
� Supervisor: Dr. Stephen Chan

� Co-examiner: Dr. Jane Wong

� Student: Yim Wai Hin



� The IDE available on the market are not 
easy to extend the function.

� Location limitation - the user need to 
install and maintain same IDE for many 
machines in the office.

� Lack of real time collaboration support.



� Build a distributed development 
environment. Users can dynamically add 
and remove tools

� Allow multiple users to access / edit the 
same model

� Using multiple version concurrency control 
(MVCC) in place of locking to resolve 
conflicting actions in the collaborative 
system



� Locking

� Avoid conflicts by ensuring that only one user 
can access an object at any time

� Poor performance of concurrency is a side 
effect

� MVCC

� Less stringent, but more complicated



� Build on the jini development environment

� Benefits of jini/javaspace

� Based on an opensource UML editor
ArgoUML

� The pros and cons of this UML editor

� The pros and cons of using XMI file format, the 
de facto XML format of UML



use

Project ManagerProject Manager

User 
Manager

User 
Manager

Client 
Application

Client 
Application

Tool BTool B

use

Tool ATool A

monitor

use

monitor

Project 
Database
Project 

DatabaseJavaSpace: For 
whole project

JavaSpace: For 
whole project

JavaSpace: For 
current client’s 
editing work

JavaSpace: For 
current client’s 
editing work

Read/write

monitor

System 
Administration

System 
Administration

Service 
Finder

Service 
Finder



Jini IDE

Socket 
server

ArgoUML

GEF

NSUML

ArgoUML

GEF

NSUML

•GEF is the diagram drawing framework
•The system extract nodes and edges of the UML diagrams
•NSUML is the UML meta model framework
•The system extract the UML detail elements



� UML diagram is a graphic.

� Every elements depend on some other 
elements, like attribute/operation depend 
on the model, child class depends on 
parent class.

� Check if the user deletes an element that 
have other elements depend on.



ImplClassInterface

ImplClass

Interface ChildClass
Interface

Original
Client B delete 
ImplClass at same 
time

Client A add a child class 
on ImplClass



� However after doing some prototype we find that 
this algorithm have some problems.

� It don’t prevent all possible conflicts, e.g.: 2 
clients modify same element in same time.

� Some work for the users will lost, because we 
will reject some change from the users.

� Borrow the idea from CVS1 and propose other 
algorithm to solve the problem.

1: CVS: concurrency version system, more detail at http://www.cvshome.org.

http://www.cvshome.org/


http://www.carfield.com.hk/pipermail/jini-dev_env/2002-February/000055.html



� There is no single basic element in UML.

� Due to the time limitation only concentrate 
on class diagram.

� Basic elements of class diagram including: 
name, stereo type,visibility, attributes and 
operations.

� Example of 
conflict model.



� The patched UML editor successes to 
share the diagram between users

� It is able to detect the occurrence of 
conflict

� However, due to the time limitation, not 
much testing can be done, and the 
integration with jini is not complete



� Able to solve some exceptions that is difficult to 
solve in traditional client-server model

� e.g.: In client server model, the versioning 
engine need to be called by many clients. It 
needs to be synchronized to keep the data valid; 
But once synchronized, there are possible to 
have dead-lock 

� In jini/javaspace, the versioning engine is just a 
service in jini, which pick up the data at 
javaspace to process, no need to synchronized, 
no deadlock possible



� Too complicated to process, many 
attributes we don't need.

� In order to use it, we need to spend many 
time to learn the specification. Which are 
not useful.

� It will be better to build our custom file 
format that only contain attributes we 
need.



 

 Locking Versioning 

User 

Experience 

Poor, need to unlock 

everytimes after editing 

and need to wait for other

unlock 

Good, no need to wait, just resolve 

conflict occasional 

System 

performance Best 

Good, a little CPU power spend on 

continue merging model, but it don't 

affect the user operation. 

Network 

overheading 

Very Low, only lock and 

unlock message 

Low, need to transfer diagrams many 

times, but the the size are very small. 

Implementati

on 
Easy 

Median, the algorithm are not 

complicate, but tedious to implement. 



� ArgoUML is not design for collaborative from 
ground up. We should replace ArgoUML with 
our implementation

� Improvement of the collaboration architecture -
user control, versioning history management, 
WebDav integration

� Improvement of versioning algorithm – lock 
smaller attribute but not whole model, offline 
merging


	A framework for an agent-based development environment with jini/javaspace(Real time collaboration)
	Motivation
	Objective
	MVCC Vs. Locking
	Methodology
	Architecture Overview
	Proposed Algorithm
	Example of How Algorithm Work
	Problem and New Approach
	Conflict Resolution Flow
	Conflict Resolution Model
	Result
	Conclusion of Using jini
	Conclusion of Using XMI
	Conclusion of Versioning Algorithm
	Future Work

