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� Why?
� Software development projects require 

variety of tools to accomplish tasks
� IDE does not support particular tools required 

by specific projects
� Location limitation
� Low extensibility of existing IDE



� What?
� Develop an open, distributed software 

development platform on top of Jini networking 
technology and making use of JavaSpace
technology and design patterns

� How?
� Develop a set of APIs for tool developers to 

make use of
� Define the communication data structure and 

protocol for collaboration.
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� Jini is a network technology that enables 
spontaneous assembly and interaction of services 
and devices on a network. [Adapted from Jini Network 
Technology datasheet]

� Provide reliable services in an unreliable 
environment
� This includes self-healing by leasing and transaction 

support for partial failure
� Code mobility which is implemented by notion of Jini

proxy
� A Jini system consists of three main parts: 

Infrastructure, Programming Model and Services



� Infrastructure
� Discovery, Join and Lookup Protocols
� Lookup Service

� Programming Model
� Leasing
� Remote Event
� Distributed Transaction



Extract from Jini(tm) Technology Datasheet



� Space-based model for distributed 
application development

� Simple programming model:
� read, take, write and notify



Extracted from http://java.sun.com/products/javaspaces/index.html

http://java.sun.com/products/javaspaces/index.html


� Layered Architecture and Component 
Architecture

� Jini and Internet-IDEF
� Module API design
� Clients and Tools Collaboration
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� Problem:
� Jini service lookup based on Java type 

matching – client application of tools 
should have knowledge of Tool’s “Type” 
beforehand.

� E.g. Clients only know Editor type, they 
don’t know Compiler type which is later 
added to the system

� Solution:
� A standard ToolProxy interface was 

defined for client applications.



� Problem:
� The framework has to support both 

command line tools and rich GUI tools
� Solution:

� Defined and implemented classes to 
support both of them (Illustrate later)



� Problem:
� Repeat Implementation of tool startup 

steps. 
� E.g. Find lookup service, service 

registration, etc
� Solution:

� Implemented a set of classes for 
standardizing steps of starting up a tool.



� API for dynamic plug-in of command 
line tools and JAR applications
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URLClassLoader
(from net)

AbstractToolProxy

leaseDuration : long

AbstractToolProxy()
init()
getLease()
getCommand()

(from service)

JarURLConnection

entryName : String

JarURLConnection()
parseSpecs()
getJarFileURL()
getEntryName()
getJarFile()
getManifest()
getJarEntry()
getAttributes()
getMainAttributes()
getCertificates()

(from net)

JarClassLoader

JarClassLoader()
getMainClassName()
invokeClass()
getInitClassName()
initClass()
getClasses()

JarRunner

JarRunner()
run()
fatal()
runInit()

ToolProxy

init()
getLease()
getCommand()

(from service)

<<Interface>>

LocalToolProxy
jarUR L : String

LocalToolProxy()
init()
addTool()

-run...

0..*0..*
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� Standalone Java Compiler to Remote 
Java Compiler







� ArgoUML with collaborative capacity
� Version Engine





� Making balance between generality 
and specificity

� Measuring the adaptability of the  
framework

� Defining an appropriate communication 
data structure and protocols

� Choosing suitable design patterns



� Developed a set of classes for tool 
developers to plug in tools to the 
platform
� Components implemented

� Dynamic Plug-in API for remote service and 
JAR file tools

� ToolProxy interface 
� Service Utilities
� Communication Facility
� Tool Administration
� Client tools browser
� Tool Startup Facility



� Plug-in a Java compiler and 
collaborative UML editor
� Operate successfully

� Successful integration of these tools 
into the framework validates the 
proposed design



� Combination with other technologies, 
e.g.
� Java Bean
� XML

� Remain components, e.g.
� Project resource management 

component
� User management component
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