
Department of Computing

BA(Hons) Degree in Computing

Final Year Project Report (2001/2002)

A Framework for an agent-based development environement

with jini/javaspace

(Real-time collaboration support)

Supervisor Name : Dr. Stephen, Chan

Co-examiner : Dr. Jane, Wong

Student Name : Yim Wai Hin

Student ID : 98133594d

Submit Date : 19/4/2002

Department of Computing

Abstract:
Software development requires the aid of many development tools to accomplish different

tasks. It is impossible that all the tools are available or supported by an integrated

development environment.

Based on Jini network technology, we propose a distributed software development platform

for software development tools. Tools can be plugged into the platform dynamically and

become members of distributed development environment.

Besides, we will also address the lack of support for real-time collaboration on current

distributed systems. This project, we will extend a single user UML modeling tool to support

real-time collaboration, as one of the tools of the propose development environment.

Integration of the collaborative UML editor into the platform will also help to validate the

functions of the propose system.

The result of the project is a distributed development environment, which contains a

collaborative UML editor using versioning algorithm.

2 Of 95

Department of Computing

Acknowledgement
I would like to give my sincere thanks to my project supervisor, Dr Stephen Chan, who gave

me genuine support and valuable advice throughout the development process of the whole

project. He has been gentle and provided comments on the project so that I could finish the

project smoothly.

I would also like to give my special thanks to my project co-examiner, Dr Jane Wong, for

spending her valuable time on this project.

Last but not least, I would like to express my appreciation to my families, classmates, friends

and those who supported my work in intangible ways.

3 Of 95

Department of Computing

Table of Contents

Abstract: ..2

Acknowledgement...3

1. Introduction..9

1.1 Problem statement..9

1.2 Proposed system...9

1.3 Objectives...10

1.3.1 Infrastructure implementation ...10

1.3.2 Collaboration support on development tools ..10

2. Literature reviews...11

2.1 Revision of related works..11

2.2 Relavent previous projects ...12

2.3 Proposed approach...14

3. Technology to evaluate..15

3.1 XML Metadata Interchange(XMI)...15

3.1.1 Advantages...16

3.1.2 Disadvantages [36]..17

3.1.3 Summary..17

3.2 Evaluation of different collaborative algorithms...18

3.2.1 The different consequences of using locking or versioning[1].............................18

3.2.2 Example to show the advantage of versioning enable system[2]...........................19

3.2.3 Summary..19

3.3 Jini network technology..20

3.3.1 Advantages of using Jini...20

3.3.1.1 The problems of existing network architecture..20

3.3.1.2 How jini helps in these problems...21

3.3.2 Summary..22

4. Proposed collaboration algorithm..23

4.1 Concept of the proposed algorithm...23

4.2 Detailed implementation plan...26

4.3 Other references...27

5. Implementation..28

5.1 The architecture of ArgoUML [37]..28

4 Of 95

Department of Computing

5.1.1 Detailed description..30

5.1.1.1 GEF: [21]...30

5.1.1.2 NSUML: [23]..31

5.1.1.3 JMI (Java Metadata Interface) [24]:..32

5.1.2 The functions of the main packages...33

5.1.3 ArgoUML data structure...36

5.2 Prototype..37

5.2.1 Overview of the prototype design..37

5.2.2 Problems encountered in the prototype..37

5.2.3 Solutions of the problems...38

6. Event sharing approach on software collaboration...39

6.1 Overview..39

6.2 Implementation details..39

6.3 The Class diagram of event sharing..40

6.4 Conclusion..41

7. UML data structure sharing at ArgoUML..43

7.1 Reasons for using a other approach in models sharing...43

7.2 Detailed steps of model sharing..43

7.3 Class diagram of UML data structure sharing...45

7.4 Comparison of event sharing and data structure sharing..45

8. New versioning algorithm...46

8.1 The problems of proposed approach..46

8.2 How CVS resolves conflict...47

8.2.1 Overview..47

8.2.3 The action diagram of the flow..48

8.2.4 CVS Experience with SunOS 4[26]...49

8.2.4.1 Overview...49

8.2.4.2 Scalablity of CVS...49

8.2.4.3 Conclusion – The algorithm of CVS is suitable for us...................................50

8.3 The new versioning algorithm..51

8.3.1 Overview..51

8.3.2 The action diagram of the flow..53

8.4 Problems encountered...54

8.5 Screen shot of a model with conflict items..55

8.6 Conclusion..59

5 Of 95

Department of Computing

9. Experience of enhanced public domain software...60

9.1 Advantages of enhancing existing software...60

9.2 Disadvantagse of enhancing existing software..60

9.3 The consideration of choosing tools...61

10. Conclusions of the project...62

10.1 Evaluation of extendeding ArgoUML..62

10.2 Evaluation of XMI file format..63

10.3 Evaluation of versioning collaboration methodology...64

10.4 Evaluation of using Jini...65

11. Furthur Enchancement...66

11.1 New Design of the collaborative UML editor...66

11.2 Further improvement of the collaboration architecture...66

11.3 The Improvement of versioning algorithm..67

12. Reference:...68

13. Appendices..71

13.1 Code snippets of core component ..71

13.1.1 Code snippet of event sharing..71

13.1.1.1 Client side event sending example..71

13.1.1.2 Client side receive event example...72

13.1.2 Code snippet of features sharing..73

13.1.2.1 The thread periodic run to send model..73

13.1.2.2 The merge of the details of the objects..75

13.1.3 Code snippet of new versioning algorithm..81

13.2 Introduction to CVS ...87

13.2.1 What is CVS?[25]...87

13.2.2 Basic ideas behind CVS..87

13.2.3 Getting slightly more complex: multiple developers..89

13.2.4 Fighting for control: merge conflicts...91

13.2.5 Checkout: the missing link...93

13.2.6 Conclusion...94

6 Of 95

Department of Computing

list of figures

Report Header 1

The screen shot of Jedit in Linux, a typical IDE extended from an editor. 11

The screenshot of NETborne, an applet base IDE. 12

The screenshot of the collaboration UML editor. 13

Open interchange with XMI 15

Visual Age, Oracle repository and Unisys UREP work together with XMI 17

An classic diagram of TCP network to work with network failure 20

The flow diagram of jini architecture 21

Example: The system try to merge 2 version with conflict. 24

Case 1 of conflict: slave copy delete some required for master copy 24

Case 2 of conflict: master copy delete some required for slave copy 25

The system architecture of first version of versioning engine 25

The architecture of ArgoUML 28

Screenshot of ArgoUML 29

The relation of ArgoUML and GEF 30

How GEF, NSUML and ArgoUML work together 31

ArgoUML detail plane classes. 34

ArgoUML tree plane classes. 35

The relationship of GEF and NSUML is usually one to one. 36

UML enumerations and NSUML classes 36

Class diagram of event sharing 40

Collaboration diagram using event sharing 42

Use case diagram using event sharing 42

State diagram using event sharing 42

Class diagram of model sharing 45

Table 1: cvs statistics 49

Table 2: cvs usage history for the kernel 49

Screen shots of conflict occur.model 55

Example of collaboration editing 1 55

Example of collaboration editing 2 56

Example of collaboration editing 3 56

Example of collaboration editing 4 57

7 Of 95

Department of Computing

Example of collaboration editing 5 57

Example of collaboration editing 6 58

Example of collaboration editing 7 58

The output of XMLEncoder of JDK 1.4 63

The relation of repository and working files 88

Multiple user editing one document with CVS 89

The “Copy-Modify-Merge” flow diagram of CVS 90

The “Copy-Modify-Merge” flow diagram with conflict resolve of CVS 93

8 Of 95

Department of Computing

1. Introduction

1.1 Problem statement

There are some problems in the current Integrated development environment:

1) No IDE canprovideall featuresthat satisfyeverydeveloper.This is the normalcasethat

developers have to change their develop practice according to the IDE used. This make the

development time longer.

2) In addition,mostof modernIDE tools arestandaloneat local areanetwork.This leadsto

location limitation. For example,the usersneedto downloadand install the program

locally, which is very inflexible. Besides,nowadaysthedeveloperneedto work on many

differencemachinesandwork on large numberof tools, maintainsthesetools on many

machines need extra administration.

3) Besides,mostof thesetools do not supportreal-timegroupwork communication,which

deduce the productivity of the team.

1.2 Proposed system
The proposedsystemis an online distributeddevelopmentenvironmentin order to break

down the location boundary in software development.

1) Thereare somefundamentalproblemswith today'snetwork programmingarchitecture,

which doesnot fit in the distributedcomputingenvironment.For example,the protocol

oriented communication is a not object oriented, non-standardways of network

communication;lack of failure handlingand resourceallocationis other problems.Sun

Microsystemhaveproposeda jini networktechnologyto solvetheseproblems[5].Jini is a

more distributedenvironmentreadynetwork programmingarchitecture,we will discuss

more later. The proposed system will be based on this programming model.

2) The systemis open.It meansthat it facilitates for integratingdifferent tools, which is

developedby differentparties,in a dynamicalway. In anotherwords,theproposedsystem

will focuson investigatingthepossibilityon developinga frameworkfor distributedtools

integration.

3) Real-timecollaborationis also a big challengein distributedcomputing.The proposed

systemwill supportcollaborativedevelopmentwork in the Internetenvironmentby using

multi-versioncurrencycontrol (MVCC) techniquein the project, we will discussmore

about the advantage of MVCC later.

9 Of 95

Department of Computing

1.3 Objectives
The projects will focus on developing a distributed development environment for Java

Application. The main goal is a network base, dynamic and loosely coupling development

environment. Which contains the following feature:

1.3.1 Infrastructure implementation

The project will make use of some open source development environment component such as

a UML editor, text editor and compiler to migrate into a set of jini service. Then, we will

build some infrastructure level components so that the system will be easy to extend and plug

other component dynamically (i.e.: without restart/reload). The next step is implement a

generic user interface framework and a human searching component framework. Our final

objective is building a framework for developer easy to separate the model and view. As well

as users can easy to find and use the tools. And the model stays at the network and shareable

to the others.

1.3.2 Collaboration support on development tools

Collaboration support is an important feature for multi-user application. A standalone UML

editor will be modified to become a collaborative multi-user application, then try to develop a

generic collaboration framework base on this. Versioning technique will be used.

From database systems experience, locks are the slower mechanism used to maintain

concurrency control and data consistency. Multi-version model become a more popular

technique in implementing database concurrency control. For example, in PostgreSQL, a

version is like a snapshot of the data at a distinct point in time. The current version of the data

appears whenever users query a table. Naturally, a new version appears if they run the same

query again on the table and any data has changed. Such changes happen in a database

through UPDATE, INSERT, or DELETE statements. Thus, performance is much better by

eliminating the unnecessary waiting in locking.

My group consist of 2 member, I will focus on the collaboration support and my partner will

focus on the infrastructure implementation.

10 Of 95

Department of Computing

2. Literature reviews
Before the system design and implementation, we have reviewed some other related works

and projects. Here is the projects and approaches we have reviewed and considered.

2.1 Revision of related works
One approach is build the project from scratch, with reference from existing developments

environment. The code of some existing opensource IDE like netbeans[6] and jedit[7] are

reviewed. Then base on this to evaluate if we can build similar but smaller project. However

there are 2 problems. It is found that if the project develop from scratch, the project is

probably a duplication of other development environment. Besides, there are so many basic

components need to implement, there are not enough time to do this.

The screen shot of Jedit in Linux, a typical IDE extended from an editor.

Besides, most of the exist development environment are not accessible from the network. i.e.:

Most of the components are bounded to the development environments statically, and the

development environment is not able to run without any of the components. The user need to

11 Of 95

Department of Computing

download and install most of the component to the client machine. But the proposed project

is highly distributed that no similar implementation can be a reference. Thus this approach is

rejected.

2.2 Relevent previous projects
Another approach is to develop the project base on some existing project. There are some

opensource program are reviewed, like NETborne[8]. NETborne is an applet IDE using

client-server architecture, which is better fit in our project, and there are some nice features.

However, after investigating more about this tools, some problem are found:
� The author of this program need us to share the our result to him and he does not have

licensing his program yet. So there is potential licensing issue of using this tool.
� Most features of NETborne is not related to the proposed system, like applet-servlet

communication protocol of IDE. Other than that, some design problem are found (no

package, duplication between disk storage and database storage without sync.)
� jini do not use traditional client and server architecture. The traditional client-server

architecture is not suitable for the proposed projects, we will discuss the advantages of jini

in the later section.

The screenshot of NETborne, an applet base IDE.

Other than public available opensource program, Some past final year projects are reviewed.

For example, a collaborative uml editor[9]. This software allow multiple users edit a single

12 Of 95

Department of Computing

UML class diagram in same time. It is a very good project, however, it suffer from some

limitation that we can make use of this.

The screenshot of the collaboration UML editor.
� The uml editor cannot extend without a heavy work, mostly because the source is highly

coupling which it is hard to identify a code to edit.
� The system also use client and server architecture using RMI method call. Which is hard

to port to jini.
� The system use locking as collaboration methodology but we would like to use versioning.

Changing locking base communication code to versioning base communication code is

another problem.

13 Of 95

Department of Computing

2.3 Proposed approach
After reviewing several difference tools and technology, the final decision is extending

ArgoUML[22] to have versioning supports. The reason are follow:

1) The tools/technique must be ready for distributing environment, as computer network

because larger and larger scale that we should build our system ready for distributing

environment for the future, and ArgoUML have highly modularized structure that enable

me to port it as a distributed tools

2) ArgoUML is an opensource project have a strong community supports, this is a high

volume list. We believe that we can benefit from this.

3) This is the most advance open source UML editor available, receive good comment from

the press [10].

4) This tools save the UML in a XML format call XMI which save much of our work for

save our work.

5) This tools provide fully support in UML editing, so the project can concentrate on the

collaborative support without wasting time of UML editing, which is the core of our

projects. Hopefully we can have better collaboration support finally.

After the implementation, we will discuss the advantages and disadvantages of using

ArgoUML in the project.

14 Of 95

Department of Computing

3. Technology to evaluate
In this project, there are some technology of this topic will be evaluated, we will find out is

these technology suitable for future projects. Here is the brief introduction of these

technology.

3.1 XML Metadata Interchange(XMI)
XMI is an very important technical specification of UML editing, because OMG, the biggest

object oriented standard maker, only recommend XMI to archive UML. The software design

diagram can be interchanged between difference modeling tools via XMI. Besides, XMI is

that standard propose by OMG, and supported by most UML modeling tools[12].

Open interchanged with XMI

XMI integrates three key industry standards:[36]

1. XML - eXtensible Markup Language, a W3C standard

2. UML - Unified Modeling Language, an OMG modeling standard

3. MOF - Meta Object Facility, an OMG metamodeling and metadata repository standard

15 Of 95

Department of Computing

3.1.1 Advantages

XML format provide the following benefits[15]:

1. Object model archive is hard to manage, because java object archive can only be managed

when serialize back to object in memory. That mean object model archive cannot be

managed without java.

2. Even after serialize back to object in memory, the structure of that object is unknowns. It

need to cast back to exactly type manually, the original type need to be recorded first, in

most case, it is easy to make mistake.

3. There are many support tools on XML that help us the manage the data format, like XML

data store.

4. There are existing tools that analysis XML. These can be used to analysis XMI design. For

example there are some existing tool help us to extract some tag content, which can be

used to extract all the comment of the project.

5. XML is a popular technology that most developer familiar with.

When compare with other similar XML format, like UXF[12] and uml-xchange[13]. XMI

have the following advantage:

1. XMI is adopted in more applications by more vendor support XMI, like IBM, oracle,

togetherJ and ArgoUML, which make our resulting application can communicate with

more program. Even UXF author agree that XMI is the mainstream

2. None of the above full support complete UML 1.4 specification, Fully support open

standard is important, because this make our application extendable.

3. XMI is readily port to other format through XSLT, project is existed on transferring XMI

to HTML[14].

A diagram of how XMI have IBM Visual Age, Unisys UREP and Oracle respostory work

together, show the scalability of XMI:

16 Of 95

Department of Computing

Visual Age, Oracle repository and Unisys UREP work together with XMI

3.1.2 Disadvantages [36]

Nothing is prefect, so as XMI, in fact there are some problem of using XMI:

1. XMI do not contain any information of how the UML diagram display, it only concern the

structure of UML diagram, because this is the part that XMI address. However, this bring

many problems in real use. For example, if 2 UML modeling tools use difference way to

store the presentation, the design diagram cannot share between these 2 tools.

2. It is too complicated to learn, the specification of XMI is very long, so this may not be a

good choice of final year project. May be some smaller specification like UXF is better.

3. Unlike Java, Rational does not release a standard validation test suit to valid XMI. In fact,

difference vendor have difference validation tools, IBM have it own XMI toolkits,

Rational Rose have it own XMI plugin. This may cause possible incompatible.

3.1.3 Summary

In this project, other than using ArgoUML, the system will also using NSUML package, an

opensource UML metamodel. This package fully support the important software design meta

method standard, e.g.: MOF, XMI and JMI. We will explain this package more in later

section. After the implementation of the project, we will make a conclusion of is it good to

use XMI in the under-graduate projects.

17 Of 95

Department of Computing

3.2 Evaluation of different collaborative algorithms
Some one will refer locking to pessimistic approachesand versioning to optimistic

approaches. Here is a reference that explain the difference very detail:

3.2.1 The different consequences of using locking or versioning[1]

The locking approachis good for keepingmodel valid, but can be perform very bad for

concurrency.Especially,it guaranteesthat that no 'lost updates'occur,becausethe editing

model will be locked to prevent other to update. However, the poor performanceof

concurrency is a side effect.

Thecanbea seriousproblembecauseit is possiblethatanuserhold the lock of theobjectfor

a unexpectedlong time. Therearemanyreasonsfor this, one is the userreally needto edit

that object for a long time. However,the really problemis this canbe a resultsof common

unexpectedsituation,e.g.:Theusereditinga modelat first, but whentheoffice time finish, it

is very easyfor the developerto forget to releasethe lock before leaving office; another

problemis if the client havebeenkilled for somereasons,the systemmany hold the lock

forever, may be the server need to restarted to fix this.

Of course,thesecanbe solvedby settinga timeoutof locking, however,the otherpotential

problemis deadlock, which is a very commonproblemin concurrencysystem,especially

whendoing a batchjob. I do not plan to explaindeadlock in this text very detail, thereare

many papers to discuss this. In fact, the past UML modeling tool[9] is a very good reference.

Soit is very clearthat locking mayhavemanyproblemswhenthesystemwork in a big scale

system.

The versioningapproachaim to solvetheproblemof locking, becauseit do not needto lock

any object. However,the problemis we needmore complexalgorithm to keep the model

valid. The "versioning"definition usually saysthat expectationsof updateclashesarerare,

but in fact it is a normaloccurrencesin a high accesssystem.Thebasicsarethatanychanges

betweentime of accessandtime of updatemustbe detectedandtakeninto account.This is

often doneby comparingtimestamps,but one must be sure that the timestampis always

changed for an update/commit. Will discuss the versioning algorithm more later.

18 Of 95

Department of Computing

3.2.2 Example to show the advantage of versioning enable system[2]

Quoted from reference, it is a simple example of selecting data from one table shows the

difference between traditional row-level locking and multiple versioning concurrency control

(MVCC) powered database management system:

SELECT headlines FROM news_items

This statement reads data from a table called news_items and displays all the rows in the

column called headlines. For data systems that use row-level locking, the SELECT statement

will not succeed and will have to wait if another user is concurrently inserting (INSERT) or

updating (UPDATE) data in the table news items. The transaction that modifies the data

holds a lock on the row(s) and therefore all rows from the table cannot be displayed. Users

who have encountered frequent locks when trying to read data know the frustration this

locking scheme can cause, forcing users to wait until the lock releases.

In MVCC enable DBMS, however, users can always view the news_items table. There is no

need to wait for a lock to be released, even if multiple users are inserting and updating data in

the table. When a user issues the SELECT query, PostgreSQL displays a snapshot,or version,

of all the data that was committed before the query began. Any data updates or inserts that are

part of open transactions or were committed after the query began will not be displayed.

3.2.3 Summary

As collaborative UML editor using locking algorithm already done in past final year project,

this system will focus on versioning support of UML editing. After the implementation of the

project, we will make a conclusion of is it good to use versioning algorithm in the under-

graduate projects.

19 Of 95

Department of Computing

3.3 Jini network technology

3.3.1 Advantages of using Jini

For more information abouthow Jini help in the developmentenvironment,pleaserefer to

my partner's report[38]. Here only the benefit that jini bring to use in the collaborative

system.

3.3.1.1 The problems of existing network architecture

The existing client server architecture is not suitable in large scale system

1. Whenthesystemrequireto modela oneto manyor manyto manycommunication, client-

serverarchitecturerequirethe programmergroupmanyoneto oneconnectionsto model

thesystem.For example,if we want to modela systemhaveoneserverandmanyclients,

we needto keepa list of socketconnectionin theserver.If we needto modelandmanyto

manyconnectionsystem,we needto havea groupsof oneto manyconnectionto handle

them. For some complex network architecture,it is hard to model and hard for the

maintainer to understand the system.

2. Lack of persistencesupport.If a client sendsomethingto the server,the serverneedto

handleit now. If theserverarebusy,theclient needto wait for theserver.A moreworse

case is the server will deny the request of the clients.

3. Possiblefor dead-lock.Refer back to 1), if the server maintaininga list of client to

communicate, becausetheremaybe2 client call theserverin sametime. Theserverneed

to synchronizesomemethods,the synchronizationblock may havedead-lockor other

performance problems occur.

20 Of 95

Department of Computing

3.3.1.2 How jini helps in these problems

Here is the diagram show how jini work.

The flow diagram of jini architecture

1. Jini have a very clear way to model network architecture. In jini, everything is service, the

user do not need to build any network connections in order to communicate with other

network component. Everything now are managed by the lookup service. If you want to

communicate with other network component, you just need to find it from lockup service,

then get the proxy of the service and work with it. It work mostly same with the local

component, so we are more easy to model and understand a large system.

2. Jini provide default persistence support in the network, javaspace. The server do not need

to response to request immediately, the client is not need to wait for server response. In

java space, the clients can put an item to space and let the servers handle any time he like.

If the server do not manage that item for a long time, jini leasing service will free the

resource automatically.

3. Jini can prevent dead-lock problem in many way because of the help of javaspace. In

response to the last example, when 2 client try to communicate with the server in same

time, the servers do not need to synchronize any method. Because the clients do not

communication directly to the server, the clients just put the items into javaspace and the

server just pick them up and handle them and put it back to javaspace. You can think now

there are no server, everything is clients that work with the persistence javaspace. This

architecture simplify many programming problems.

In fact, the boardcast of the versioning engine mentioned in later section will make use of this

architecture, we will show it later.

21 Of 95

Department of Computing

3.3.2 Summary

Jini sound great, it seen to be a very robust network infrastructure that solve most networking

problem, but is it really that perfect? The system will build on top of jini, after the

implementation, we will find out the good and the bad of using Jini, and is it good to use in

an under-graduate project.

22 Of 95

Department of Computing

4. Proposed collaboration algorithm
After designingthe approachof this project, next step is to figure out a algorithm of

versioning collaboration.The first collaborative algorithm was inspired from “Efficient

Version Model of Software Diagrams”[3] and “A flexible object merging framework”[4].

4.1 Concept of the proposed algorithm
“An Efficient VersionModel of SoftwareDiagrams”havepresentan ideaof how to model

the diagramsandthe modificationsof the diagramsin Mathematicsway, where“A flexible

objectmergingframework” introducewhenwill conflict ariseandhow to resolvein simple

data.

Summarize the above idea from the papers and get the following Versioning algorithm:

1. Model UML and modification into some data structure according to [3]

2. The system will consist of a versioning engine and a master copy that is always valid.

3. Thedifferenceclientswork on sameUML diagramwill mergethedatastructureof it with

the mastercopy for every operation.The systemwill identify if thereare any conflict

before merge 2 difference diagram.

4. We find that conflict is actuallysomeoperationbreakthe dependence[4] betweenitem,

e.g.: class I extend class II, if slave copy have an action to delete class II, then the

inheritance relationship between class I and class II is broken.

5. Considerthe following example,thereare2 clients,A andB modify someclassdiagram.

Originally that classdiagramconsistof an interfaceanda classimplementthat interface,

ImplClass.Client A try to extenda child classfrom ImplClass;meanwhileclient B try to

deletesImplClass.conflict arise in this casebecauseA copy and B copy cannotmerge

together.

23 Of 95

Department of Computing

An example of conflict arises

If there is not conflict, the system will merge the UML diagram of master copy and client

copy (slave copy), then update both copy to the latest version. If conflict find the system will

take the do take some action that prevent the master model being corrupted. The conflict can

be resolved into 2 category:

1) Slavecopydeletessomeentitiesrequiredfor mastercopy– Wecan just reject theclient

modification and as the client to restore to the originally state.

Case 1 of conflict: slave copy delete some required for master copy

2) Mastercopydeletessomeentitiesrequiredfor slavecopy– In thecaseweneedto recover

the component that client need and then merge 2 diagram.

24 Of 95

Department of Computing

Case 2 of conflict: master copy delete some required for slave copy

The big picture the of the system is follow:

The system architecture of first version of versioning engine

The above algorithm can be extended from object-object relationship to object-features

relationship and features, because there are dependence relationship of object and features.

e.g.: every operations depend on some class, we can forbid or recover delete an object that

have one or more operation depend on it; we can also forbid or recover a operation that have

any other operation inheritance relationship with this. We can do all these with the same

algorithm as stated above.

25 Of 95

Department of Computing

4.2 Detailed implementation plan
1. Use just one model.

2. One server that owns the model and diagrams, the master copy. The server consist of a

versioning engine that guarantees it is valid at all times.

3. All clients work against the same model and diagrams, but having their own copy on the

UML modeling tool instance.

4. Clients do modifications of the model or diagrams and show views of the model. A

interface needs to be defined that can get all needed information from the model and

diagrams for the client to merge it copy to the master copy. The interface must also

contains methods to modify the master copy.

5. Every modifications initiated by the client will merge with the master model. The

modification can fail with errors like: Operation cannot be removed - it does not exist (i.e.

some other client just removed it), or Operation cannot be added - Class does not exist (i.e.

some other client just removed it). All these kinds of errors must be defined in the

versioning engine. All errors will have 2 handler, because there are 2 kind of conflict,

slave delete master required and master delete slave required.

6. The default case of error handling is reject the client of the client. If the versioning engine

encounter some cases cannot handles. It will reply something like: "You cannot do that

because somebody else just did something that made your modification impossible."

Where something is the most recent modification, and somebody is the client name do that

modification.

7. If there is no conflict, master copy will merge with the change of client copy, then the

clients UML modeling tool will get a copy of master copy and replace the local copy.

26 Of 95

Department of Computing

4.3 Other references
Here is some other paper about this topic reviewed for future reference, but they are not used

because:

1. They are not easy to merge with the algorithm discussed.

2. The algorithm is very complex and not suitable for real time collaboration.

Abstract State Machines:UML State Machines[16]

ASMs are used to give semantics for UML state machines, as a basis for constructing an

automated tool for verifying properties of UML state machines.

UMLAUT: an Extendibles UML Transformation Framework[17]

UML Transformation Framework allowing complex manipulations to be applied to a UML

model

Modeling Versions in Collaborative Work[18]

Discuss a basic version model a domain model capturing the idea of a version and the

relationships between versions

Version control for asynchronous group work.[19]

This paper looks at the issue of version control comparing single and multiple user situations.

The aim is to focus on requirements for version control that will assist asynchronous

distributed group writing.

vUML[20]

vUML is a tool that automatically verifies UML models, UML validation is very important

in our project so I take reference from this. However, the mechanism of this papers is too

complicated that do not suitable for use.

27 Of 95

Department of Computing

5. Implementation

Before implementation, we need to understand the flow and structure of the UML modeling

tools, ArgoUML, first. Here is a brief overview of the internal structure of ArgoUML.

Besides, ArgoUML is a highly modularized UML editor. Personally speaking, I learn many

on studying this system, so I will spend a part in the report to explain the structure of

ArgoUML, as well as the core components of this ArgoUML.

5.1 The architecture of ArgoUML [37]
� GEF - Graph editing framework, model the components in nodes and edges and let user

edit.
� NSUML - UML meta-model implementation, contain the underlying UML structure and

xmi converter
� Swing - build the GUI component

The architecture of ArgoUML

28 Of 95

Department of Computing

Screenshot

Here is a screen-shot of ArgoUML.

Top left: a hierarchical view of the current project file.

Upper right: editor(s) for the selected part of the project, in this case a class diagram.

Bottom left: the designer's "to do" list.

Bottom right: details of the selected object in the diagram or the selected "to do" item.

Screenshot of ArgoUML

29 Of 95

Department of Computing

5.1.1 Detailed description

5.1.1.1 GEF: [21]
� A simple, concrete design that makes the framework easy to understand and extend.
� Node-Port-Edge graph model that is powerful enough for the vast majority of connected

graph applications.
� Model-View-Controller design based on the Swing Java UI library makes GEF able to act

as a UI to existing data structures, and also minimizing learning time for developers

familiar with Swing.
� High-quality user interactions for moving, resizing, reshaping, etc. GEF also supports

several novel interactions such as the broom alignment tool and section-action-buttons.
� Generic properties sheet based on JavaBeans introspection.
� XML-based file formats based on the PGML standard (soon to support SVG).

Here is a diagram to show how ArgoUML relate to GEF:

The relation of ArgoUML and GEF

30 Of 95

Department of Computing

5.1.1.2 NSUML: [23]

NSUML(Novosoft metadata framework) is based on JMI specification and generated classes

that are required by JMI specification and also provides additional services like event

notification, undo/redo support, XMI support. NSMDF is local in-memory implementation.

This package also provide code generated from UML 1.4 metamodel. Which could be used

for constructing applications based on UML 1.4.

How GEF, NSUML and ArgoUML work together

31 Of 95

Department of Computing

5.1.1.3 JMI (Java Metadata Interface) [24]:

TheJavaTMMetadataInterface(JMI) Specificiationimplementsa dynamic,platform-neutral

infrastructurethatenablesthecreation,storage,access,discovery,andexchangeof metadata.

JMI is basedon the Meta ObjectFacility (MOF) specificationfrom the ObjectManagement

Group(OMG), an industry-endorsedstandardfor metadatamanagement.The MOF standard

consistsof abaseUML modelanda setof interfacedefinition language(IDL) interfaces.The

MOF specificationprovidesa programmingmechanismthat allows applicationsto querya

metamodelat run time to determinethestructureandsemanticsof the modeledsystem.JMI

is a Javatechnologymappingof the MOF IDL interfacesthat will allow Javacomponents

andapplicationsto accessandmanipulatemetadata.UsingJMI, applicationsandtoolswhich

specify their metamodelsusing MOF-compliantUML can have the Javainterfacesto the

modelsautomaticallygenerated.Further,metamodelandmetadatainterchangevia XML is

also automatically enabled by JMI's use of the XML Metadata Interchange(XMI)

specification.

Advantages of JMI

JMI will increasethe adoptionof standards-basedmetadataand acceleratethe creationof

applications and solutions in which there are no barriers to information exchange.

32 Of 95

Department of Computing

5.1.2 The functions of the main packages
� Application - Application launcher, plugin helper classes and security codes.
� Cognitive - still unknown, but should not relate to our project
� Kernel - kernel components like project management and editing history management
� Language - Support code for difference computer language
� Ocl - code generation from uml supports
� Pattern - reserve for future support of design pattern
� Persistence - reserve for future support of storage and restore UML to DB
� Ui - Swing UI components
� Uml - UML manipulation components
� Util - Misc utils like logging and config loader
� Xml - Xml manipulation codes

The packages we conserve most are Ui and Uml, as the Ui responsible for the for front-end

swing event and swing action handling, as well as the drawing code; and Uml responsible for

the backend Uml modeling code., which need to be shared with other machine.

33 Of 95

Department of Computing

The detail of UI of ArgoUML

The UI of ArgoUML is very complex, but only 2 is highly possible related to our work, one

is detail plane and one is tree plane, the reason will discuss later.

Here is the structure of detail plane, it is important because the project may need to modify

the detail plane to add new tab related to versioning for ArgoUML.

ArgoUML detail plane classes.

34 Of 95

Department of Computing

And here is the tree plane, this is important because the project may need to get the current

diagrams structure from the tree plane items.

ArgoUML tree plane classes.

35 Of 95

Department of Computing

5.1.3 ArgoUML data structure

GEF
� library provide tools and data let user edit the diagram.

� handle the interaction from screen to model

� XML-based file formats based on the PGML standard

The relationship of GEF and NSUML is usually one to one.

NSUML
� implementation of complete UML 1.3 physical metamodel,

� XMI loading/saving.

� NSUML is able to generate events whenever the model is modified.

� Undo/redo support

36 Of 95

Department of Computing

5.2 Prototype

5.2.1 Overview of the prototype design

After investigating about the data structure of the program, we need to write some prototype.

The propose is to test if the structure and data flow work just as expected, and to find out if

the algorithm proposed have any problems. The prototype is very simple, it just try to to share

the model between 2 instance of ArgoUML.

1. There are few instance of patched ArgoUML running.

2. When there is one model added to one instance. ArgoUML will generate a model object.

The patch will capture the model and send it to the server.

3. When the server receive the object of the model. It boardcast the model to all other

instance of ArgoUML.

4. When the other client receive the model, it merge the model to the data structure of the

diagram editing.

5. There will not be any versioning algorithm implemented in the prototype. So all the delete

action are allowed to do, and the model may get into an invalid state.

5.2.2 Problems encountered in the prototype

However, after building the prototype, there are some problems:

1. The code of difference UML diagrams are not in same structure. Difference diagram, say

class diagram and deployment diagram, have completely difference architecture. So

writing code for one diagram is not able to apply to any other diagram

2. The prototype has not consider the effect of GEF. As all the diagram display to screen

through GEF, the prototype expect that if the model of ArgoUML change, the model of

GEF also changes, so as the display will updated. However, this is not the case, I need to

work for it manually.

3. The model of GEF is very difficult to update parallel with ArgoUML manually, because

there is not much document discuss about the structure of GEF, and the data structure of

GEF is very complex, it contain a groups of models that act as backend data structure, and

a groups of figures that act as frontend data structure. Keeping ArgoUML and GEF data

structure update parallel is very difficult.

4. The model itself is not serializable, so moving the all the objects from one side to server is

very hard. The prototype just implement a little part of objects in ArgoUML.

37 Of 95

Department of Computing

5.2.3 Solutions of the problems

Actually this is a general problem of try to merge 2 difference model, and we can solve this

by tracking the event flow.

Generally when the user need to make the needed modification, he need to issue some

event/action to the system, we can track these event and save the related information. Then

use these information to do our algorithm.

The system need to capture the mouse/key event from the user. The system need to filter the

event so that only event issue to create/delete node/edge are captured. Then save the events in

a pool, and then apply the MVCC algorithm on these event.

38 Of 95

Department of Computing

6. Event sharing approach on software collaboration

6.1 Overview
Even sharing have been use in distributed computing for a very long time. Some distributed

computing platform even provide a standard event passing mechanism, e.g.: Jini distributed

event.

Remote event model in Jini is like the event model in AWT and Java Bean so that Java

developer can easily adapt the remote event model without a steep learning curve. However,

problems for network environment should also be taken into account in remote event model.

Jini notices about that and define a set of interfaces and conventions for distribute event.

However, most real time collaboration drawing tools do not use this approach. The reasons

are follow:

1) There are many events may need to manage, e.g.: Every mouse movement generate a

mouse event. Every mouse movement may be useful. So there are lot of cases may need to

consider.

2) Because there are so many events. There may need many network bandwidth to transfer

all these events

3) In events sharing, it is harder to have a centralize model of the diagram, because it is hard

to generate the model from events.

Because the problem encountered in sharing data structure seen not possible to solve easily, I

decide to try this approach. At the time of implement this, the jini part is not really, so it just

send the normal Java AWT event through socket network to simulate this.

6.2 Implementation details
1. Once the user click on the node/edge from the item menu, the mouse press and mouse

release event will be record and broadcast to another clients.

2. We need to create some object (i.e.: Cmd* objects) if the clients have not create it.

3. Then the user click on the drawing pad and create node and edge, the mouse events also

broadcast to other clients so the other client will also do the creating action.

39 Of 95

Department of Computing

6.3 The Class diagram of event sharing

40 Of 95

Department of Computing

6.4 Conclusion
The similar work implementedfor all edgeandnodecreationof ArgoUML, so that every

kind of UML diagram in ArgoUML can share the model/node creation/deletion.

The advantage of using this approach are:

1. Network bandwidth friendly: it is much light weight for transfer an event than the model.

2. Instanceresponse:The other client shouldadd the model at the sametime of the first

creation of the model.

3. Apply to all diagram:As thesecodespatchthe graphicframeworkpackage.So it ableto

shareevery kind of diagramif the modelingtools unify the node/edgecreation/deletion

into one graphic framework.

4. Relativelyeasyto do: The modelingtools may composeof manypackage,for examples,

ArgoUML consistNSUML andGEF. The approachthat sharethe model itself needto

analysisall thesepackage,then transferand managethe object of individual package.

Which needmanytime to do. Eventsharingcanlet the developencapsulateall thesebut

handle the outer most interface of the modeling tools.

5. Even if the other client are busy, the event can be handle,becausethe client run in a

separation thread.

However, there are also someconstraintsof this approach,which should commonto all

implementation of event sharing of modeling tools:

1. The current diagram will consumethe mouseevent, so all user must work on same

diagram in order to process the event correctly.

2. It doesnot support for the client to join after some user have started.Although it is

possibleto saveall theeventandapplythemfor thenewjoin client to createthemodels,it

needto handlemany unexpectedexceptionof doing this, e.g.: If one event for some

reasoncannotbe handle,is probably meanthat all the rest event cannothandle.This

project just ignore this at this moment

3. If the client can'thandlethe eventfor somereasons,which are rarecasesbecauseTCP

connectionwill resend.Theothersideswill lost thatmodel.This canbesolvedby saving

the eventsendand receive,and comparethem periodically. If there is a client find the

event received are less than other, he can request the other resend that event.

4. The edgecreationevent is dependon the node location. For example,if user 1 create

generalizationrelationbetween2 model,thecreateedgeeventwill sendto theotherside,

with the locationof edgeto becreated.However,if user2 moveoneof therelatedmodel

41 Of 95

Department of Computing

to the others place, the system can create the edge because it cannot find end nodes. We

can send the ending nodes identifier because they are AWT events.

5. This approach is very not flexible, because other than handle the event, the system may do

may need to do some pre-processing and post-processing. There are no hint in the event

handler of how to do pre-processing and post-processing, the developer need to figure out

how to do this in a try and error way. Other than this, doing pre-processing and post-

processing may need to break the encapsulation of some package use. Which may not

permitted.

The above diagrams are the screen shots of event sharing

42 Of 95

Department of Computing

7. UML data structure sharing at ArgoUML
Difference approach are used to share the operation and attribute in the model. It is extract the

primitive of the model and transfer them to the server in a fix period. The reasons of doing

this is follow:

7.1 Reasons for using a other approach in models sharing
1. The UML modeling tools need to update the backend model for any modification, e.g.: if

the user set the name of a model to "model" there are total 5 modification of the backend

model, if the system try to catch all the event and send to other, the network must overload

and argouml will become very slow.

2. There are many places of code to capture the code, unlike creating and deleting the model.

There is no way to unify them. We need to patch many difference class to capture all the

event. However, the number of the event handler will increase or decrease for further

developments. If the system still share the elements of the model by event sharing, Every

new release of the software will bring new bugs. It is very like to have inconsistent

operation/attribute sharing and program bugs.

3. Quality UML modeling tools usually provide UML validation when modify the nodes

elements. If the system send the event to the other side directly, it is very easy to add some

invalid modification step to the other sides, which make the model inconsistent. The worst

case is the whole model is not displayable.

7.2 Detailed steps of model sharing
1. There is a thread running of every instance of UML modeling tools, at the client side,

every several seconds it will analysis the model attributes and features of nodes/edges,

extract the primitives items that are serializable.

2. Pack the primitives items into some defined format and broadcast to the other clients. The

data structure of the sending formats is a tree structure with following elements:

1. ItemID // For indentify difference item.

2. Timestamp // The modification time of that Item

3. content objects // The content of that items

4. childs // items of other sub-elements

3. The other clients make/update the local model attributes and features accounting to the

modification time and ID.

43 Of 95

Department of Computing

4. Timestamp needed to be added for every primitives, because the system need this to

check which one is newer. If 2 items with some ID in a model, the system will keep the

latest item.

5. The system assume the timestamp of different machines do not have large different, it is

reasonable because we can synchronize the system time of different machines with NTP.

6. The system need to prevent the transfer items which are currently editing by somebody to

the other sides, because it will cause IO exceptions. So the system need to find the

modifying items and skip them.

7. Finally, reset the connection for every possible problems

8. Because of the time limitations, Only implement the model sharing for class diagram.

44 Of 95

Department of Computing

7.3 Class diagram of UML data structure sharing

7.4 Comparison of event sharing and data structure sharing
1. From the software design point of view, there is no clear winner. In some situation, using

event sharing can have more clean code, more generic function and make the logic more

simple to read. However, in some case data structure sharing is better because it is easier

to have a backend model. In this project, both technique being used.

2. Generally speaking, the advantage of event sharing is real time response. This is very

important in node and edge deletion in UML modeling. Because the otherside should

know a node or edge be deleted by other side as soon as possible.

3. On the other hand, data structure sharing can let the sharing process as a background

process. It is easier for collaboration when 2 or more user edit 2 or more diagrams.

4. Besides, there is no dependence between actions is another good thing of sharing data

structure. In event sharing, it is very hard to resolve the problem occur if one action for

any client fail to handle an action.

45 Of 95

Department of Computing

8. New versioning algorithm
After successful modify the single user UML modeling editor to support multiple users. It is

the time to implement the collaboration algorithm proposed. However, there are some

problems of the existing algorithm that have not consider before.

8.1 The problems of proposed approach
1. It has not prevent all conflict that will happen. For examples 2 clients modify same

element in same time. The proposed algorithm has not address this situation. It simple try

to keep the UML diagram is a valid state.

2. As it has not prevent all conflict occur, it also has not provide a solid conflict resolve

method. In the implementation of model sharing, when conflict really happen, one of the

user work will overwrite by the other user. It is not the suitable method. But if you apply

the proposed algorithm in other implementation, the result may have more problems.

3. It will lost some work for the user, because the system will reject some changes that

violate the dependence. The algorithm make the assumption the lost is not much.

However, due to the network latency, it is not the case in any time.

Actually the proposed algorithm is not no value at all. First of all, it is a practical approach to

implement the multiuser support of the system, it really work. And it help to user prevent the

conflict occur in most case. However, as a research projects, we would like to adopt some

more complex algorithm that address more problems in multiple user work.

In response to above weakness, Research have done on this topic. There is a tools call CVS

address similar problems in text base documentation sharing. We can learn the mechanism of

this tool to solve the above problems.

46 Of 95

Department of Computing

8.2 How CVS resolves conflict

8.2.1 Overview

Below is the detail description of the conflict resolve of CVS, please refer to the appendices

for the operation detail of CVS:

1. When there is a client checkout a document, CVS save the timestamp of checkout at the

client.

2. Then the client do editing on that document, once finish the editing, the client commit the

change to the central repository.

3. During committing document, CVS server check the checkout timestamp at the client. If

the checkout timestamp is later than the timestamp of latest version of the document, CVS

server do the following tasks:

1. It update the server document.

2. Assign a new version of the document.

3. Save the timestamp of that version.

4. Otherwise, it check the difference of the document at the server and the client.

 UInt32

 CountStringsInList (

 Ptr inData)

 {

 <<<<<<< Conflict.c

 /* Alice: added the assertion */

 AssertIf_ (Ptr == nil);

 =======

 /* Bob: ignore nil input */

 if (Ptr == nil) return;

 >>>>>>> 1.12

 return *(UInt32*)inData;

1. }

5. The reason of doing this is simple. If the checkout timestamp is earlier than the latest

version timestamp, than mean some other clients commit the document after checkout of

that client. CVS cannot determine keeping the change from which client, so it keep both

version and left it to the client to edit it.

6. After merging both changes, CVS send the merged document to the client without saving

the document to reposition. But it will update the checkout time at the client.

7. After that client make suitable change of that document, then CVS server repeat step 3).

47 Of 95

Department of Computing

8.2.3 The action diagram of the flow

48 Of 95

Department of Computing

8.2.4 CVS Experience with SunOS 4[26]

8.2.4.1 Overview

CVS is widely used in software development and document management, and it have

successfully help difference organization to mange their code or document. [26] is a paper

analysis the theory and usage of CVS very detail, using SunOS 4 as an example

8.2.4.2 Scalablity of CVS

Table 1 show in SunOS 4, how many file have been managed with CVS. Table 2 shows the

history of files changed or added and the number of source lines. Only changes made to the

kernel sources are included. The large number of source file changes made in September are

the result of merging the SunOS 4.0.3 sources into the kernel.

Table 1: cvs statistics

Table 2: cvs usage history for the kernel

49 Of 95

Department of Computing

8.2.4.3 Conclusion – The algorithm of CVS is suitable for us

The performance of cvs is currently quite reasonable. In this paper, there are not specific

tuning cvs done. Checking out the entire kernel source tree (1223 files/59 directories)

currently takes 16 wall clock minutes on a Sun-4/280Mhz. However, bringing the tree up-to-

date with the current kernel sources, once it has been checked out, takes only 1.5 wall clock

minutes. Updating the complete 128 MByte source tree under cvs control (17243 files/1005

directories) takes roughly 28 wall clock minutes and utilizes one-third of the machine. For

now this is entirely acceptable; improvements on these numbers will possibly be made in the

future.

This result show that the algorithm is suitable for use in real time UML modeling sharing.

Even if the performance is poor, there are many ways to tune. Thus this proof the algorithm

of CVS is suitable to adopt in our system.

50 Of 95

Department of Computing

8.3 The new versioning algorithm

8.3.1 Overview

For the UML modeling sharing, a similar mechanismto CVS can be used to prevent

implicitly locking of a part of model. Here is the brief description of the flow:

1. Normally the client does not need to lock the nodes when editing.

2. Every client hasa threadto get the local model for a fixed period.It will sendthe client

modelto a centerrepository.Everyelementto be transferedwill carrya lastmodification

timestamp.The client will also send the last communicationtime with the center

repository.

3. Like CVS, the server will keep the latest version of every elementas well as the

timestamp.Then the servercomparethe last modification timestampwith the client's

timestamp of every element. If the timestamp of server element is later than last

communicationtime, and the timestampof client element is also later than the last

communication time, and two element are difference, conflict arises.

4. If only serverelementis laterthanlastcommunicationtime, theclient needsto updatethe

elements from the server.

5. If only client elementis laterthanlastcommunicationtime, theserverneedsto updatethe

elements from the client.

6. If the two models are the same, there is no need to change for whatever timestamp.

7. Concerningto the conflict resolve,oncethe serverdetectstheconflict, it will broadcasta

messageto all clients to lock that model. When the other clients receive the locking

message,they will lock that elementand prevent further editing, and send the latest

changeof thatmodelto theserver.Oncetheserverreceivesall modelsfrom all clients,it

will merge a model with conflict like CVS, who will then commit the model.

8. Thatclient will thenresolvetheconflict at thatmodelandsendit backto theserver.The

serverwill supposethat modelhasno conflict andupdatethe central repositoryand all

clients. Then it unlocks that model of that client.

9. Then the client updates the last communication time with server for whatever case.

51 Of 95

Department of Computing

The algorithm addresses all the problems mentioned before.

1. It provides solid conflict definition. The definition of conflict based on timestamp is very

clear and simple for the system to handle. Other than only maintain a valid UML diagram,

this algorithm actually addresses all possible situations that conflict will occur in a very

simple ways.

2. It provides conflict resolve solution. This also provides a unified way to solve the conflict,

although it is very simple that just left the user to merge the conflict manually. It can be

extended to a more intelligence resolve solution later.

3. The user will not lose any work. As the system neither rejects any changes of the user, nor

deletes any work of the user. All the work of the user can be considered safe.

52 Of 95

Department of Computing

8.3.2 The action diagram of the flow

53 Of 95

Department of Computing

8.4 Problems encountered
The main difference of implementation between this algorithm and CVS, is the nature of the

document. The basic element of CVS is line of character, and the document is a list of lines.

In contrast, the basic element of a UML document is more complex. A projects consist of

many documents. A document consist of many node and edges, in class diagram there are

class, interface and generalization relation; in use case diagram there are use case and

include, extend relation.

Under all nodes and edge, they have differences elements, like operation, attribute, name,

stereo types....

In order to simplify the case, only class diagrams have implement this algorithm to proof the

concept. And assume that the elements of all kinds of nodes and edges are:
� name
� stereo type
� visibility

For classifier like class and interface, there will be addition elements operation and

attributes.

Other than this, as the UML modeling tools is not written by myself, lock the model to forbid

user edit are forbid to do.

54 Of 95

Department of Computing

8.5 Screen shot of a model with conflict items

The flow of the system run:

1. Initially, two instances of ArgoUML opened

2. Then user1 add a model, user2 add immediately, via event sharing

3. Then user1 edit the name, user2 don't change immediately

4. After a while, the name of the model of user2 also change, via UML data structure

sharing.

5. Then 2 user continue to edit the diagram, adding and deleting models.

6. If they edit the some element, say name, in same time; the system will prompt for conflict

arises

7. The users able to work collaborative in this system to improve performance

1) Initially, two instance of ArgoUML opened

55 Of 95

One client call that model
as name1, but other call it
as name2

One client call that operation as
newOperation1, but other call it
as newOperation2

Department of Computing

2) Then user1 add a model, user2 add immediately, via event sharing

56 Of 95

Department of Computing

3) Then user1 edit the name, user2 don't change immediately

4) After a while, the name of the model of user2 also change, via UML data structure sharing.

57 Of 95

Department of Computing

5) Then 2 user continue to edit the diagram, adding and deleting models

6) If they edit the some element, say name, in same time; the system will prompt for conflict arises

58 Of 95

Department of Computing

7) The users able to work collaborative in this system to improve performance

59 Of 95

Department of Computing

8.6 Conclusion
1. The versioning engine is able to find the conflict when 2 user make modification of one

unit in same time.

2. However, the implementation in this projects is not completed, because locking of the

model of the UML modeling tools is not done. The modeling tools used is not allow the

developer to lock the model from editing. Currently, the project only add the note to notify

the other user this object have conflict and should not edit. However, after the conflict

being resolve, there is no way to notify the other users currently.

60 Of 95

Department of Computing

9. Experience of enhanced public domain software
Herearethe experiencesof picking up the public domain/opensourcesoftware,andenhance

it for theundergraduateprojectshere.Thefollowing discussionis only relateto addingcode

on an existing project, not using opensource library.

9.1 Advantages of enhancing existing software
1. Thesoftwarewill providemuchfeaturesrelatedto theproposesystem.Thusit cansavea

lot of time from implementing many infrastructureitems. Using this projects as an

example,ArgoUML hasalreadyprovidedall thefeatureanUML modelingtools,we only

focus on the collaborationsupport.Ideally, the project can build a collaborativeUML

editor that able to allow usersto have collaborationwork for all nine kinds of UML

diagrams. Which is impossible to implement all these in a final year projects.

2. The skill of picking up a projectandenhanceit canbe learnt.According to onefamous

developer:“Good programmerwrite program,bestprogrammerre-write program”. It is

important for a programmerto have the skill to pick up old project and enhanceit.

Especiallyin working environment,existing codeare fully testedand documented.Re-

implementingsimilar codeneedextracttime on testinganddocumentation.Othersthan

this, the programmer can learn good design from existing program.

3. Communicationwith the interestgroup of that project will help the project much. The

interested group may provide good support and nice idea of the project.

9.2 Disadvantagse of enhancing existing software
1. The time spendingin readingandunderstandingthe projectmay be very long. Although

gooddesigncanbe learnt from this process,theremay be not enoughtime availablefor

this.Oncefinal yearbegin,theclasswork arevery heavy.In my own experiencethereare

only 3-4 month for the project.

2. It is highly possibleto brokenthe structureandstyle of the programwhenpatchingthe

system.There are somemethodologieslike refactoringto solve this problem,but it is

possible of not having time or skill to apply these methodologies.

3. Thereare many unknownin working on an existing software.Using our project as an

example,at first I supposeonly needto know the code of the UML modeling tools.

However, turn out I need to know the code of drawing framework (GEF) for event

sharing,andthe codeof UML meta-model(NSUML) for versioningsupport.Otherthan

reading extra code, there are possible that you cannot get the code of the libraries.

61 Of 95

Department of Computing

9.3 The consideration of choosing tools
1. Do not pick too large projects to work with. This depend on the programming experience,

but for a final year projects, a small to median project that not excess 400 classes is

suitable. Project with size larger is dangerous because there may be many un-expected

problems in working on large projects. Other than that, too large project probably mean

that the tools that you use consist of many function/code that are not needed.

2. The software design of the project should be checked before, to ensure that it is good use.

3. Identify all primitive are needed, do not assume anything without provide. In this project, I

assume the data-structures are serializable and able to transfer in the network. But in fact

there are extract work to extract the serializable data structure from UML data-structure.

Here are some assumption that you need to proof generally.

1. What are the objects that need to be transfer on the network? Are they serializable?

2. Identify which functions belong to the tools, and which function belong to the libraries,

make sure there is no need to edit the code of the libraries?

62 Of 95

Department of Computing

10. Conclusions of the project

10.1 Evaluation of extendeding ArgoUML
After the implementation, I find that there are some problems of using ArgoUML

1. The backend UML meta-model that are not serializable

2. The code need to learn are too large, just ArgoUML consist of 739 class, other than this, I

need to patch the graphic framework GEF and UML meta-model NSUML, all consist of

about 250 class.

3. The size of the projects is too large, so during the development, I need to make change of

some code that not really relate to my part.

4. Because ArgoUML written by many people without pay, the coding style is not that

consistence. Make it more difficult to learn.

ArgoUML is a nice tool to work with, it is a good UML editor, and have a highly

modularized UML editing tools that allow user to add new components, like new code

parsing module. However, what we intended to do need to make many changes of basic

component, like UML metamodel and graphic framework. Extending ArgoUML to have

versioning support is too difficult in a undergraduate project. However I will highly

recommend someone like to develop an UML editor review ArgoUML first, because the

design is good.

Other than ArgoUML, some other opensource UML editor are reviewed during

implementation[30][31][32][33][34]. Some of them are likely designed, but none of them

able to modify to a network available, collaborative UML editor without heavy work.

Because most are heavily couple with the UML meta-model package and drawing

framework, but both are not really network ready. Thus, in conclusion, we need to build from

zero for a real time collaborative UML modeling tools for versioning support.

Personally speaking, I will think that it is worth to build a highly modularized UML editor

from scratch, taking reference from the past projects[9].

63 Of 95

Department of Computing

10.2 Evaluation of XMI file format
The XMI standard is extensive and very big. But in fact a undergraduate project will not take

the benefit from XMI. Our project neither need to communicate the model with other

commerce tools like Rational Rose, nor need a file format that implement the complete

specification of UML. All we really need is a XML structure for further processing. So in

most case, the we spend a lot of time on XMI without real benefit.

Thus I will recommend using some UML meta data package that only implement partly of

UML 1.3 up specification, but not the whole XMI standard. Dingouml[27] is a good choice,

it implement the complete UML 1.3 specification, but it is much more simple than XMI

package like NSUML. Then we can use XMLEncoder[28] to encode an XML document for

us for further processing.

XMLEncoder is the new API from Java 1.4, which provide a standard way to encoding

JavaBean to XML. The XML basically construct from the primitives of that JavaBean. Which

are very handle to use.

An example output of XMLEncoder

64 Of 95

Department of Computing

10.3 Evaluation of versioning collaboration methodology
In comparewith the collaborativeUML modelingtools using locking, versioninghavethe

following advantage:

1. The user don't needto lock any model before editing. This make the editing more

smooth,as repeatinglocking modelsandunlock modelsare tedious,especiallyfor a

large diagram.

2. The userdon't needto wait for the otherunlock the model.Becauselock andunlock

are tedious, so it is very easy for the designer forget unlock the model after editing. So

if the other designer want to edit that model, he need to remind that designer unlock the

model. This will becomea big problemif that situation repeatmany time. A even

worst caseis the developerforget to unlock the model beforeleaving his deskfor a

long time, e.g.: Go to lunch.

3. If the systemcrash,locking basecollaborativeUML editor may fail to unlock the

model. Versioning system don't have this problem, as no one lock the model.

4. In the implementationpoint of view, versioningsystemis easierto programto survive

if the servercrash,becauseversioningsystemdon'tneedto talk to serverat any time.

Thecommunicationtime is tunable,so if theclient know theservercan'tbereached,it

canjust try next time until it canmergewith the reposition.In locking system,if the

servercrash,how canyou requestlock that model?If you just let the client lock the

modelif servercrash,thenif two client lock andedit samemodel,how canthe server

merge them later?

Other than implementa not difficult algorithm,thereis no disadvantageof CVS at all, the

CPU usageis low, the performanceis good, the userjust able to edit the diagramjust like

single user editor in most cases.In fact, the implementationof the algorithm is not too

difficult. I will highly recommend the future using versioning algorithm rather than locking.

65 Of 95

Department of Computing

10.4 Evaluation of using Jini
This part is harder to have a conclusion, in this project, jini proofed to help us prevent many

problems of traditional network environment, the lost of connection of server are easy to

solve, the architecture help us prevent the possible problems brought by synchronization, like

deadlock.

However, programming jini is much more time consumption than traditional network

programming. It is easy for the developer to model the system as client and server, rather than

a set of services. It is also more easy for the developer to find suitable network component,

like a messaging server.

If the developer can easily identify the benefit that jini given match the project, then jini is the

solution. For example, if you need to program a hospital embedded system, that need to

frequency join and remove from the network, the embedded system need to able to re-config

automatically according to the network joined, then jini is very suitable. In normal network

application, like a collaborative UML editor, jini provide both advantage and disadvantage. If

the deadline allowed, it should good to implement using jini, but it is not all the cases.

66 Of 95

Department of Computing

11. Furthur Enchancement

11.1 New Design of the collaborative UML editor
After doing the final year project. I have some idea of how to model a collaborative UML

editor

1. The backend process like UML validation should be moved to the server. Some work like

UML meta-data management, archiving work and the project management should move to

the server to do. The clients should only consist of UI and drawing framework.

2. We can make our custom wrapper of UML meta-model and drawing framework. Thus we

can have change the UML meta-model and drawing framework.

3. Provide a command line UML processor before the editor. If the design of a UML editor

is good, the component of UML metamodel processing should automatic, we can verify

this via implement a command line tool, like an UML validator.

11.2 Further improvement of the collaboration architecture
1. This project only implement the engine of versioning control. But the versioning system

still need other component, like versioning history management[29]

2. Integrates the versioning engine with WebDav, so that we can take the advantage of HTTP

connection, like SSL security connection.[29]

3. The versioning engine does not know any information about the client in this release. So

some work like the user like to see the modification only belong to him is not possible

now.

4. User cannot control the synchronization of the ArgoUML and versioning engine at all.

The next release should add some control for the user, like the user should able to prevent

his work merge with versioning engine if he want.

67 Of 95

Department of Computing

11.3 The Improvement of versioning algorithm
1. The versioning algorithm can be improved to no need to lock the whole model. Currently

the system just assume 2 items are difference and report conflict if both server version and

clients version and later than the last sync time. That mean 2 user editing the same basic

element, e.g. The name of model. However, the locking make 3rd user is not able to edit

other elements in that model. e.g.: he cannot model the stereo type of that class.

2. The locking can be refine to a multiple level locking. We make refine the locking to edit

lock, delete lock and adding lock. For some event, we just need to lock the model being

delete, but able to add smaller elements. For example, if there are conflict of the name of

an operation, it should be ok for other user to add the stereo type of that operation.

3. For the situation that 2 user edit the same diagram in start. But, after some time, for some

reason, they need to edit 2 diagram individual. We can use the versioning algorithm to do

the merging. But it is better to apply the algorithm in the XML save file rather than the

object.

68 Of 95

Department of Computing

12. Reference:

1

jGuru.com.WhyshouldI consideroptimisticversuspessimisticapproachesto database

updates. available online: http://www.jguru.com/faq/view.jsp?EID=479243

2

The O'Reilly Network. Postgresql'sMulti-Version Concurrency Control. available

online http://www.onlamp.com/lpt/a//onlamp/2001/05/25/postgresql_mvcc.html

3

JungkyuRho andChisuWu. An Efficient VersionModel of SoftwareDiagrams. IEEE.

Proceedings of APSEC '98, available online: http://selab.snu.ac.kr/~jkrho/apsec98.html

4

JonMunsonandPrasunDewan.A Flexible ObjectMerging Framework. ACM CSCW

Proceedings, Oct 1994, available online:

http://www.cs.unc.edu/~dewan/abstracts/merge.html

5

Sun microsystems. Jini network technology overview, available online:

http://www.sun.com/jini/overview

6 Source of netbeans, available online: http://www.netbeans.org/devhome/download.html

7 Source of jedit, available online: http://jedit.sourceforge.net/index.php?page=download

8 Netborne, available online: http://www.digitalschemes.com/

9

Paul Lee, Web base real time collaborative UML editor, Available online:

http://ils.comp.polyu.edu.hk/fypd/2000/6110/96258637d.pdf

10

Infoworld, ArgoUML offers unique decision support, Available online:

http://www.infoworld.com/articles/ec/xml/00/04/17/000417ecargo.xml

11

ObjectManagementGroup, CORBA, XML andXMI ResourcePage,Availableonline:

http://www.omg.org/technology/xml

12

JunichiSuzuki,UML exchangeformat andPatternmarkuplanguage,availableonline:

http://www.yy.ics.keio.ac.jp/~suzuki/project/uxf

13

NormandRivard, UML-Xchange,availableonline: http://sourceforge.net/projects/uml-

xchange

14

Object by Design, Transforming XML to HTML, available online:

http://www.objectsbydesign.com/projects/xmi_to_html.html

15

Dr Perdita Stevens, XMI Hackers' Homepage, available online:

http://www.dcs.ed.ac.uk/home/pxs/XMI

16

Jim Huggins, Abstract State Machines: UML State Machines, available online:

http://www.eecs.umich.edu/gasm/papers/umlverif.html

69 Of 95

Department of Computing

17

Ho, Wai Ming; Je'ze'quel,Jean-Marc;Le Guennec,Alain; Pennaneac'h,Franc,ois,An

Extendible UML Transformation Framework, available online:

http://www.inria.fr/rrrt/rr-3775.html

18

Alan Dix, Modelling Versions in Collaborative Work, available online:

http://www.comp.lancs.ac.uk/computing/users/dixa/papers/version-PSE97

19

Alan Dix, Version Control for Asynchronous Group Work, available online:

http://www.comp.lancs.ac.uk/computing/users/dixa/papers/version92/version92.html

20

An UML validation framework, vUML, available online:

http://www.abo.fi/~iporres/vUML/vUML.html

21 GEF: Java Library for Connected Graph Editors, available online: http://gef.tigris.org

22

ArgoUML: A modelling tool for design using UML, available online:

http://argouml.tigris.org

23

Novosoft, NSUML: Novosoft UML Library for Java, available online:

http://nsuml.sf.net

24

Java.sun.com, Java metadata Interface, available online:

http://java.sun.com/products/jmi

25

Miro Jurisic, UnderstandingCVS: A brief introduction to the conceptsof CVS,

available

online:http://web.mit.edu/macdev/Development/Documentation/www/CVS%20Docume

ntation/Understanding%20CVS.html

26

Brian Berliner, CVS II: Parallelizing Software Development, available online:

http://www.fnal.gov/docs/products/cvs

27 Dingo, The free, open-source UML modeler, available online: http://www.dingouml.org

28

API document for XMLEncoder of JDK 1.4, available online:

http://java.sun.com/j2se/1.4/docs/api/java/beans/XMLEncoder.html

29

IETF, Versioning Extensions to WebDAV, available online:

http://www.ietf.org/rfc/rfc3253.txt

30 JUG - Java UML Generator, available online: http://jug.sourceforge.net

31 UML object modeller for Linux, available online: http://uml.sourceforge.net

32 Dia, a drawing program, available online: http://www.lysator.liu.se/~alla/dia

33 Quick UML for java, available online: http://sourceforge.net/projects/quj

34 UML Sculptor, available online: http://umlsculptor.sourceforge.net

70 Of 95

Department of Computing

35

Christian Heide Damm, Klaus Marius Hansen, Michael Thomsen, Michael Tyrsted,

Tool Integration: Experiences and Issues in Using XMI and Component Technology,

available online: http://www.ideogramic.com/download/resources/toolsEurope2000.pdf

36

IBM.com, XMI Opens Application Interchange, available online: http://www-

4.ibm.com/software/ad/standards/xmiwhite0399.pdf

37

CoCons.org, Enhancing a UML Modelling Tool with Context-Based Constraints for

Components, available online:

http://www.cocons.org/publications/CCL_plugin_for_ArgoUML.pdf

38

Gary Lam, A Framework for an Agent-based Development Environment with Jini /

JavaSpace -Internet Integrated Development Environment Framework(Internet-IDEF)

71 Of 95

Department of Computing

13. Appendices

13.1 Code snippets of core component

13.1.1 Code snippet of event sharing

Here is some code snippet of how to share the event:

13.1.1.1 Client side event sending example

The origin source are here:

http://gef.tigris.org/source/browse/gef/src/org/tigris/gef/base/ModeCreatePolyEdge.java?rev=

1.4&content-type=text/x-cvsweb-markup

The following code is written by my for event sharing, the java file is

org.tigris.gef.base.ModeCreatePolyEdge

 // Change the method that processing mouse release event.

 public void mouseReleased(MouseEvent me) {

 MouseEvent pressEvent;

 // Because in many case we need to pass 2 event for single

task, so we need to cache or make some mouse event ourselves.

 if(_pastMousePressEvent != null)

 pressEvent = new

MouseEvent(_pastMousePressEvent.getComponent(),

 _pastMousePressEvent.getID(),

 System.currentTimeMillis(),

 _pastMousePressEvent.getModifiers(),

 _pastMousePressEvent.getX(),

 _pastMousePressEvent.getY(),

 _pastMousePressEvent.getClickCount(),

 _pastMousePressEvent.isPopupTrigger()

);

 else

 pressEvent = new MouseEvent(me.getComponent(),

 me.getID(),

 System.currentTimeMillis(),

 me.getModifiers(),

 me.getX(),

 me.getY(),

 me.getClickCount(),

 me.isPopupTrigger()

);

 Object[] para = {pressEvent, getArg("edgeClass")};

72 Of 95

Department of Computing

 // Then broadcast the events to the other sides

 _client.broadcastRequest("mouseReleasedImpl",

"ModeCreatePolyEdge", para, me);

 // And then actually run the event handler.

 mouseReleasedImpl(me);

 }

The server is only a thin server, it receive the clients object, then passed the object to other

clients. Then the clients handle the events receive. There may be some work before handle

the event. Like initalize the eventListener factory.

13.1.1.2 Client side receive event example

The java file is org.tigris.gef.base.Client

 // Check if the type match

 if(sender.equals("ModeCreatePolyEdge") &&

type.equals("mouseReleasedImpl")) {

 Object[] paras = (Object[])para;

 MouseEvent args1 = (MouseEvent)event;

 MouseEvent args2 = (MouseEvent)paras[0];

 Class edgeClass = (Class)paras[1];

 for(int i=0; i<modeCreatePolyEdges.size(); i++) {

 if(/* find the correct object */) {

 // handle the event.

 (/* The object */).mouseReleasedImpl(args1, args2);

 flag = true;

 }

}

// If the correct object not find, we need to initalize it as

preprocessing

 if(!flag) {

 CmdSetMode csm = Globals.getCmdSetMode(edgeClass);

 csm.doIt();

 ((ModeCreatePolyEdge)Globals.mode()).mouseReleasedImpl(args1,

args2);

}

There are other possible events need to patch are:

1. Mouse actions in org.tigris.gef.base.ModeCreatePolyEdge

2. Deletion actions in org.argouml.uml.ui.ActionRemoveFromModel

73 Of 95

Department of Computing

13.1.2 Code snippet of features sharing

13.1.2.1 The thread periodic run to send model

The java file is org.argouml.kernel.SyncClient

 // Code that get all model in the system

 MutableGraphSupport gModel =
(MutableGraphSupport)Globals.curEditor().getGraphModel();

 HashMap modelMap = gModel.itemIndex;

 Client client = Client.getInstance();

 List modelList = new ArrayList(modelMap.keySet());

 HashMap sendMap = new HashMap();

 // Loop through every elements

 for(int i=0;i<modelList.size(); i++) {

 Object thisModel = modelList.get(i);

// skip working model to prevent IOException

 if(thisModel.equals(pb.getDetailsTarget()) ||
client.skipModel.contains(thisModel)) {

 System.out.println("skip "+thisModel+" at "+getClass());

 continue;

 }

 HashMap featuresMap = new HashMap();

 if(modelList.get(i) instanceof MClassifier) {

// Code to extract the model element of Classifier

 List features =
((MClassifier)modelList.get(i)).getFeatures();

 for(int j=0;j<features.size(); j++) {

 HashMap infoMap = new HashMap();

 ArrayList infoList = new ArrayList();

// Code to extract the model element of Attribute, child of
classifier

// Extract individual itemID, timestamp, of each element

 if(features.get(j) instanceof MAttribute) {

 MAttribute attr = (MAttribute)features.get(j);

 MModelElementImpl model =
(MModelElementImpl)attr;

 MStructuralFeatureImpl sfeature =
(MStructuralFeatureImpl)attr;

 infoMap.put("MAttribute", "");

 infoList.add("MAttribute");

 infoMap.put(attr.getName(), new
Long(model.setNameTime));

74 Of 95

Department of Computing

 infoList.add(attr.getName());

 infoMap.put(attr.getVisibility(), new
Long(model.setVisibilityTime));

 infoList.add(attr.getVisibility());

 infoMap.put(attr.getType().getName(), new
Long(sfeature.setTypeTime));

 infoList.add(attr.getType().getName());

 }

// Code to extract the model element of operation, child of
classifier

// Extract individual itemID, timestamp of each element

 else if(features.get(j) instanceof MOperation) {

 MOperation oper = (MOperation)features.get(j);

 MModelElementImpl model =
(MModelElementImpl)oper;

 MBehavioralFeatureImpl bfeature =
(MBehavioralFeatureImpl)oper;

 infoMap.put("MOperation", "");

 infoList.add("MOperation");

 infoMap.put(oper.getName(), new
Long(model.setNameTime));

 infoList.add(oper.getName());

 infoMap.put(oper.getVisibility(), new
Long(model.setVisibilityTime));

 infoList.add(oper.getVisibility());

 List para1 = oper.getParameters();

 ArrayList para2 = new ArrayList();

// Process the childs of operation, parameter

 for(int k=0;k<para1.size();k++) {

 MParameter mpara = (MParameter)para1.get(k);

 ArrayList paraInfo = new ArrayList();

 paraInfo.add(mpara.getKind());

 paraInfo.add(mpara.getType().getName());

 paraInfo.add(mpara.getName());

 para2.add(paraInfo);

 }

 infoMap.put(para2, new
Long(bfeature.setParameterTime));

 infoList.add(para2);

 }

 MModelElementImpl model =
(MModelElementImpl)features.get(j);

 Object[] infos= {infoMap, infoList};

 featuresMap.put(new Long(model.createTime), infos);

75 Of 95

Department of Computing

}

 }

 else if(modelList.get(i) instanceof MRelationship) {

 }

// Process the remaining element of Classifier

 MModelElementImpl model =
(MModelElementImpl)modelList.get(i);

 MStereotype stereotype = model.getStereotype();

 String stereoName = stereotype != null?
stereotype.getName(): null;

 Long lastSyncTime = (Long)lastSyncMap.get(model);

 if(lastSyncTime == null) lastSyncTime = new Long(0);

 Object[] para = {featuresMap, model.getName(), new
Long(model.setNameTime), stereoName, new Long(model.setSte

 model.getVisibility(), new Long(model.setVisibilityTime),
lastSyncTime};

 sendMap.put(modelMap.get(modelList.get(i)), para);

 lastSyncMap.put(model, new
Long(System.currentTimeMillis()));

 }

 if(pb.getProject() == null) continue;

 Object[] trashList =
pb.getProject().getTrashedFeature().toArray();

 Object[] para = {sendMap, trashList};

 broadcastRequest ("MergeFeature", "SyncClient", para, null);

// Wait for 10000 milli-second.

 do {

 Thread.sleep(10000);

 } while(client.RUN_FLAG);

 }

// Reset the connection for every un-expected exception

 } catch (Exception e) {

 if(e.getClass().getPackage().toString().indexOf("java.io")
< 0)

 e.printStackTrace();

 doDisconnect();

 connect();

 run();

 }

13.1.2.2 The merge of the details of the objects

The java file is org.argouml.uml.ui.Client

// Get the local models

76 Of 95

Department of Computing

 ArrayList slist = new ArrayList(gModel.itemIndex.keySet());

 Object[] para = (Object[])paras;

 HashMap cMap = (HashMap)para[0];

 Object[] trashedFeatures = (Object[])para[1];

 for(int i=0; i<slist.size(); i++) {

 MModelElementImpl model =

(MModelElementImpl)slist.get(i);

 Object id = gModel.itemIndex.get(model);

 Object[] modelPara = (Object[])cMap.get(id);

// skip working model to prevent IOException

 if(modelPara == null ||

model.equals(pb.getDetailsTarget())) {

 continue;

 }

// Merge the model one by one.

 mergeItem(model, modelPara, trashedFeatures);

 }

 public void mergeItem(MModelElementImpl model, Object[]

modelPara, Object[] trashedFeatures) {

 RUN_FLAG = true;

 HashMap featureMap = (HashMap)modelPara[0];

 String name = (String)modelPara[1];

 Long nameTime = (Long)modelPara[2];

 String stereo = (String)modelPara[3];

 Long stereoTime = (Long)modelPara[4];

 MVisibilityKind vis = (MVisibilityKind)modelPara[5];

 Long visTime = (Long)modelPara[6];

 mergeModel(model, name, nameTime, stereo, stereoTime, vis,

visTime, false);

 //Check if feature changed of a node

 if(model instanceof MClassifier) {

 MClassifier classifier = (MClassifier)model;

 deleteFeatures(classifier, trashedFeatures);

 mergeClassifier(classifier, featureMap);

 }

 if(model instanceof MRelationship){}

 RUN_FLAG = false;

 }

// Merge items other than classifer, relations, attribute and

operation

77 Of 95

Department of Computing

 public void mergeModel(MModelElementImpl model, String name,

Long nameTime, String stereo, Long stereoTime, MVisibilityKind vis,

Long visTime, boolean makeFlag) {

 if(model.setNameTime < nameTime.longValue() || makeFlag)

 model.setName(name);

 if(model.setVisibilityTime < visTime.longValue() ||

makeFlag)

 model.setVisibility(vis);

 if(model.setStereotypeTime < stereoTime.longValue() &&

stereo != null) {

 MStereotype stereotype = new MStereotypeImpl();

 stereotype.setName(stereo);

 stereotype.setNamespace(model.getNamespace());

 model.setStereotype(stereotype);

 }

 }

 public void mergeAttribute(MClassifier classifier, Map infoMap,

List infoList, Long createTimeID) {

 MModelElementImpl model = getExistFeature(classifier,

createTimeID);

 boolean makeFlag = false;

 MAttribute attr = null;

// Make that element if has not create before, otherwise modify it

 if(model == null) {

 attr = classifier.getFactory().createAttribute();

 model = (MModelElementImpl)attr;

 makeFlag = true;

 }

 else {

 attr = (MAttribute)model;

 }

 MStructuralFeatureImpl sfeature =

(MStructuralFeatureImpl)attr;

 mergeModel(model, (String)infoList.get(1),

(Long)infoMap.get(infoList.get(1)), null, new Long(0),

(MVisibilityKind)infoList.get(2),

(Long)infoMap.get(infoList.get(2)), makeFlag);

 if(sfeature.setTypeTime < (

(Long)infoMap.get(infoList.get(3))).longValue() || makeFlag) {

 String typeName = (String)infoList.get(3);

 MClassifier mtype = p.findType(typeName);

78 Of 95

Department of Computing

 attr.setType(mtype);

 }

 if(makeFlag) {

 ((MModelElementImpl)attr).createTime =

createTimeID.longValue();

 classifier.addFeature(attr);

 }

 }

 public void mergeOperation(MClassifier classifier, Map infoMap,

List infoList, Long createTimeID) {

 MModelElementImpl model = getExistFeature(classifier,

createTimeID);

 boolean makeFlag = false;

 MOperation oper = null;

// Make that element if has not create before, otherwise modify it

 if(model == null) {

 oper = new MOperationImpl();

 model = (MModelElementImpl)oper;

 makeFlag = true;

 }

 else {

 oper = (MOperation)model;

 }

 MBehavioralFeatureImpl bfeature =

(MBehavioralFeatureImpl)oper;

 mergeModel(model, (String)infoList.get(1),

(Long)infoMap.get(infoList.get(1)), null, new Long(0),

 (MVisibilityKind)infoList.get(2),

(Long)infoMap.get(infoList.get(2)), makeFlag);

 if(bfeature.setParameterTime < (

(Long)infoMap.get(infoList.get(3))).longValue() || makeFlag) {

 List curParas = oper.getParameters();

 for(int k=0;k<curParas.size();k++) {

 oper.removeParameter((MParameter)curParas.get(k));

 }

 ArrayList newParas = (ArrayList)infoList.get(3);

 for(int k=0;k<newParas.size(); k++) {

 ArrayList paraInfo = (ArrayList)newParas.get(k);

 String typeName = (String)paraInfo.get(1);

79 Of 95

Department of Computing

 MClassifier mtype = p.findType(typeName);

 MParameter mpara = new MParameterImpl();

 mpara.setType(mtype);

 mpara.setKind((MParameterDirectionKind)paraInfo.get(

0));

 mpara.setName((String)paraInfo.get(2));

 oper.addParameter(mpara);

 }

 }

 if(makeFlag) {

 ((MModelElementImpl)oper).createTime =

createTimeID.longValue();

 classifier.addFeature(oper);

 }

 }

 public void mergeClassifier(MClassifier classifier, Map

featureMap) {

 ArrayList timeList = new ArrayList(featureMap.keySet());

 for(int j=0; j<timeList.size(); j++){

 Long createTime = (Long)timeList.get(j);

 Object[] infos = (Object[])featureMap.get(createTime);

 if(infos == null) {

 System.out.print(classifier);

 System.out.print(featureMap);

 }

 Map infoMap = (HashMap)infos[0];

 List infoList = (ArrayList)infos[1]; //We need this to

keep getting the needed information in sequence

 if(infoList.get(0).equals("MAttribute")) {

 mergeAttribute(classifier, infoMap, infoList,

createTime);

 }

 else if(infoList.get(0).equals("MOperation")) {

 mergeOperation(classifier, infoMap, infoList,

createTime);

 }

 }

 }

// Delete the features that have delete at other sides

80 Of 95

Department of Computing

 public void deleteFeatures(MClassifier classifier, Object[]

trashedFeatures) {

 if(trashedFeatures == null) return;

 List sfeatures = classifier.getFeatures();

 for(int j=0; j<sfeatures.size(); j++){

 MModelElementImpl model =

(MModelElementImpl)sfeatures.get(j);

 for(int i=0; i<trashedFeatures.length; i++){

 if(((Long)trashedFeatures[i]).longValue() ==

model.createTime) {

 classifier.removeFeature((MFeature)model);

 }

 }

 }

 }

 public MModelElementImpl getExistFeature(MClassifier classifier,

Long createTime) {

 List sfeatures = classifier.getFeatures();

 MModelElementImpl model = null;

 for(int i=0; i<sfeatures.size(); i++) {

 if(createTime.longValue() == (

(MModelElementImpl)sfeatures.get(i)).createTime) {

 model = (MModelElementImpl)sfeatures.get(i);

 break;

 }

 }

 return model;

 }

}

81 Of 95

Department of Computing

13.1.3 Code snippet of new versioning algorithm

Here is the code snip of the core logic:

// The method to merge the model

 public synchronized Object[] MergeModel (Object paras,

ServerThread sender) {

 Object[] para = (Object[])paras;

 HashMap cMap = (HashMap)para[0];

 ArrayList clist = new ArrayList(cMap.keySet());

// put the new added model in the repository

 if(modelMap == null) {

 modelMap = new HashMap();

 modelMap.putAll(cMap);

 }

 else {

 modelList = new ArrayList(modelMap.keySet());

 for(int i=0; i<clist.size(); i++) {

 modelID = (Integer)clist.get(i);

 if(!modelList.contains(modelID)) {

 modelMap.put(modelID, cMap.get(modelID));

 }

 }

 }

 modelList = new ArrayList(modelMap.keySet());

 for(int i=0; i<modelList.size(); i++) {

 modelID = (Integer)modelList.get(i);

 Object[] modelPara = (Object[])cMap.get(modelID);

 Object[] model = (Object[])modelMap.get(modelID);

 conflictFind = false;

 conflictObj = (Object[])model.clone();

// Delete the removed model from the repository

 if(modelPara == null) {

 modelMap.remove(modelID);

 continue;

 }

 HashMap featureMap = (HashMap)modelPara[0];

 String name = (String)modelPara[1];

 Long nameTime = (Long)modelPara[2];

 String stereo = (String)modelPara[3];

82 Of 95

Department of Computing

 Long stereoTime = (Long)modelPara[4];

 MVisibilityKind vis = (MVisibilityKind)modelPara[5];

 Long visTime = (Long)modelPara[6];

 lastSyncTime = ((Long)modelPara[7]).longValue();

// Merge the model element changed of a node

 model = mergeModel(model, name, nameTime, stereo,

stereoTime, vis, visTime, false);

// Merge the features changed of a node

 if(featureMap.size() > 0){

 model[0] = mergeFeatures((HashMap)model[0],

featureMap);

 }

// Tell all the other client to lock that model

 if(conflictFind){

 ArrayList list = new ArrayList();

 list.add("Conflict");

 list.add("SimpleServer");

 list.add(conflictObj);

 list.add(modelID);

 sender.BroadCastToClient(list);

 System.out.println(list+" sent");

 }

 modelMap.put(modelID, model);

 }

 Object[] returnObject = {modelMap, para[1]};

 return returnObject;

 }

// Method to merge the basic model of a model

 public Object[] mergeModel(Object[] model, String name, Long

nameTime, String stereo, Long stereoTime, MVisibilityKind vis, Long

visTime, boolean makeFlag) {

 String sname = (String)model[1];

 Long snameTime = (Long)model[2];

 String sstereo = (String)model[3];

 Long sstereoTime = (Long)model[4];

 MVisibilityKind svis = (MVisibilityKind)model[5];

 Long svisTime = (Long)model[6];

83 Of 95

Department of Computing

// conflict case, both latest modify time of repository and client

and later than last communication time

 if(lastSyncTime < nameTime.longValue() && lastSyncTime <

snameTime.longValue() && sname != null && !sname.equals(name) &&

!sname.equals("") && !name.equals("")) {

 conflictObj[1] = name + "\n ##name confliction: " +

model[1];

 conflictObj[2] = new Long(System.currentTimeMillis());

 conflictFind = true;

 }

// If only client time is later than last communication time, update

repository version

 else if(lastSyncTime < nameTime.longValue() || sname ==null)

{

 if(name != null && !name.equals("")) {

 model[1] = name;

 model[2] = new Long(System.currentTimeMillis());

 }

 }

//Merge stereo type

 if(lastSyncTime < stereoTime.longValue() && lastSyncTime <

sstereoTime.longValue() && sstereo != null &&

!sstereo.equals(stereo)) {

 conflictObj[1] = model[1] + "\n ##stereotype

confliction: " + stereo;

 conflictObj[2] = new Long(System.currentTimeMillis());

 conflictFind = true;

 }

 else if(lastSyncTime < stereoTime.longValue() ||

sstereo==null) {

 model[3] = stereo;

 model[4] = new Long(System.currentTimeMillis());

 }

//Merge visiability

 if(lastSyncTime < visTime.longValue() && lastSyncTime <

svisTime.longValue() && svis != null && !svis.equals(vis)) {

 conflictObj[1] = model[1] + "\n ##visibile confliction:

" + vis;

 conflictObj[2] = new Long(System.currentTimeMillis());

 conflictFind = true;

 }

 else if(lastSyncTime < visTime.longValue() || svis==null) {

84 Of 95

Department of Computing

 model[5] = vis;

 model[6] = new Long(System.currentTimeMillis());

 }

 return model;

 }

// Get the last modification time of a feature, choose the most last

modification time of an element belong to this feature

 public long getLastModifyTime(HashMap infoMap, List infoList) {

 long max = 0;

 for(int i=1;i<=3;i++){

 long value =

((Long)infoMap.get(infoList.get(i))).longValue();

 if(value > max) {

 max = value;

 }

 }

 return max;

 }

 public HashMap mergeFeatures(HashMap sfeatureMap, HashMap

cfeatureMap) {

 ArrayList ctimeList = new ArrayList(cfeatureMap.keySet());

 ArrayList stimeList = new ArrayList(sfeatureMap.keySet());

 for(int j=0; j<stimeList.size(); j++){

 Long createTime = (Long)stimeList.get(j);

 Object[] infos = (Object[])cfeatureMap.get(createTime);

// remove feature that removed in the client

 if(infos == null);

 sfeatureMap.remove(createTime);

 }

 for(int j=0; j<ctimeList.size(); j++){

 Long createTime = (Long)ctimeList.get(j);

 Object[] cinfos = (Object[])cfeatureMap.get(createTime);

 Object[] sinfos = (Object[])sfeatureMap.get(createTime);

//If not find at server items, mean that that feature need to add

 if(sinfos == null) {

 sfeatureMap.put(createTime, cinfos);

 continue;

85 Of 95

Department of Computing

 }

// if both have that item, we need to see if conflict arise

 HashMap cinfoMap = (HashMap)cinfos[0];

 List cinfoList = (ArrayList)cinfos[1];

 HashMap sinfoMap = (HashMap)sinfos[0];

 List sinfoList = (ArrayList)sinfos[1];

 long cLastModifyTime = getLastModifyTime(cinfoMap,

cinfoList);

 long sLastModifyTime = getLastModifyTime(sinfoMap,

sinfoList);

// Merge features, similar to basic element of UML model

 if(lastSyncTime < cLastModifyTime && lastSyncTime <

sLastModifyTime && lastSyncTime > 0) {

 HashMap conflictMap = (HashMap)conflictObj[0];

 ArrayList conflictList = new

ArrayList(conflictMap.keySet());

 Object[] conflictInfos =

(Object[])conflictMap.get(createTime);

 HashMap conflictInfoMap = (HashMap)conflictInfos[0];

 ArrayList conflictInfoList =

(ArrayList)conflictInfos[1];

 String oldName = (String)sinfoList.get(1);

 Object oldValue = sinfoMap.get(oldName);

 String newName = "### conflict: "+oldName;

 conflictInfoList.remove(1);

 conflictInfoMap.remove(oldName);

 conflictInfoList.add(1, newName);

 conflictInfoMap.put(newName, oldValue);

 conflictMap.put(createTime, cinfos);

 conflictMap.put(new

Long(System.currentTimeMillis()), sinfos);

 conflictFind = true;

 }

 else if(lastSyncTime < sLastModifyTime||sinfoMap.size()

== 0) {

 sfeatureMap.put(createTime, cinfos);

 }

86 Of 95

Department of Computing

 }

 return cfeatureMap;

 }

}

87 Of 95

Department of Computing

13.2 Introduction to CVS

13.2.1 What is CVS?[25]

This part is quote from the reference,ConcurrentVersionsSystem,or CVS, is a revision

control system that

1. Allows multiple developersto collaborateon softwareprojects,while providing much

helpin keepingtheprojectsin a consistentstatealthoughtheymaybemanipulatedby any

number of developers at any given time

2. Allows a developeror developersto maintainversionhistory of a softwareproject and

track changes made to the project over time

3. Allows developersto maintainseveralconcurrentversionsof a project,while providing

help in moving changesamongthoseversions,andpreservingconsistencyof individual

versions.

13.2.2 Basic ideas behind CVS

Two principal partsof a CVS systemare the repositoryand working files. The repository

resideson a CVS server,andcontainshistory andversioninformation aboutall files in the

repository.Working files resideon developers'machinesand only representa particular

revision of each file.

Supposea single developer,Alice, is working on a project on her developmentmachine.

Then the picture looks like this:

88 Of 95

Department of Computing

The relation of repository and working files

Whenevershemakeschangesto somefile in theproject,Alice wantsto recordthosechanges

in therepositorysothatthereis a recordof herprogresslater.Theactof sendingthechanges

made to working files to be incorporatedinto the repository is called 'committing the

changes'.Alice commitsher changesevery day beforesheleaveswork. After a while, the

projecthistory will grow, andthe repositorywill containinformationaboutpastversionsof

all the files that are part of the project:

Thus we seethe simplestform of CVS interaction:modify - commit - repeat.We will see

later how this model will haveto be somewhatextendedlater to cover for more complex

scenarios.

As theprojectprogresses,Alice mayneedto addor removesomefiles. Shecando so using

the CVS commands'add' and 'remove',which schedulethe files for addition or removal.

However, the changes will not be propagated to the repository until Alice commits the files.

Thus we see the first important rule of CVS:

The repository is ALMOST never modified until you commit your changes

Exceptions to this rule are rare, and will be pointed out as they arise.

89 Of 95

Department of Computing

13.2.3 Getting slightly more complex: multiple developers

Someday,anotherdeveloper,Bob, is assignedto work on Alice'sproject.Theynowbothuse

CVS to work the project. The picture is now like this:

Multiple user editing one document with CVS

They happily work on two separateparts of the project, until someday Alice decidesto

modify the file called Conflict.c. Unbeknownstto her, Bob hasalreadymodified the same

file, andcommittedhis changes.Alice makesher modificationsto the file, andattemptsto

commit her changes. However, she gets the following message from CVS:

cvs server: Up-to-date check failed for `Conflict.c'

90 Of 95

Department of Computing

cvs [server aborted]: correct above errors first!

Alice realizesfrom this cryptic messagethat the problem is that her working version of

Conflict.cwasnotup-to-datebeforeshehadmodifiedit. Sheneedsto updateherworking file

to the most recentversion of Conflict.c from the repository,before she can commit her

changes.Sheusesthe CVS 'update'commandto updateher working files, andafter that she

happily commits her changes.

The “Copy-Modify-Merge” flow diagram of CVS

Clearly,Bob andAlice needto modify their working patternto accommodatefor thefact that

theymight beworking on thesamefiles from time to time.Theychangetheir useof CVS to:

91 Of 95

Department of Computing

modify - update - commit - repeat. That way they are almost completely sure that, whenever

they attempt to commit changes, they will be successful.

13.2.4 Fighting for control: merge conflicts

Soon, Alice and Bob discover that they were too hopeful the last time they revised their

habits. One day, Alice diligently attempted to update her local files, only to get an error:

Merging differences between 1.11 and 1.12 into Conflict.c

rcsmerge: warning: conflicts during merge

cvs server: conflicts found in Conflict.c

C Conflict.c

After briefly consulting with Bob, Alice realizes that she modified the same portion of the file

as Bob, and that CVS decided that their sets of changes were incompatible. However, looking

inside her local version of Conflict.c, Alice finds the following:

UInt32

CountStringsInList (

 Ptr inData)

{

<<<<<<< Conflict.c

 /* Alice: added the assertion */

 AssertIf_ (Ptr == nil);

=======

 /* Bob: ignore nil input */

 if (Ptr == nil) return;

>>>>>>> 1.12

 return *(UInt32*)inData;

}

After a brief discussion with Bob (during which he is sent to read some books about writing

solid code), they agree that Alice used the correct approach. Alice modifies the file to read:

UInt32

CountStringsInList (

 Ptr inData)

{

 /* Alice: added the assertion and educated Bob*/

92 Of 95

Department of Computing

 AssertIf_ (Ptr == nil);

 return *(UInt32*)inData;

}

after which she successfully commits her changes.

Having been through this, Alice and Bob learn some important facts about CVS update:
� if CVS updateencountersa conflict andis thereforeunableto updatethefile, it will mark

the conflict in the file with 'conflict markers'(like in the aboveexample).Fortunately,

conflict markers do not compile in any known language, so they are hard to miss.
� if a CVS updatefails, CVS will backupthe working file beforeupdate- so that you can

easilyrevert to it if you decidethat you want to abandontheupdate.The backupfile will

be placedin the samefolder as the file beingupdated,and it will inevitably havea bad,

confusing filename, such as ".#Conflict.c.1.11".

As a result,theymodify theywork flow to be:modify - update- resolveconflicts - commit -

repeat.

93 Of 95

Department of Computing

The “Copy-Modify-Merge” flow diagram with conflict resolve of CVS

13.2.5 Checkout: the missing link

Onething that this explanationsweptunderthe rug wasthe very importantquestionof how

Alice createdthe initial copyof herworking files. Theinitial act of acquiringa freshcopyof

the files from the repositoryis calledcheckout,and is usedonly to createa completenew

copyof working files on a developer'smachine.Evenif Alice or Bob removesome(but not

all) the working files andfolders on their developmentmachines,they needto perform an

update (and not checkout) to get new copies from the repository.

94 Of 95

Department of Computing

13.2.6 Conclusion

The model that has been developer above (modify - update - resolve conflicts - commit -

repeat) does not require further modifications to be usable in practice. Some people might

prefer to modify it slightly, but the basic ideas contained in this model always remain.

For example, Alice might choose to update her working files each morning as she comes to

work, work on them until the afternoon, and then commit all her changes; of course,

committing the changes will sometimes cause an up-to-date check to fail, so she will have to

update her files again in order to commit, and possibly resolve some merge conflicts at that

time. However, since up-to-date failures are not very frequent, and merge conflicts are even

less frequent, this way of using CVS is perfectly reasonable, and does not deviate

fundamentally from the modify - update - resolve conflicts - commit - repeat model.

95 Of 95

