
Creating a complete Web service

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Introduction 2

2. Installing the Web Services Tools 3

3. The sample Web-based application 6

4. Creating the Web service 10

5. Testing the Web service 14

6. Integrating into the Aggregation demo 17

7. Resources and Feedback 20

Creating a complete Web service Page 1



Section 1. Introduction

Tutorial Purpose
The IBM Web services Toolkit IBM Web Services Toolkit (WSTK) on alphaWorks provides a
practical introduction to hosting Web services. It also includes a companion, the Aggregation
demo, that consists of a number of Web services, their associated visual components, and a
simple portal in which to run them.

Be forewarned, that due to the alpha stage of the tools, integration is not complete. This
means you may have to get your hands dirty at times with manual intervention that will not be
required in real products.

Prerequisites
You should have an understanding of the technologies underlying Web services and
e-business in general, including XML, Java, Web Services Description Language (WSDL),
Simple Object Access Protocol (SOAP), and Universal Description Discovery and Integration
(UDDI).

The tutorial leverages two technologies available on IBM's alphaWorks: the Web Services
Toolkit (WSTK) and the Aggregation demo to set up a local environment for hosting Web
services; and the XML and Web Services Development Environment (WSDE), to turn the
existing Web-based application into a Web service based application (a Web service and its
associated visual component). WSDE also deploys and publishes the Web service.
In order to make use of the tutorial, you'll need:

* Windows NT 4.0 (with Service Pack 6a) or Windows 2000 (with Service Pack 1)
* JDK 1.2.2 or JDK 1.3
* Internet Explorer 5.0 (or higher) or Netscape Communicator 4.5 (or higher)
* the WSTK and the Aggregation demo, downloaded and installed
* a local version of a UDDI-compliant Web services registry (one is available in the

WSTK)
* the personal version of IBM's DB2 database
* the WSDE
* and finally, a Web-based application that you'd like to integrate into the Aggregation

demo and turn into a Web service based application. You can use an existing
application, create something from scratch, or simply use the example presented in the
tutorial.

About the author
Greg Flurry is a member of the Software Group Emerging Technologies Area. He and other
members of the area are working to improve the applicability of Web services and related
technologies in e-business environments. You can reach Greg at flurry@us.ibm.com .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 2

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/Webservicestoolkit&origin=wsaggr
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/Webservicestoolkit&origin=wsaggr
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/Webservicestoolkit&origin=wsaggr
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/Webservicestoolkit&origin=wsaggr
mailto:flurry@us.ibm.com


Section 2. Installing the Web Services Tools

WSDE
You can download WSDE from IBM alphaWorks at
www.alphaworks.ibm.com/tech/wsde . Be sure you get the version that was updated on
12/20/2000. If you have trouble with this, the WSDE and installation are discussed in
the Web services tutorial titled Web services: The Web's next revolution by Doug
Tidwell. (Note that at this time, WSDE works only on a Windows operating system.)

You can download the WSDE zip file (xml-wsDE.zip, which is almost 90 MB, so be
patient), or you can download the file or get it in pieces (xml-wsDE.zip.1-9) and
follow the instructions on the site for reassembly. When you unzip the file, it creates an
itp directory relative to the base directory you unzip to -- in the tutorial this is referred
to as WSTK_HOME. Check your installation by "exploring" to the itp folder and
double-clicking on ide.exe. If you wish, follow the instructions in Doug's tutorial to
actually use the WSDE. You will need to shut down the WSDE to install some plugins
after installing the WSTK.

Web services: The Web's next revolution

WSTK - base
You can download the WSTK and associated components at
www.alphaworks.ibm.com/tech/Webservicestoolkit . You must use WSTK version 2.2.1,
updated 03/21/2001, for this tutorial. You cannot successfully complete the tutorial with an
older version of the WSTK.

You will need to download only the following zip files:

* wstk221.zip - supplies the base WSTK; you must install (unzip) this file. Once installed,
you can browse the WSTK's installation guide and background material for additional
information.

* wstkuddi221.zip - supplies some of the support necessary to implement a local UDDI
registry; you will also need an installation of the IBM DB2 database. I'll discuss this at
greater length below.

* browser-plugin221.zip - supplies a plug-in Web Services Browser for the WSDE.
This must be extracted in the itp directory where the WSDE was installed.

* AggregationDemo22.zip - (not a typo, it really is AggregationDemo22.zip) supplies the
Aggregation demo; I'll discuss this in greater detail below.

You must install the WSTK on the same machine as the WSDE. This is necessary only for
the current alpha version of the WSDE. The rest of the tutorial will assume that both WSDE
and WSTK are installed on a single machine.

I recommend installing wstk221.zip in the root directory; we'll refer to the path up through
the wstk-2.2 directory that gets created as WSTK_HOME. Once you have installed
wstk221.zip, the WSTK runs with three different application servers:

* IBM WebSphere Application Server, Version 3.5.2
* Embedded WebSphere, Version 3.5

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 3

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/wsde&origin=wsaggr
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/Webservicestoolkit&origin=wsaggr


* Apache Tomcat 3.2.1

If you are already using WebSphere 3.5.2 or Tomcat 3.2.1, I suggest you complete the
installation and configuration by following the appropriate instructions for your current
application server. If you currently run neither of these application servers, I suggest you use
Embedded WebSphere. It is included in the wstk221.zip file and minimizes additional
configuration. I used that server while creating this tutorial.

WSTK - local UDDI
The WSTK requires a UDDI-compliant Web services registry. The WSTK offers a choice;
you can use the IBM UDDI Test registry or you can set up a local UDDI registry on your
machine. The tutorial assumes you have set up a local UDDI registry.

Follow the WSTK installation and configuration instructions related to the local UDDI. You
must download wstkuddi221.zip and unzip the file into the same directory you unzipped
wstk221.zip. Running a local UDDI requires you to install a DB2 database; IBM makes a
personal version of DB2 available to you for free, but you do have to download, install and
configure it. See the WSTK installation instructions for the local UDDI for details.

WSTK - testing
I recommend that, in order to check your installation, you run some of the Web services
demos provided with the base WSTK after installing the local UDDI. Follow the
instructions to deploy, publish, run, unpublish, and undeploy the stock quote service or
the test Web service, or both. If these demos don't work, you need to check your
configuration.

One item that may cause problems is the database access. If this happens, make sure
that the user wstkAdmin with the password wstkAdmin has access to the
WSTKDATA database. You can do this by installing DB2 as the user wstkAdmin. If
you have installed DB2 as another user, use follow these steps to give wstkAdmin
access:

1. Open the DB2 Control Center.
2. Expand the tree on the left until you see the database WSTKDATA.
3. Right click on database WSTKDATA and select Connect.
4. In the Connect dialog box, enter "wstkAdmin" in the User ID and the Password

fields; click the OK button.

WSTK - Aggregation demo
Once you've successfully run the stock quote web service demo, install the Aggregation
demo. Unzip AggregationDemo22.zip into the same directory where you unzipped
wstk221.zip. Then follow the instructions for configuring the WSTK environment for the
Aggregation demo.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 4



Once you've finished installation and configuration of the Aggregation demo, run it following
the detailed instructions included with the WSTK documentation. Here is the brief version
(assuming you are running on a single system):

1. Go to WSTK_HOME/demos/aggregation. Run the following command:
aggregation.bat both

2. Point a browser at the local Aggregation demo (e.g.,
http://demohost:8080/aggr/editor/index.html). You'll see a login page. The Aggregation
Web services can run without a network connection using canned data, or they can run
"live" with a network connection. It is important to deselect Network Connected if you
are not connected. Type in any name in the Username field and then click the login
button. You will see a mostly blank page with a menu at the top, as shown in Figure 1.

3. Select the Edit Services button. You will see a page with a palette of Web services on
the left and a layout area on the right, as shown in Figure 2 .

4. Select a Web service from the palette. An outline of the visual component for that Web
service will appear in the layout area on the right. Click the Save Layout/Return button.

You can now interact with the Web service via its visual component. You can add other
applications by clicking the Edit Services button and repeating steps 3 and 4 above. Figure
3 shows the NSFNewsService application running with a SearchService application.

WSTK - browser plugin
This is the final part of the tutorial tools setup; you'll need to install the Web Services Browser
plugin from the WSTK into the WSDE. Unzip browser-plugin221.zip into the
WSDE_HOME/itp folder created when you installed the WSDE. This allows you to use the
Web services Browser tool to browse the businesses and Web services in a UDDI-compliant
registry. You can also use the tool to publish your Web service. For additional installation and
configuration information, before you unzip the file, view Readme.html which is included in
the zip file. Make sure that the WSDE version of wstk.properties matches the one in
your WSTK environment, including the application server (wsdl.service.port.name
property), and the credentials for the local UDDI (uddi.userid.demohost8080 and
uddi.cred.demohost8080 properties). The best thing to do is simply copy
WSTK_HOME/lib/wstk.properties to WSDE_HOME/itp/wstk.properties. When
you are finished, start the WSDE (as described above) and you should see this icon

in the menu.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 5

images/fig2.jpg
images/fig2.jpg
images/fig3.jpg
images/fig3.jpg


Section 3. The sample Web-based application

Required Characteristics
When you ran the Aggregation demo, you interacted with a visual component that in turn
interacted with a Web service in order to provide a service, such as stock quotes or news. So
it should come as no surprise that in order to integrate your Web service into the Aggregation
demo, your Web service must also have an associated visual component.

"Web service based application" describes the combination of a Web service and its
associated visual component. A Web service based application is closely analogous to a
"Web-based application," which has a visual component for human interaction and typically
uses some sort of "service" to provide function. Thus, many existing Web-based applications
provide a starting point for creating a Web service based application. Of course, starting with
a reasonably simple Web-based application is a good idea.

This Web-based application in this tutorial uses a JSP (Java Server Page) as the visual
component and a JavaBean to provide the actual service. This application is then used to
create a Web service based application, which is integrated with the Aggregation demo.

Although the service you create here might use a servlet instead of a JSP, for simplicity's
sake we'll use JSP when referring to all visual components of a Web-based application or
Web service based application.
To minimize the configuration necessary for setting up the application server Webgroups
(contexts, in Apache) and class path, we can make one slight concession with respect to the
location of the "existing" Web application. We'll start with the service JavaBean located in a
path already in the class path of the application server, and with the JSP already in an
existing Webgroup of the application server. Since we are going to integrate with the
Aggregation demo,
WSTK_HOME/demos/aggregation/Webapps/aggregation/WEB-INF/classes/aggregation;
is a good choice for the location of the JSP is in
WSTK_HOME/demos/aggregation/Webapps/aggregation/jsps. The code discussed
in the rest of the tutorial reflects these choices. If you are starting with an existing service,
you need to move your service JavaBean class file(s) to the location suggested, and either
make your service JavaBean part of the aggregation package, or modify the class path of the
application server. You must move your JSP to the suggested location because of the
implementation of the Aggregation demo.

The example service integrated into the test area provides weather forecasts. As with many
of the Web services in the Aggregation demo, the Web service for the weather forecasts
actually wraps a Web-based weather forecasting service (in this case the National Weather
Service) that provides HTML. The weather forecasting application consists of a JavaBean
(the wrapper) that processes the HTML from the National Weather Service to produce XML
documents. The JSP then translates the XML documents into HTML, with the assistance of a
helper JavaBean, to produce the desired visual result. The JSP also provides HTML forms to
get the desired state and city.

The WeatherForecast JavaBean
The WeatherForecast JavaBean, shown in Listing 1 , has three public methods:
getStates(), getCities() and getForecast(). All of these methods return an XML

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 6

source/list1.html
source/list1.html


document. None of the documents have a DTD, and the elements in the document are
contrived for this example. (A weather related standard could have been used instead, if one
were to be found.)

The getStates() method simply returns a list of state abbreviations. As you can tell from
Listing 1 , the state information is canned, as it does not change often. For the sake of
brevity, the listing does not include all of the states.

The getCities() method, once given a state, actually retrieves a list of cities from the
NWS for which it provides forecasts in that state. And the method, as we've seen, gets HTML
from the NWS. The method parses the HTML to produce the XML document returned to the
caller. There are a couple of interesting aspects to this method: first, notice the check for
being "off-line;" this allows operation with no network connection (with canned data).
Second, the method caches the city information returned from the NWS. Let's look at this in a
bit more detail.

The getForecast()method, given a state and city, retrieves the forecast from the NWS. It
also parses the HTML to produce an XML document. The list of cities returned from the NWS
contains the city name and the URL of the forecast for each city. I chose to return from the
getCities() method only the names and not the URLs. This means that when a caller
requests the forecast for a city, the request can contain only the names of the state and the
city. It also means, however, that the getForecast() method, without caching, would have
to make another request on the NWS to obtain the correct URL for the forecast. With
caching, the getForecast() method can get the appropriate URL out of the cache, and
send to the NWS only the one request needed to get the forecast.

The WeatherForecastHelper JavaBean
The WeatherForecastHelper JavaBean, shown in Listing 2 , provides convenience
methods that wrap the methods in the WeatherForecast service JavaBean.
WeatherForecastHelper has two methods, getStates()and getCities(),
both of which provide additional caching. These methods cache the information
returned from the WeatherForecast JavaBean in order to reduce the calls made on
it by the helper. The WeatherForecastHelper also contains the additional methods
of (formatStates(), formatCities(), and formatForecast()) which help the
JSP format its response.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 7

source/list1.html
source/list1.html
source/list2.html
source/list2.html
source/list3.html
source/list3.html


The forecast JSP
The forecast JSP, shown in Listing 3 , provides a user interface for the
WeatherService JavaBean. The JSP follows a normal JSP structure. It creates an
instance of a WeatherForecast class and an instance of a
WeatherForecastHelper class and puts the latter in the session context.

It is important to use the session scope here to prevent threading problems with the city
caches used by the WeatherForecast and WeatherForecastHelper objects.
The JSP controls its actions by looking at the request parameters and session state.
So it gets state information when appropriate, city information when appropriate, and
forecast information when possible (when both city and state are valid).

Running the weather forecast service
To run the Web-based application, you must place the Java class files for your service in the
class path of the application server. You can add to the class path if you need to. You must
also place the JSP in the "aggr" Webgroup (or context) of the application server. These
actions are application server dependent, and you should consult the documentation for your
application server for further information.

As may also be the case for your Web-based application, there are other types of files which
are part of the weather forecast application. All these files are stored in a single directory with
the class files (the directory is named forecast for the example). The properties file,
forecast.properties, contains a single property, OFFLINE, that indicates whether the
application is network connected (OFFLINE=F) or not (OFFLINE=T). The HTML files hold
canned data for offline operation.

Start your application server. Then start Embedded WebSphere using one of two methods:

1. Go to WSTK_HOME/demos/aggregation and run aggregationdemo.bat server
2. Run WSTK_HOME/bin/wstkenv (from any directory) and then run

WSTK_HOME/bin/Websphere.bat run

Now run your JSP. For the example in the tutorial, point your browser at the URL
http://demohost:8080/aggr/jsps/forecast.jsp. You will see a page, Figure 4, on which you are
able to select a state.

Figure 4

If you select a state, (TX in the example) you will see a page (Figure 5) that allows a
selection from a list of cities in the selected state.

Figure 5

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 8

source/list3.html
source/list3.html


Once you select a city, you will see something similar to Figure 6, namely a forecast for the
selected city and state.

Figure 6

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 9



Section 4. Creating the Web service

Overview
To perform this step, you must have the WSDE installed (see Section 2: WSDE for
details). This section follows the outline in the WSDE Help under Scenarios > The
Stock Quote scenario. You can consult the WSDE Help for additional instructions if
necessary.

The following actions will create the Web service:

1. Create a Web project.
2. Import the JavaBean that provides the service.
3. Create the WSDL file that describes the Web service.
4. Deploy the Web service into the SOAP server; this lets the SOAP server actually

run the service.
5. Create a proxy that a client uses to interact with the Web service.

Creating the Web project
Start the WSDE, go to the desktop and switch to the default perspective. Then create a new
Web Project for your service. Here we will use weather forecast service for an example.

1. Click File > New > Web Project
2. Type a name in the Solution name text field (I used WeatherForecastSolution).
3. Type a name in the Project name text field (WeatherForecast).
4. Click Next. The Web Settings page of the Web Project wizard provides defaults for the

Web application settings.
5. Click Next again to get to the Java Settings page.
6. Click Add External Jar and browse to locate and select the file

WSDE_HOME\itp\plugins\b2bxmlrt\xerces.jar, where WSDE_HOME is your
installation directory.

7. Click Add External Jar and browse to locate and select the file
WSDE_HOME\itp\plugins\org.apache.soap\soap.jar. You can use the Java
Settings page to add more information to the class path if your service requires it.

8. Click Finish. Your solution (WeatherForecastSolution) will appear in the
Navigator. Expand it to see the project (WeatherForecast). Expand the project.
Notice the two folders Web and servlets. The code for your service will be stored in
the servlets folder.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 10



Importing the JavaBean
Now you need to import the JavaBean that implements your service. To import the
JavaBean:

1. In the Navigator, under the project, select the servlets folder.
2. Create the package structure of your Web service under the servlets folder

folder by right-clicking on the folder and selecting New > Folder. The example
requires an aggregation folder and then a forecast folder within aggregation,
since the example code is in the aggregation.forecast package.

3. Select your folder (forecast for the example). Click File > Import to open the
Import wizard.

4. Click File system to import the resources from the local file system. Click Next.
5. To enter the directory, click Browse to locate and select the directory where your

JavaBean is located. (You will also need to select Files of type and select only
Java files). Then click the OK button to close the type selection menu. Click the
Finish button to import the file and close the wizard. The WSDE will attempt to
compile your service JavaBean.

Note: If you have other Java files in the folder with your service JavaBean, they will
also get imported, and may cause compile errors. Unless you need them to make your
service JavaBean compile, delete them. Compilation error messages will show up in
the All Tasks window. If your service JavaBean (or some other file) does not compile
successfully, ensure that the project's build class path is complete. To add to class
path, select the project (WeatherForecast) and right click and select Properties and
in the dialog, select Java Build Path and add to the class path.

Creating the WSDL file
Once the JavaBean is imported, you can create the WSDL that describes the Web service
using the Web Service Definition Wizard.

1. Select the servlets folder in the WSDE Navigator.
2. Click File > New > WSDL Web service to start the Web Service Definition Wizard.
3. Make sure the solution name and folder name are correct.
4. Ensure the Create a Web service (WSDL) from an existing JavaBean radio button is

selected. Click Next.
5. In the JavaBean Selection page of the wizard click on your class file

aggregation/forecast/WeatherForecast.class for our example) from the
Look in list to specify the location of the class file, then click Next.

6. The Method Selection page of the wizard shows a summary of methods in your
JavaBean. The wizard will select all public methods by default. The
forecast.WeatherForecast JavaBean has its three public methods selected by
default. Select the methods you wish to be available to users of your Web service and
click Next.

7. You can specify the Web server environment to which your Web service will be
deployed, and endpoint information about the Web service in the Web Service
Definition page of the wizard. (Note that for this alpha release of the WSDE,
deployment is supported only to servers running on the local host.) The wizard
automatically fills in the fields in this page. For the Deployment environment, you
should select either the WebSphere or Apache radio buttons. If you are running

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 11



Embedded WebSphere, select WebSphere and enter 8080 into the Port field.
8. The Scope is an important aspect of deployment because it determines, at least in the

SOAP environment, whether your Web service will get instantiated for each request
(request scope), each session (session scope), or once for all sessions and requests
(application scope). The aggregation.forecast.WeatherForecast JavaBean is
designed for session scope, so you must select session.

9. You can accept the rest of the defaults for testing in the WSTK environment. Click the
Next button.

The WSDL file (WeatherForecast.wsdl) is created in the servlets folder. You can
examine the WSDL file by double-clicking it. It will look something like the WSDL file for the
weather forecast Web service in Listing 4 .

Deploying the Web service
You should now be looking at the JavaBean Web Service Deployment page of the Web
Service Definition Wizard. This page shows the properties for the Web server environment
you selected on the previous page. You can deploy the Web service once you have reviewed
the properties for the Web server. In particular, if you are using Embedded WebSphere,
make sure the Web Server Install Path field reads WSTK_HOME\WebSphere\AppServer.
First make sure your application server is running, then click the Deploy button. After a few
seconds you should see a popup indicating success. Click the OK button.

Note: If you are using Embedded WebSphere, you will probably see the error panel shown in
Figure 7.

Figure 7

Don't worry! Deployment actually succeeded, but the alpha version of WSDE does not
expect to deploy to Embedded WebSphere, and it mistakenly thinks deployment failed. If you
see the error panel, just click the OK button.

After the Web service is deployed, open the XML-SOAP administration console
http://demohost:8080/soap/admin/). You should see your Web service, which
should be named urn:<service-bean-name>. For example, the weather forecast service
is listed as urn:WeatherForecast. Note that you can also use the XML-SOAP
administration console to deploy and undeploy Web services.

For more information on the deployment environments in WSDE, see the deploying
information under the Web services Reference section of Help.

Generating the client proxy

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 12

source/list4.html
source/list4.html


You should still be looking at the JavaBean Web Service Deployment page of the Web
Service Definition Wizard.

Create the client proxy as follows:

1. Click the Next button to enter the information needed for the creation of the client-side
proxy. The Java Client Proxy Generation panel allows you to specify the container
(path) for the generated Java client proxy. It defaults to
project-name>/servlets/services . I suggest you put the proxy in the same
container as the Web service so that the package name generated for the proxy is the
same as that of the service JavaBean.This minimizes the application server class path
configuration. The forecast Web service uses
/WeatherServiceSolution/WeatherService/servlets/aggregation/forecast.
The name of the Java client proxy defaults to <service-bean-name>Proxy.java.
For the example, the name is WeatherForecastProxy.java

2. Click the Next button to generate the proxy.
3. Click the Finish button to close the wizard, since there are no plans to run Web service

in the WSDE environment. See the WSDE Help section for information on testing the
Web service in the WSDE environment.

After creating the WSDL, deploying your web service and creating the client proxy, your
WSDE Navigator panel should appear similar to Figure 8.

Figure 8

Don't exit the WSDE. You'll need to use it again in the next stage of the tutorial.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 13



Section 5. Testing the Web service

Overview
Now it's time to test the Web service you've created. To test the Web service in a local
WSTK environment, you need to

1. Put the class file for the client proxy created by the WSDE into the WSTK application
server class path.

2. Modify the JSP and any other code that uses the your service JavaBean (the
WeatherForecast JavaBean in the example) to use client proxy instead.

There are some important assumptions here, however. Since you've already tested your
Web service based application in a WSTK enabled application server, that means the other
files necessary to run your Web service (for example, the
aggregation.forecast.WeatherForecast and
aggregation.forecast.WeatherForecastHelper classes and the associated files)
are already available to the application server. So your JSP is already located in a Webgroup
of the application server. If you tested your Web-based application in a different application
server environment, you will need to satisfy these assumptions.

Put the proxy class file in the class path
The class for the client proxy must be in the class path so that the application server can load
the proxy when used by the JSP. There are two ways to put the class file in the application
server class path. You can leave the code in the location where it was created by the WSDE
and add that directory to the class path, or you can export the code (at least the class file)
from the WSDE into a directory that is already in the WSTK application server class path. For
the example we chose to have WSDE create the proxy in the same directory (package) as
the Web service, so we will export the proxy to the directory where the Web service
JavaBean resides,
WSTK_HOME/demos/aggregation/Webapps/aggregation/WEB-INF/classes/aggregation.

Perhaps the easiest way to modify the WSTK application server class path is to add the
WSTK_HOME/bin/wstkenv.bat file. This batch file gets executed to set up the proper
class path for all of the application servers supported by the WSTK. You need to add a line of
the form: set WSTK_CP=%WSTK_CP%;<path-to-class-file>. (Note: Due to command
line length limitations in Windows, it may not be possible to add to the class path, so I
recommend putting the proxy in a directory already in the class path.)

In general, you can find the files (Java and class) for the client proxy in
WSDE_HOME/itp/workbench/<solution-name>/<project-name>/servlets, where
you will also find whatever additional directories are introduced by your package structure.
For the weather forecast files in this tutorial, the path is
WSDE_HOME/itp/workbench/WeatherForecastSolution/WeatherForecast/servlets/aggregation/forecast.

You can export the proxy code from the WSDE as follows:

1. In the Navigator panel of the WSDE, select the folder containing the proxy class file.
You can find the folder by following the steps we just outlined; in our example it is
forecast.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 14



2. Select in the menu File > Export, which opens the Export Wizard.
3. In the Select page, select File system and then click the Next button.
4. In the Directory field on the File system page, select the directory to which the proxy

class file must be exported. Select the Resources of type radio button and click the
Edit button.

5. Select at least the class type, and click the OK button.
6. Select the Details button. You will see the Resource Selection panel that contains the

directory you requested to export. It will look something like the dialog box shown in
Figure 9.

7. Click on the "+" to expand the folder, and expand other folders as needed to find the
folder containing the proxy. Unselect the top-level folder to ensure that you don't export
anything but what you select in the next step.

8. Expand the folder containing the proxy. You will see the files for the client proxy and any
other files in the folder displayed. Check the proxy class file. You will see something like
the dialog box shown in Figure 10.

9. Now click the OK button to return to the File system page. Under the Options field,
unselect Create directory structure and then click the Finish button. If you check the
destination you selected for export, you will find the client proxy files in that destination.

Modify the JSP and other code
The JSP must now use the client proxy to call the Web service instead of directly calling the
JavaBean that implements the service. Similarly, any other code that previously referenced
the service JavaBean must be modified to reference the client proxy instead. In the weather
forecast example, both the forecast.jsp and WeatherForecastHelper.java must be
modified to reference the WeatherForecastProxy instead of WeatherForecast. It is
important to note that the service JavaBean itself does not have to be modified.

Since I put the client proxy for the example in the same package as the original service
JavaBean, the modifications to both files are quite simple. Using a text editor, in
WeatherForecastHelper.java, simply change WeatherForecast to
WeatherForecastProxy and then recompile. The resulting code is shown in the following
partial listing of the modified WeatherForecastHelper.java.

public class WeatherForecastHelper {
protected WeatherForecastProxy forecaster = null;
public void setForecaster(WeatherForecastProxy forecaster){

this.forecaster = forecaster;
}
public WeatherForecastProxy getForecaster(){

return forecaster;
}
...

}

The JSP modifications are similar. Use a text editor to change the references to
WeatherForecast to WeatherForecastProxy. The following excerpt from the modified
forecast.jsp shows the required changes:

WeatherForecastProxy forecaster = forecastHelper.getForecaster();
if (forecaster == null) {

forecaster = new WeatherForecastProxy();
forecastHelper.setForecaster(forecaster);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 15



}

You can now attempt to run the your Web service based application by pointing your browser
at the URL for its visual component. Your results should be identical to the ones you get
when you run the original Web-based application. If you view
http://demohost:8080/aggr/jsps/forecast.jsp for the weather forecast
application, the results should look identical to those shown above. (Note: Remember that
you must either copy or move your JSP into a specific directory so that the Aggregation
demo can find it. The directory is
WSTK_HOME/demos/aggregation/Webapps/aggregation/jsps.)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 16



Section 6. Integrating into the Aggregation demo

Overview
In this section you will complete the integration of your Web services based application
into the Aggregation demo. To complete this section, you must have installed the
Aggregation demo along with the WSTK, chosen to use the local UDDI with the WSTK
(see Section 2: WSTK - local UDDI), successfully run the Aggregation demo (see
Section 2: WSTK - Aggregation demo), and created and tested your own Web service
based application (see Section 3: Running the weather forecast service) in the WSTK
environment.

The following actions are required to integrate with the local Aggregation demo:

1. Modify the WSDL document describing your Web service so that the Aggregation
demo can identify your Web service as having a related visual component (that is,
as part of a Web service based application).

2. Actually publish information about your Web service in the local UDDI so the
Aggregation demo can find it.

Modify the WSDL
The Aggregation demo looks for special port elements in the service element in the
WSDL document that describes a Web service. These port elements, named
DesignPresentation and RuntimePresentation, identify the Web service as having
an associated visual component and as capable of participating in the Aggregation demo. If it
is not already running, start the WSDE. Follow these steps:

1. Make sure you are viewing the default perspective.
2. Expand your solution (WeatherForecastSolution for the example), expand the

project (WeatherForecast), and expand the servlets folder containing the WSDL
document.

3. Double-click on your WSDL document to open it. Scroll down until you find the
service element.

4. Make sure the location attribute of the service.soap:address equals the URL of
your local SOAP server. The WSDE generates this value when you created your Web
service. For Embedded WebSphere, it should be <soap:address
location="http://localohst:8080/soap/servlet/rpcrouter"/>

5. Add the special port elements just before the service element end tag. You will need
to use the appropriate binding name (the value of the name attribute of the binding
element in your WSDL document) for the binding attribute. The local version of the
Aggregation demo in WSTK 2.2 expects the URL in the location attribute to be
relative to an application server Webgroup defined for the Aggregation demo (it is
named aggr), so you must use a URL of the form jsps/<your-jsp-name>.jsp. The
following listing shows what was added for the weather forecast Web service.

<port name="DesignPresentation"
>

<soap:address location="jsps/forecast.jsp"/>
</port>
<port name="RuntimePresentation"

>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 17



<soap:address location="jsps/forecast.jsp"/>
</port>

6. Press the Ctrl-S buttons, or File > Save, to save the WSDL file. The WSDE will do
some rebuilding, but you can ignore its actions.

If you have not already done so, put your JSP in the directory
WSTK_HOME/demos/aggregation/Webapps/aggregation/jsps.

Publish the Web service
Your WSTK enabled application server and your local UDDI database must be running to
continue. In the WSDE, click the icon

representing the Web Services Browser. You should see the browser tool open in a new
window. It should look like Figure 11 . If is does not, click the Browse UDDI Registry tab.
Both the Inquiry URL and Publish URL fields should read
http://demohost:8080/uddi/servlet/uddi to indicate the tool is working with the
local UDDI. If they do not, make sure that you have correctly set up the wstk.properties
file in the WSDE_HOME/itp directory, as described above.

Once the browser tool is open in browse mode, you can expand the Service Providers
folder to see AggregationDemo listed. Expand the AggregationDemo folder and you
should see the various Web services that are part of the Aggregation demo. Now expand the
Service Interfaces. You should see the various interface definitions for the Web services in
the Aggregation demo. If you click on one of the service interfaces, you will see the "interface
WSDL" for that service on the right side of the tool. Now expand one of the services under
the Aggregation Demo service provider. You will see an entry called "Implementation". Click
on it and you will see the "implementation WSDL" for that service implementation. You can
have some fun reading those WSDL documents, but I'll get to publishing.

To publish your Web service implementation:

1. Select the Publish Service Implementation tab. You'll see the appropriate dialog for
Web service publishing. It should look like Figure 12 .

2. In the Business Name field, type "AggregationDemo" to indicate that the service will be
"owned" by the AggregationDemo business. The Business Description will be filled in
automatically.

3. To fill in the Select a WSDL File field, expand the Computer folder, and go to a
location where you have the WSDL file for your Web service. You should use the WSDL
file you just edited with the WSDE. The example uses
WSDE_HOME/itp/workbench/WeatherForecastSolution/WeatherForecast/servlets/WeatherForecast.wsdl.

4. Next you need to categorize the Web service. Click the Add button to bring up the
Category Selection dialog box (see Figure 13). In the Select TModel Key field, select
either NAICS or UNSPSC. This will bring up the Select a Category from the Tree
Below dialog box (see Figure 14 ).

5. In the Select a Category from the Tree Below dialog, you can attempt to find
something that matches the semantics of your Web service, or simply expand an
interesting category. When you get to a leaf just select it and click the OK button. Your
selection will appear in the Category Selection dialog. You can add additional
categories, but it's not necessary. Click the OK button in the Category Selection dialog.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 18

images/fig11.jpg
images/fig11.jpg
images/fig12.jpg
images/fig12.jpg
images/fig14.jpg
images/fig14.jpg


6. Now click the Publish button in the Publish Service Implementation dialog. After a
few seconds you should see a popup confirming that your service is published. Click the
OK button.

7. Now click the Browse tab in the Web Service Browser. Click the Refresh button.
Expand the UDDI folder and the AggregationDemo folder, and you will see your Web
service implementation listed. Expand the Service Interfaces folder, and you will see
your Web service interface listed. Figure 15 shows the results after publishing the
weather forecast Web service.

8. Now you can exit the Web Service Browser and WSDE.

Run the Web service in the Aggregation demo
If your WSTK enabled application server and your local UDDI database are running, you are
ready to to bring up the Aggregation demo that includes your Web service. To do so:

1. Point a browser at the Aggregation demo (e.g.,
http://demohost:8080/aggr/editor/index.html). You'll see the log-in page.
Remember that it is important to deselect Network Connected if you are not
connected. Note that the selection has no bearing on the weather forecast Web service.
You must change the OFFLINE property in the forecast.ini file. If you change the
property, you will have to restart your application server.

2. Select the Edit Services button. You will see a page, similar to Figure 16 , with a
palette of Web services applications on the left and a layout area on the right. Your
application will be in the palette. Notice the WeatherForecast application in Figure 16 .

3. Select your application in the palette. An outline of your application will appear in the
layout area on the right. Click the Save Layout/Return button. Your service will now be
functional. You can also add other applications. The page, Figure 17, shows the
WeatherForecast application running with the StockQuoteService application.

Figure 17

Congratulations! You have succeeded in creating a Web service and integrating it with the
Aggregation demo.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 19

images/fig15.jpg
images/fig15.jpg
images/fig16.jpg
images/fig16.jpg
images/fig16.jpg
images/fig16.jpg


Section 7. Resources and Feedback

Resources
* Download the source code for this tutorial.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
Feel free to suggest improvements or other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Creating a complete Web service Page 20

codexample.zip
codexample.zip

