
A Framework for an Agent-based Development 
Environment with Jini/Javaspaces –

Internet Integrated Development Environment 
Framework (Internet-IDEF)

Dr. Stephen Chan Chi-Fai
Dr. Korris Chung Fu-Lai
Lam Hoi Kit
98247632D

Supervisor:       
Co-examiner:
Student Name:
Student ID:



� Why? What? How?
� System Architecture
� Brief Jini Concept & JavaSpaces 

Concept
� Design and Implementation
� Validation – Remote Java Compiler and 

Collaborative UML Editor
� Challenges
� Conclusion



� Why?
� Software development projects require 

variety of tools to accomplish tasks
� IDE does not support particular tools required 

by specific projects
� Location limitation
� Low extensibility of existing IDE



� What?
� Develop an open, distributed software 

development platform on top of Jini networking 
technology and making use of JavaSpace
technology and design patterns

� How?
� Develop a set of APIs for tool developers to 

make use of
� Define the communication data structure and 

protocol for collaboration.



use

Project ManagerProject Manager

User 
Manager

User 
Manager

Client 
Application

Client 
Application

Tool BTool B

use

Tool ATool A

monitor

use

monitor

Project 
Database
Project 

DatabaseJavaSpace: For 
whole project

JavaSpace: For 
whole project

JavaSpace: For 
current client’s 
editing work

JavaSpace: For 
current client’s 
editing work

Read/write

monitor

System 
Administration

System 
Administration

Service 
Finder

Service 
Finder



� Jini is a network technology that enables 
spontaneous assembly and interaction of services 
and devices on a network. [Adapted from Jini Network 
Technology datasheet]

� Provide reliable services in an unreliable 
environment
� This includes self-healing by leasing and transaction 

support for partial failure
� Code mobility which is implemented by notion of Jini

proxy
� A Jini system consists of three main parts: 

Infrastructure, Programming Model and Services



� Infrastructure
� Discovery, Join and Lookup Protocols
� Lookup Service

� Programming Model
� Leasing
� Remote Event
� Distributed Transaction



Extract from Jini(tm) Technology Datasheet



� Space-based model for distributed 
application development

� Simple programming model:
� read, take, write and notify



Extracted from http://java.sun.com/products/javaspaces/index.html

http://java.sun.com/products/javaspaces/index.html


� Layered Architecture and Component 
Architecture

� Jini and Internet-IDEF
� Module API design
� Clients and Tools Collaboration



Java

Internet-IDEF

Jini network technology

JavaSpaces

Tool Tool Tool Tool

Project 
Resource 

Management
Communication 

Facility

Network 
Resource 

Management
Util

Startup Facility Tool 
Administration

ToolProxy
Interface

API for JAR file 
tools

API for
Remote Service Client 

Application

Layer 
Architecture

Component 
Architecture



� Problem:
� Jini service lookup based on Java type 

matching – client application of tools 
should have knowledge of Tool’s “Type” 
beforehand.

� E.g. Clients only know Editor type, they 
don’t know Compiler type which is later 
added to the system

� Solution:
� A standard ToolProxy interface was 

defined for client applications.



� Problem:
� The framework has to support both 

command line tools and rich GUI tools
� Solution:

� Defined and implemented classes to 
support both of them (Illustrate later)



� Problem:
� Repeat Implementation of tool startup 

steps. 
� E.g. Find lookup service, service 

registration, etc
� Solution:

� Implemented a set of classes for 
standardizing steps of starting up a tool.



� API for dynamic plug-in of command 
line tools and JAR applications

A b s t r a c t T o o lP r o x y
le a s e D u r a t io n  :  lo n g

A b s t r a c t T o o lP r o x y ( )
in it ( )
g e t L e a s e ( )
g e t C o m m a n d ( )

T o o lP r o x y

in it ( )
g e t L e a s e ( )
g e t C o m m a n d ( )

< < I n t e r fa c e > >

c o n c r e te P r o x y

T o o lS e r v ic e

T o o lS e r v ic e ( )
g e t S e r v ic e ID F r o m F ile ( )

C o m m a n d

d o T a s k ( )

< < In t e r f a c . . .

R e m o t e S e r v ic e

d o C o m m a n d ()

< < In t e r f a c e > >

E x is t in g  C o m m a n d  L in e  A p p
< < E x t e r n a l  A p p lic a t io n > >



URLClassLoader
(from net)

AbstractToolProxy

leaseDuration : long

AbstractToolProxy()
init()
getLease()
getCommand()

(from service)

JarURLConnection

entryName : String

JarURLConnection()
parseSpecs()
getJarFileURL()
getEntryName()
getJarFile()
getManifest()
getJarEntry()
getAttributes()
getMainAttributes()
getCertificates()

(from net)

JarClassLoader

JarClassLoader()
getMainClassName()
invokeClass()
getInitClassName()
initClass()
getClasses()

JarRunner

JarRunner()
run()
fatal()
runInit()

ToolProxy

init()
getLease()
getCommand()

(from service)

<<Interface>>

LocalToolProxy
jarUR L : String

LocalToolProxy()
init()
addTool()

-run...

0..*0..*



6: read(source)

5:
doCommand()

1: findService()

Command

7: 
requestService

8: write(result)

4: write(source)

RemoteService

10: 
read(result)

Lookup
3: doTask() 2: init()

ResultHandler
9: handleResult()

Exist 
Application

JavaSpace

ToolProxy

Client



1: findService()

ToolProxy JarRunner

Packaged 
Jar File

4: Load the 
file from the 

Client Lookup

2: init() or main()

3: Run Jar

remote host 
to client side



� Standalone Java Compiler to Remote 
Java Compiler







� ArgoUML with collaborative capacity
� Version Engine





� Making balance between generality 
and specificity

� Measuring the adaptability of the  
framework

� Defining an appropriate communication 
data structure and protocols

� Choosing suitable design patterns



� Developed a set of classes for tool 
developers to plug in tools to the 
platform
� Components implemented

� Dynamic Plug-in API for remote service and 
JAR file tools

� ToolProxy interface 
� Service Utilities
� Communication Facility
� Tool Administration
� Client tools browser
� Tool Startup Facility



� Plug-in a Java compiler and 
collaborative UML editor
� Operate successfully

� Successful integration of these tools 
into the framework validates the 
proposed design



� Combination with other technologies, 
e.g.
� Java Bean
� XML

� Remain components, e.g.
� Project resource management 

component
� User management component




	Final Year Project Presentation
	Agenda
	Why? What? How?
	Why? What? How? (con’t)
	System Architecture
	Brief Jini Concept
	Brief Jini Concept (con’t)
	Brief Jini Concept (con’t)
	Brief JavaSpaces Concept
	Brief JavaSpaces Concept (con’t)
	Design and Implementation
	Layered Architecture and Component Architecture
	Jini and Internet-IDEF
	Jini and Internet-IDEF (con’t)
	Jini and Internet-IDEF (con’t)
	Module API design
	Module API design (con’t)
	Clients & Tools Collaboration– Command line tool
	Collaboration Diagram – Rich GUI
	Validation – Remote Java Compiler
	Validation – Remote Java Compiler (con’t)
	Validation – Remote Java Compiler (con’t)
	Validation – Collaborative UML Editor
	Validation – Collaborative UML Editor (con’t)
	Challenges
	Conclusion
	Conclusion (con’t)
	Potential enhancements
	Thank YouQ & A Session

