the lowest element. Note that in a situation where multiple elements (such as images) are
aligned to a common baseline, the line might be taller than the tallest element within it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 11

Section 3. A single box

Anonymous boxes
The basic building block of a page is the box. Every single item, whether it is a block-level or
inline-level element, is considered a box.

Sometimes the layout of a page creates an anonymous box. This content is typically one of a
series of inline items within a block not defined by any particular element. For example:

<div>
This is a block of text
 that is not
defined by a particular element.

<div>

The text sections "This is a block of text," "that is," and "not defined by a particular element"
are all anonymous boxes.

The box model
Even if a box is placed precisely, its content could still be out of position due to the internal
construction of the box, so to precisely place any item, it is crucial to understand how the
individual box works.

Four areas make up every box. They are:

* margin: This area surrounds the box itself. No boxes placed within the normal flow
encroach on this area, which is always transparent. The line around the outside of this
area is known as the box's margin edge, or outer edge.

* border: This line surrounds the content and padding of the box. If the border has a width

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 12

greater than 0, the outside of the border is considered to be the border edge.
* padding: This area is the blank space between the content and the border of the box.

The outside edge of the padding is known as the padding edge, and defines the
containing block created by the box.

* content: This area contains the actual content of the box. The edge of this area is known
as the content edge, or the inner edge.

For example:

<html>
<head><title>Inline content</title>
</head>
<style type="text/css">

#box { position: relative;
margin: 20px;
padding: 40px;
border: 3px solid red; }

</style>
<body>
<div style="border: 3px solid blue">

<div id="box">
The content of the box resides in the content area of any
box. This area is surrounded by padding, the size of which
can be set independently on each side.

</div>
</div>

</body>
</html>

Controlling box properties
Each side of a box's margin, padding, and border can be controlled individually. For example:

<html>
<head><title>Box Properties</title>
</head>
<style type="text/css">

#box { position: relative;
margin-top: 0px;
margin-right: 10px;
margin-bottom: 20px;
margin-left: 30px;
padding: 20px 50px;
border: 3px solid red; }

</style>
<body>
<div style="border: 3px solid blue">

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 13

<div id="box">
The content of the box resides in the content area of any
box. This area is surrounded by padding, the size of which
can be set independently on each side.

</div>
</div>
</body>
</html>

To control individual sides, set each side explicitly (as seen above in the margin values) or
use shorthand properties (as seen in the padding property). If the browser sees two values
for any of these properties, it assigns the first to the top and bottom, and the second to the
left and right.

Setting width
It would seem obvious that the width of a box is determined by the width property, and in
most cases this is correct. As long as the setting takes padding into account, the content
width appears as expected. For example, a block with a width of 300 pixels, a border 3
pixels wide, and 10 pixels of padding is going to display the content in an area 274 pixels
wide (300 - 3 - 10 - 10 - 3 = 274).

The width property does not apply to non-replaced inline elements, but the width of a block
can be set using an absolute length (using px, em, or ex units), a percentage of the
containing block, or a value of auto.

In the first two situations, the results are fairly predictable. However, if the width is set to
auto, the browser has a great deal of latitude, and how the value is ultimately set depends
on the type of content being sized.

Determining width
If the width of a block is set to auto, a number of different factors come into play. The type of
element, the width of the containing block and other values (such as margin-right and
margin-left), and the positioning scheme of the element all combine to determine the
actual value.

For replaced elements, a width of auto is always replaced with the intrinsic width for the
element.

For non-replaced elements in the normal flow, the browser obeys the following constraint:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 14

margin-left + border-left-width + padding-left + width +
padding-right + border-right-width + margin-right = width of the containing block

Sizing non-replaced elements that are absolutely positioned also involves taking the left
and right values into account for a constraint of:

left + margin-left + border-left-width + padding-left + width
+ padding-right + border-right-width + margin-right + right = width of containing block

Specifying a range of sizes
Instead of (or in addition to) specifying a value for the width, the Web author may specify a
range into which the width must fit by using the min-width and max-width properties.

The width is not the only property that may be affected by this range. The previous panel
shows that properties such as width, margin, and padding can be interdependent. If the
calculated width is outside the range specified by min-width and max-width, the
appropriate value is substituted for width and values are recalculated.

The height of a box can be similarly constrained using min-height and max-height, or it
can be specifically set.

Determining height
Like the width property, the height property can be explicitly set for a box, or can be set to
auto.

Also like the width, a value of auto uses the intrinsic value for replaced elements and a
calculated value for non-replaced elements.

The height property does not apply to non-replaced inline elements. Instead, these
elements take the height of the line box in which they're contained.

The height of a non-replaced block element depends on the type of children it contains. If it
contains only inline children, the height of the box runs from the top of the topmost line box to
the bottom of the bottommost line box. If it contains block-level children, the height runs from
the top border edge of the highest block-level child to the bottom border edge of the lowest
block-level child.

Absolutely positioned elements also have to take into account settings for the top and
bottom, for a constraint of:

top + margin-top + border-top-width + padding-top + height +
padding-bottom + border-bottom-width + margin-bottom + bottom = height of containing block

Collapsing margins
One of the properties that affects the height of a box is the margin. The margin is the
transparent area around the box that sets it off from the content around it. In the case of

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 15

block boxes positioned above and below one another by the normal flow of the page, the
vertical margins between them collapse. When margins are collapsed the browser generally
chooses the larger of the two instead of showing both. For example:

<html>
<head><title>Collapsing margins</title>
</head>
<style type="text/css">
#box20 { margin: 20px;

border: 3px solid red; }
#box40 { margin: 40px;

border: 3px solid red; }
</style>
<body>
<div style="border: 3px solid blue">

<div id="box20">The content of the box...</div>
<div id="box40">The content of the box...</div>

</div>
</body>
</html>

The larger margin, 40 pixels, is used between the two boxes, rather than the sum of the two
margins (60 pixels).

If one of the margins is negative, the negative value is added to the positive value, so a 10px
margin combines with a -5px margin to make a 5px margin. If both of the margins are
negative, the margin with the greatest absolute value is used, so a -10px margin and a -5px
margin combine to make a -10px margin.

The overflow property
In some situations, such as the placing of an image, the content of a box may be larger than
the box itself. The overflow property determines whether all of the content will be shown.

Take the following page, for example:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 16

<html>
<head><title>The overflow
/title>
<style type="text/css">

#overflowBlock { width: 150px;
height: 150px;
overflow: visible }

</style>
</head>
<body>
<div id="overflowBlock">

<img src="pillars.jpg"
width="200" height="196" />
</div>
</body>
</html>

Even though the image is larger than the block containing it, the entire image appears
because the overflow property is set to visible.

If, on the other hand, the overflow property were
set to hidden, the image would be clipped at the
border of the block.

A third option is to set the overflow property to
scroll, causing the browser to add scrollbars if
the content is too large for the box.

The overflow property can also be set to auto. For browsers, this value produces the
same behavior as scroll.

It's important to note that any block that exceeds the size of its containing block, such as a
div with a fixed size or even a section of preformatted (<pre></pre>) text, can make use of

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 17

this property. It's not limited to images.

CSS2 also defines the clip property, which allows the definition of a clipping path around
the content. Unfortunately, this is not yet supported by common browsers.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 18

Section 4. Positioning content

Setting a position
Now that you understand the basics of an individual box, it's time to look at actually
positioning it on the page.

Generally, the position of a box is set using the top and left properties that determine the
amount of vertical and horizontal space between the margin edge of the box and the
reference point. The reference point may be a fixed position on the page, such as the upper
left-hand corner of the window, or it may be a point that is moved relative to the overall
layout of the page. How the reference point is set depends on the positioning scheme of the
box.

The positioning scheme of the box is set using the
position property. The default value for
position is static. Content positioned as part
of the normal flow of the page is said to be
statically positioned. For example, both the image
and text on the page to the right have a position
value of static.

A second possible value, fixed, specifies that the element should, in the case of the
browser, remain in a fixed position with respect to the viewport, or visible section of the
window. In other words, if top and left were set to 50px, the box would remain 50 pixels
from the top and left edges, even if the page were scrolled. While this capability would be
enormously helpful for menus and other purposes, it is unfortunately not well supported as of
this writing, and must be approximated using scripting.

In terms of dynamic positioning, however, the most useful values for the position property
are absolute and relative.

Absolute positioning
When an element uses a position value of absolute, it is removed from the normal flow
altogether and positioned relative to the containing block. For example:

<html>
<head><title>Absolute positioning</title>
<style type="text/css">

#earth {position: absolute;
top: 100px;
left: 100px;)

</style>
</head>
<body>

When an element is absolutely positioned,
it is taken out of the flow of the page

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 19

and has no effect on subsequent content.
</body>
</html>

The subsequent text is positioned as though the image didn't exist.

Positioning values may be positive or negative numbers. A negative value simply provides
the opposite effect. For example, assigning the top property a value of -10px moves the
block up 10 pixels, where assigning the left property a value of -10px moves the block 10
pixels to the right.

Nesting and absolute positioning
Because absolute positioning uses the containing block as its reference point, nested content
that is absolutely positioned knows only of its parent. What's more, it stays within the
containing block, so if overflow is set to hidden, it is possible for the content to disappear
altogether.

For example:

<html>
<head><title>Absolute positioning</title>
<style type="text/css">

#container1 { position: absolute;
height: 200px; width: 150px;
overflow: hidden;
border: 1px solid green; }

#container2 { position: absolute;
top: 15px; left: 225px;
height: 200px; width: 150px;
border: 1px solid green; }

.earth {position: absolute;
top: 100px;
left: 100px;)

</style>
</head>
<body>

<div id="container1">

When an element is absolutely positioned, it is taken out of the
flow of the page and has no effect on subsequent content.

</div>

<div id="container2">

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 20

When an element is absolutely positioned, it is taken out of the
flow of the page and has no effect on subsequent content.

</div>
</body>
</html>

Although both graphics are absolutely positioned and use the same positioning information,
they appear in different locations because they use different reference points. Each graphic
uses its own containing block as a reference point, even when, as is the case with
container2, that containing block has itself been absolutely positioned.

Notice also that because the second graphic is absolutely positioned, it can extend past the
edge of the browser window.

Using the bottom right edge
Though it is customary to use the top and left properties to position a block, it is not
unusual to use the right and bottom properties for positioning.

For example, designs might call for a block that is always positioned in the lower right-hand
corner of the page, regardless of the size of the browser window:

<html>
<head><title>Absolute positioning</title>
<style type="text/css">

#container1 { position: absolute;
height: 200px; width: 150px;
overflow: hidden;
border: 1px solid green; }

#container2 { position: absolute;
bottom: 15px; right: 15px;
height: 200px; width: 150px;
border: 1px solid green; }

.earth {position: absolute;
top: 100px;
left: 100px;)

</style>
</head>
<body>

<div id="container1">

When an element is absolutely positioned, it is taken out of the
flow of the page and has no effect on subsequent content.

</div>

<div id="container2">

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 21

When an element is absolutely positioned, it is taken out of the
flow of the page and has no effect on subsequent content.

</div>
</body>
</html>

Notice that the edge of the block is not affected by the fact that one of its children extends
past its border.

The containing block
Because absolute positioning uses the containing block as its reference point, it's crucial to
be able to determine which element generates a box's containing block.

The top-level ancestor for all boxes is the initial containing block. For browsers, the initial
containing block is the same as the content edge of the page itself. To determine the
containing block for page content elements, certain rules apply.

In general, an element's containing block is found by determining the nearest block-level
ancestor and using its content edge. Consider this example:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 22

<div id="container1">

When an element is absolutely positioned, it is taken
out of the flow of the page and has no effect on subsequent
content.

</div>

Both the image and the text have as their containing block container1.

The exceptions to this rule are elements that use position:fixed (which use the browser
window as their containing block) and absolutely positioned elements. To find the containing
block for an absolutely positioned element, first determine the element's nearest absolutely,
relatively, or fixed-positioned ancestor. If that ancestor is a block-level element, its padding
edge forms the containing block.

The containing block (continued)
If the ancestor is an inline element, the extent of the containing block is found by determining
the extent of the outside edges of the first and last boxes within the ancestor.

Consider this example:

<html>
<head><title>Absolute positioning</title>
<style type="text/css">

#container1 { position: absolute;
height: 200px; width: 200px;
overflow: hidden;
border: 1px solid green; }

.earth {position: absolute;
bottom: 20px;
left: 100px; }

</style>
</head>
<body>
<div id="container1">

When an element is absolutely positioned...

... it is taken out of the flow of the page
and has no effect on subsequent content.
Just be certain to correctly determine the
containing block!

</div>
</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 23

Because the positioning scheme of innerContainer is static, the containing block for
the image is container1.

If, on the other hand, positioning information is added:

#innerContainer { position: absolute;
top: 20px;
left: 20px;
border: 1px solid red; }

the containing block becomes innerContainer.

In the event that there is no appropriate ancestor for the element, the initial containing block
becomes the containing block for the element.

Relative positioning
Sometimes, the goal isn't so much to place an element precisely as it is to offset it from its
normal position. For example:

<html>
<head><title>Relative positioning</title>
<style type="text/css">

#container1 { position: absolute;
padding: 30px;
border: 2px solid blue; }

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 24

.emphasis {position: relative;
top: -10px; left: -10px;)

</style>
</head>
<body>
<div id="container1">

Relative
positioning can be used to
move content relative to its static
location.

</div>
</body>
</html>

The major difference is that a box that is relatively
positioned is laid out according to the normal flow,
then offset by the values specified in top and
left. The browser places subsequent content as
though the box exists in its original static position.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 25

Section 5. Layering content

The z-index property
With all of these elements being moved around on the page, it's virtually inevitable that at
some point, two or more are going to overlap. The order in which they do determines which
content is visible, and which falls "behind" the other content.

In normal circumstances, elements simply pile up on the page, with each new element
rendered "in front of" the previous elements. The last element specified is the one that's
visible. To change that, use the z-index property. For example:

<html>
<head><title>The z-index</title>
<style type="text/css">

div { position: absolute;
height:100; width:100;
border: 3px solid black; }

#redBox { z-index: 5;
top:20px; left: 20px;
background-color: red; }

#blueBox { z-index: 20;
top:45px; left: 45px;
background-color: blue; }

#greenBox { z-index: 10;
top:70px; left: 70px;
background-color: green; }

</style>
<body>
<div id="redBox"></div>
<div id="blueBox"></div>
<div id="greenBox"></div>
</body>
</html>

The higher the value of the z-index property, the "closer" the block is rendered, so the
middle blue box is rendered in front, even though the green box was rendered after it.

The z-index property takes any integer value. In the event that two boxes in the same
stacking context have the same value, the last one rendered takes precedence.

Each element may actually have z-index values for two contexts: the root stacking context
and the local stacking context.

Root stacking context
The root stacking context determines the overall stack of the document. In building a
document, all elements are assumed to have a stacking order of zero, so any element that
has a specific value for the z-index property is going to be rendered in front of any that
doesn't. For example:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 26

#redBox { z-index: 5;
top:20px; left: 20px;
background-color: red; }

#blueBox { top:45px; left: 45px;
background-color: blue; }

#greenBox { z-index: 10;
top:70px; left: 70px;
background-color: green; }

Because the blue box no longer has a z-index specified, it is rendered behind the other two
boxes.

Local stacking context
If an element has a specific value for z-index, that element establishes a local stacking
context. This determines the order of rendering for each element within it, and is independent
of any other local stacking context. For example:

<html>
<head><title>The z-index</title>
<style type="text/css">

div { position: absolute; height:100; width:100;
border: 3px solid black; }

#redBox { z-index: 5;
top:20px; left: 20px; background-color: red; }

#blueBox { z-index: 20;
top:45px; left: 45px; background-color: blue; }

#greenBox { z-index: 10;
top:70px; left: 70px; background-color: green; }

#blueText1 { border: 1px solid black; height: auto; width: auto;
background-color: white;
z-index: 1; }

#blueText2 { border: 1px solid black; height: auto; width: auto;
background-color: white;
top: 25px; left: 30px; }

</style>
<body>
<div id="redBox"></div>
<div id="blueBox">

<div id="blueText1">
First box of content.

</div>
<div id="blueText2">

Second box of content.
</div>

</div>
<div id="greenBox"></div>
</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 27

Notice that because the root stacking context of the second blue div places it in front of the
other two divs, all of its content is rendered in front of the other two divs even though the first
section of content has a z-index smaller than the other two, and the second section of
content doesn't have a z-index at all. Within the block, however, they render as expected,
with the first section taking precedence because it has a value specified.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 28

Section 6. Visibility

The visibility property
Many of the applications for dynamic positioning, such as popup menus and informational
elements, require content to be invisible until it's needed. In most such cases, the
visibility property is the solution.

The default value for visibility is visible, but other values are possible: hidden
makes the element invisible; collapse applies only to table-related elements and not only
renders the content invisible, but also collapses the affected element into those around it.
(For non-table-related elements, a value of collapse acts like a value of hidden.)

For example:

<html>
<head><title>Absolute positioning</title>
<style type="text/css">

#container1 { height: 200px; width: 150px;
border: 1px solid green; }

#earth { visibility: hidden; }
</style>
</head>
<body>

<div id="container1">
When an element is absolutely positioned,
it is taken out of the flow of the page
and has no effect on subsequent
content.

</div>
</body>
</html>

The image doesn't appear on the page because the visibility property for the image is
set to hidden. However, it still affects the flow of the page.

The effect on flow

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 29

In the previous example, it seemed that the image
was removed from the page altogether, but that's
not quite the case. Moving the image ahead of the
text shows a different result, as seen to the right.

Although the image doesn't appear, the hole where it belongs is obvious. Setting the
visibility property to hidden doesn't remove an element from the flow, it just prevents it
from appearing. The rest of the page is rendered just as if the element were right where it
belongs.

To completely remove an element from the flow of the page, set the display property to
none:

<html>
<head><title>Absolute positioning</title>
<style type="text/css">

#container1 { height: 200px; width: 150px;
border: 1px solid green; }

#earth { display:none }
</style>
</head>
<body>

<div id="container1">

When an element is absolutely positioned,
it is taken out of the flow of the page
and has no effect on subsequent
content.

</div>
</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 30

Section 7. Scripting position

Scripting and CSS properties
Dynamic positioning is not limited to laying out the page. You can use client-side scripting to
make your pages even more dynamic. In fact, the combination of CSS and JavaScript is
known by the (arguably inaccurate) name of Dynamic HTML, or DHTML.

All of the effects demonstrated so far in this tutorial have been accomplished by setting CSS
properties. To control them from a script, simply use the script to set or alter the properties.
This control requires an understanding of how the page is structured.

Like an XML document, a browser page follows a form of Document Object Model, or DOM.
Each element has children, and each of these children has properties, all accessible via dot
notation. For example, the location property of the document object can be accessed as:

document.location

The CSS properties are stored as part of the style property of the object. If an element, (a
div, for example) were represented by an object named box, the visibility property
could be accessed through:

box.style.visibility

The scripts that follow demonstrate this concept more fully.

Invisible items
The first example shows a simple script that allows the user to make boxes disappear by
clicking on them:

<html>
<head><title>Whack-a-box</title>
<style type="text/css">

div { position: relative; height:100; width:100; border: 3px solid black; }
#redBox { top:20px; left: 20px; background-color: red; }
#blueBox { top:50px; left: 85px; background-color: blue; }
#greenBox { top:-180px; left: 150px; background-color: green; }

</style>
<script type="text/javascript">

function hide(box) {
box.style.visibility = 'hidden';

}
</script>
</head>
<body>
<div onclick="hide(this)" id="redBox"></div>
<div onclick="hide(this)" id="blueBox"></div>
<div onclick="hide(this)" id="greenBox"></div>
</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 31

To activate the script, use the onclick() event to
execute the hide() function. When the user clicks
the div, the browser replaces the keyword this
with a reference to the object that fired the event,
so in the hide() function, box always refers to
the div that the user clicked.

Once inside the function, the script changes the value of the visibility property to
hidden, making the box disappear. Note that even though the boxes are relatively
positioned, hiding them doesn't affect the layout of the page because they are still within the
flow.

Disappearing items
If the browser supports it, a small change to the script can create an even more dynamic
page. Setting the display property within the script causes the page to re-flow, taking the
missing elements into account:

When the user clicks the box, it is removed from
the flow, causing subsequent elements to shift. If
this effect is not desirable, be sure to either use
absolute positioning on elements that disappear, or
simply don't change the display property.

Affecting invisible items
Once the boxes have disappeared, there appears to be no way to retrieve them. Because
they are invisible, they do not receive events such as mouse clicks. One way to get around
this problem is not to make the element disappear; instead of making the actual element
disappear, you can create a child element and make that disappear instead. To do this, a
script needs a way to refer specifically to an element:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 32

<html>
<head><title>Whack-a-box</title>
<style type="text/css">

div { position: relative; height:100; width:100; border: 3px solid black; }
#redBox { top:20px; left: 20px; border: none; }
#redSubBox { height:100; width:100; background-color: red; }
#blueBox { top:50px; left: 85px; border: none; }
#blueSubBox { height:100; width:100; background-color: blue; }
#greenBox { top:-180px; left: 150px; border: none; }
#greenSubBox { height:100; width:100; background-color: green; }

</style>
<script type="text/javascript">

function toggle(boxId) {
var currentVisibility
currentVisibility = document.getElementById(boxId).style.visibility;

if (currentVisibility == 'hidden') {
document.getElementById(boxId).style.visibility = 'visible';

} else {
document.getElementById(boxId).style.visibility = 'hidden';

}

}
</script>
</head>
<body>
<div onclick="toggle('redSubBox')" id="redBox">

<div id="redSubBox"></div>
</div>
<div onclick="toggle('blueSubBox')" id="blueBox">

<div id="blueSubBox"></div>
</div>
<div onclick="toggle('greenSubBox')" id="greenBox">

<div id="greenSubBox"></div>
</div>
</body>
</html>

Notice that all appearance properties now apply to the child elements, but the onclick
event is still referenced from the parent element. Fortunately, when a child item of an
element is clicked, the parent still receives the event. Unfortunately, that also means that the
this keyword is no longer useful, because the object clicked is no longer the object to be
affected.

To solve the problem of identifying which object to alter, use the getElementById()
method, part of the document object. It returns an object based on the id attribute, and from
there the script can set properties as before.

Now the user can click a box to make it disappear, and click the (seemingly) empty space to
make it reappear.

Following the mouse
Sometimes, instead of knowing where an object is, you want to know where the user's
mouse is and act accordingly. This example shows how to access the current coordinates of
the mouse and use them to drag content around the page.

<html>
<head><title>Whack-a-box</title>
<style type="text/css">

div { position: relative; height:100; width:100; border: 3px solid black; }
#redBox { top:20px; left: 20px; background-color: red; }
#blueBox { top:50px; left: 85px; background-color: blue; }
#greenBox { top:-180px; left: 150px; background-color: green; }

</style>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 33

<script type="text/javascript">
function follow(box) {

box.style.left=(event.clientX - 50);
box.style.top=(event.clientY - 50);

}
</script>
</head>
<body>
<div onmousemove="follow(this)" id="redBox"></div>
<div id="blueBox"></div>
<div id="greenBox"></div>
</body>
</html>

The onmousemove event fires every time the user
moves the mouse over the affected area (in this
case, redBox). The function then retrieves the
position of the mouse at that instant from
event.clientX and event.clientY), and
uses it to create a new position for the box. The
process is repeated every time the mouse moves,
causing the box to "follow" the user's mouse
movements.

The browser then uses that position information to create a new position for the box.

Controlling layering
In dragging the box around the page, you may notice that you can't drag it under any of the
other boxes, because they are in front of it. When the mouse reaches the boundary of a box
that is in front of redBox, the onmousemove event no longer affects redBox, so it doesn't
move.

This example shows how to remedy this by controlling the z-index property from within a
script:

<html>
<head><title>Whack-a-box</title>
<style type="text/css">

div { position: relative; height:100; width:100; border: 3px solid black; }
#redBox { z-index: 5; top:20px; left: 20px; background-color: red; }
#blueBox { z-index: 10; top:50px; left: 85px; background-color: blue; }
#greenBox { z-index: 15; top:-180px; left: 150px; background-color: green; }

</style>
<script type="text/javascript">

function follow(box) {
box.style.left=(event.clientX - 50);
box.style.top=(event.clientY - 50);

}
function setBehind(box) {

box.style.zIndex=1;
}

</script>
</head>
<body>
<div onmousemove="follow(this)" id="redBox"></div>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 34

<div onclick="setBehind(this)" id="blueBox"></div>
<div onclick="setBehind(this)" id="greenBox"></div>
</body>
</html>

When the user reaches the boundary of the blue or
green box, clicking that box causes the z-index
property to be set lower than the z-index
property for redBox, causing redBox to suddenly
appear in front.

Note that due to conflicting naming restrictions, the z-index property is actually referenced
as zIndex. This conversion applies to all of the hyphenated properties, such as
border-width (borderWidth) and padding-right (paddingRight).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 35

Section 8. Dynamic positioning summary

Summary
Dynamic positioning of content brings the browser much closer to the goal of providing the
same flexibility and aesthetics as a page layout program, but also provides the advantage of
separating positioning information from content.

Items on a page can be absolutely or relatively positioned, and their sizes, padding, margins,
and borders can be controlled in order to place them precisely. The use of CSS properties
can also provide scripting capabilities, in which positioning information can be controlled
programmatically in response to user actions.

Resources
Some good places to find additional information on dynamic positioning and its related
technologies are listed below:

* Read CSS Layout Techniques: for Fun and Profit for an excellent look at using dynamic
positioning as an alternative to HTML tables.

* Read the complete Cascading Style Sheets level 2 Recommendation .
* Follow the progress of work on Cascading Style Sheets level 3 at the W3C.
* Read the Intro to Cascading Style Sheets: Type tutorial for a look at CSS in general and

text effects in particular.
* Explore additional CSS resources at The CSS Pointers Group .
* Read Writing Cross-Browser Dynamic HTML , by David Boles and Rachael Ann

Siciliano, for a look at building your DHTML for all browsers.
* Read How to Build Pull-Down Menus with JavaScript , an excerpt from Javascript for

the World Wide Web: Visual QuickStart Guide, 4th Edition by Tom Negrino and Dori
Smith.

* Explore additional DHTML resources at the Web Developer's Virtual Library's Dynamic
HTML pages .

* Read a JavaScript Tutorial for Programmers by Aaron Weiss.
* Read Creating Dynamic HTML in Internet Explorer 4+ using JavaScript , an excerpt

from Paul Wilton's Beginning Javascript, for a look at using JavaScript to change HTML
elements.

* Read A Cross-browser DHTML table for a look at adapting JavaScript to different
browsers.

* Explore Danny Goodman's JavaScript Pages for a look at what functions and tags are
supported in which browsers.

Downloads
* Download a zip archive of the sample code presented in this tutorial.
* Download IBM Web Browser for OS/2 .
* Download Microsoft Internet Explorer 5.5 , Internet Explorer 6 , or Internet Explorer 5.0

for Macintosh .
* Download Netscape 6 , with improved compliance over earlier versions.
* Download Opera , a standards-compliant browser available for OS/2, BeOS,

Linux/Solaris, Mac, QNX, Symbian OS, and more than 20 different localized versions for
Windows.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 36

http://glish.com/css/
http://glish.com/css/
http://glish.com/css/
http://glish.com/css/
http://glish.com/css/
http://glish.com/css/
http://glish.com/css/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www-105.ibm.com/developerworks/education.nsf/web-onlinecourse-bytitle/36D72A7C55006B2786256ABF006A55B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/web-onlinecourse-bytitle/36D72A7C55006B2786256ABF006A55B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/web-onlinecourse-bytitle/36D72A7C55006B2786256ABF006A55B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/web-onlinecourse-bytitle/36D72A7C55006B2786256ABF006A55B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/web-onlinecourse-bytitle/36D72A7C55006B2786256ABF006A55B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/web-onlinecourse-bytitle/36D72A7C55006B2786256ABF006A55B9?OpenDocument
http://css.nu/
http://css.nu/
http://css.nu/
http://css.nu/
http://www.zdnet.com/devhead/stories/articles/0,4413,2706098,00.html
http://www.zdnet.com/devhead/stories/articles/0,4413,2706098,00.html
http://www.zdnet.com/devhead/stories/articles/0,4413,2706098,00.html
http://www.zdnet.com/devhead/stories/articles/0,4413,2706098,00.html
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.informit.com/content/index.asp?session_id={E5052ED7-F891-4D5B-B20B-6B2EA7879F28}&product_id={A943CBB9-0DED-4937-8C25-6A67E7CB8971}
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/DHTML/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www.wdvl.com/Authoring/JavaScript/Tutorial/
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-e4js/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-cbdh/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-cbdh/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-cbdh/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/wa-cbdh/?dwzone=web
http://www.dannyg.com/javascript/
http://www.dannyg.com/javascript/
http://www.dannyg.com/javascript/
http://www.dannyg.com/javascript/
positioningfiles.zip
positioningfiles.zip
positioningfiles.zip
positioningfiles.zip
positioningfiles.zip
positioningfiles.zip
http://www-4.ibm.com/software/os/warp/browser/
http://www-4.ibm.com/software/os/warp/browser/
http://www-4.ibm.com/software/os/warp/browser/
http://www-4.ibm.com/software/os/warp/browser/
http://www-4.ibm.com/software/os/warp/browser/
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/downloads/archive/default.asp
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://www.microsoft.com/mac/products/ie/ie_default.asp?navid=s7
http://home.netscape.com/download/
http://home.netscape.com/download/
http://www.opera.com/

Feedback
We welcome your feedback on this tutorial -- let us know what you think. We look forward to
hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Understanding dynamic positioning Page 37

